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Linear response theory (LRT) is one of the main approaches to the dynamics of quantum many-body systems.
However, this approach has limitations and requires, e.g., that the initial state is (i) mixed and (ii) close to
equilibrium. In this paper, we discuss these limitations and study the nonequilibrium dynamics for a certain
class of properly prepared initial states. Specifically, we consider thermal states of the quantum system in the
presence of an additional static force which, however, become nonequilibrium states when this static force is
eventually removed. While for weak forces the relaxation dynamics is well captured by LRT, much less is
known in the case of strong forces, i.e., initial states far away from equilibrium. Summarizing our main results,
we unveil that, for high temperatures, the nonequilibrium dynamics of so-called binary operators is always
generated by an equilibrium correlation function. In particular, this statement holds true for states in the far-
from-equilibrium limit, i.e., outside the linear response regime. In addition, we confirm our analytical results
by numerically studying the dynamics of local fermionic occupation numbers and local energy densities in the
spin-1/2 Heisenberg chain. Remarkably, these simulations also provide evidence that our results qualitatively
apply in a more general setting, e.g., in the anisotropic XXZ model where the local energy is a non-binary
operator, as well as for a wider range of temperature. Furthermore, exploiting the concept of quantum typicality,
all of our findings are not restricted to mixed states, but are valid for pure initial states as well.
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I. INTRODUCTION

Statistical physics provides a universal concept for the
calculation of equilibrium properties of many-body quantum
systems. This surprisingly simple and remarkably successful
concept is to properly choose one of the textbook statistical
ensembles. Furthermore, various analytical and numerical
methods are available to carry out the actual calculation
for a specific physical model, see, e.g., Refs. [1–3]. Out of
equilibrium, however, such a universal concept is absent. This
absence is not least related to the diversity of nonequilibrium
situations. On the one hand, there can be driving by time-
dependent protocols [4–6] and by heat baths or particle reser-
voirs at unequal temperatures or chemical potentials [7–9].
In strictly isolated situations, on the other hand, a variety of
initial states can be prepared. These initial states can be mixed
or pure, entangled or nonentangled, and close to or far away
from equilibrium.

Quantum many-body systems in strict isolation have expe-
rienced an upsurge of interest in recent years, also due to the
advent of cold atomic gases [10], the discovery of many-body
localized phases [11], and the invention of powerful numerical
techniques such as density matrix renormalization group [2].
In particular, understanding the existence of equilibration
and thermalization has seen substantial progress [12,13] by
as fascinating concepts as eigenstate thermalization [14–16]
and typicality of pure states [17–30]. However, much less
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is known on the route to equilibrium as such [31,32]. A
widely used approach to the full time-dependent relaxation
process is linear response theory (LRT) [33]. While this highly
developed theory predicts the dynamics of expectation values
on the basis of correlation functions, the calculation of these
correlation functions can be a challenge in practice, see, e.g.
Refs. [34–38]. In addition to this practical issue, LRT as such
has limitations and requires, e.g., that the initial state is (i)
mixed and (ii) close to equilibrium.

In this situation, our paper takes a fresh perspective and
studies the nonequilibrium dynamics for a certain class of
initial states. To be precise, we consider thermal states of
the quantum system in the presence of an additional static
force. However, when this static force is eventually removed,
these states become nonequilibrium states of the remaining
Hamiltonian. Moreover, depending on the strength of the
external force, they can be prepared close to as well as far
away from equilibrium at arbitrary temperature. On the one
hand, in the case of a weak force, the resulting dynamics
is well captured by LRT. On the other hand, much less is
known for strong forces, i.e., initial states far away from
equilibrium. While the preparation of the initial states in
principle does not require a specific type of observable, we
here focus on so-called binary operators. For such operators
and high temperatures, we unveil that the nonequilibrium
dynamics is always generated by a single correlation function
evaluated exactly at equilibrium. In particular, this statement
holds true for states in the far-from-equilibrium limit, i.e.,
outside the linear response regime. In addition, we confirm
our analytical results by numerically studying the dynamics
of local fermionic occupation numbers [39–42] and local
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energy densities [42,43] in the spin-1/2 Heisenberg chain.
Remarkably, these simulations also provide evidence that our
results qualitatively apply in a more general setting, e.g., in
the anisotropic XXZ model where the local energy is a non-
binary operator, as well as for a wider range of temperature.
Furthermore, exploiting the concept of quantum typicality, all
of our findings are not restricted to mixed states, but are valid
for pure initial states as well.

This paper is structured as follows. In Sec. II, we introduce
our nonequilibrium setup. We continue to discuss analytical
results for this setup in Sec. III. In Sec. IV, we present
the numerical approach which is employed to illustrate our
findings in Sec. V. We summarize and conclude in Sec. VI.

II. RESPONSE TO A STATIC FORCE

We start by considering a quantum system described by
a Hamiltonian H, which is in contact with a (weakly coupled
and macroscopically large) heat bath at temperature T = 1/β.
Furthermore, this quantum system is affected by a static force
which gives rise to an additional potential energy described
by an operator Ol [44–47]. (The subscript l indicates that
we have local operators in mind. Later there will be also
other operators Ol′ .) For such a situation, thermalization to
the density matrix

ρneq = e−β(H−εOl )

Zneq
(1)

emerges, where Zneq = Tr[e−β(H−εOl )] is the partition func-
tion and the parameter ε denotes the strength of the static
force. Eventually, this force and the heat bath are both re-
moved. This setup might be seen as a type of quantum quench
as well [43,48]. Then, ρneq in Eq. (1) is no equilibrium state
of the remaining Hamiltonian H such that it evolves in time
according to the von-Neumann equation for this Hamiltonian,

ρneq(t ) = e−iHt ρneq eiHt . (2)

If ε is a small parameter, the exponential in Eq. (1) can be
expanded according to [33,49]

ρneq = ρeq

(
1 + ε

∫ β

0
dβ ′ eβ ′H �Ol e−β ′H + ε2 . . .

)
, (3)

where �Ol = Ol − 〈Ol〉eq and 〈•〉eq = Tr[ρeq•] denotes the
equilibrium expectation value with

ρeq = e−βH

Zeq
, (4)

and Zeq = Tr[e−βH]. Hence, for small values of ε, the dynam-
ical expectation value 〈Ol′ (t )〉neq = Tr[ρneq(t )Ol′] of some
(other) operator Ol′ can be written as

〈Ol′ (t )〉neq = 〈Ol′ 〉eq + ε χl,l′ (t ), (5)

where the susceptibility (or relaxation function) χl,l′ (t ) is
given by [33]

χl,l′ (t ) =
∫ β

0
dβ ′ Tr[ρeq �Ol (−iβ ′)Ol′ (t )]. (6)

Note that the expansion in Eq. (3) is known to converge be-
cause all expressions are analytical and the operators involved

FIG. 1. While for weak external forces, the initial expectation
value 〈O(0)〉neq follows the linear prediction in Eq. (5), this predic-
tion has to break down at the latest for a perturbation of strength εc,
cf. Eq. (8). Here, we study the relaxation dynamics of initial states in
the entire regime close to as well as far away from equilibrium.

have bounded spectra. Equation (5) reflects a central statement
of LRT, i.e., for small values of ε the response is linear in ε.
However, when ε is increased to large values, higher-order
terms are expected to become non-negligible [50].

By tuning the strength of the external force, it is possible
to prepare initial states which can be close to as well as far
away from equilibrium. On the one hand, in the limit ε → 0,
one naturally finds ρneq → ρeq. On the other hand, in the limit
ε → ∞, the density matrix ρneq in Eq. (1) acts as a projector
on the eigenstates of Ol with the largest eigenvalue Ol,max.
Thus, the initial expectation value 〈Ol′=l (0)〉neq reads

lim
ε→∞〈Ol′=l (0)〉neq = Ol,max. (7)

In particular, comparing Eqs. (5) and (7) suggests that LRT
has to break down at the latest for a perturbation of strength

εc = Ol,max − 〈Ol′=l〉eq

χl,l′=l

. (8)

A central aspect of this work is to study the relaxation of
expectation values 〈Ol′ (t )〉neq outside the regime of linear
response, i.e., beyond the validity range of Eq. (5), see Fig. 1.

III. NONEQUILIBRIUM DYNAMICS AND
CORRELATION FUNCTIONS

A. High temperatures and arbitrary perturbations

Although the states ρneq in Eq. (1) do not require a specific
type of operator, we here restrict ourselves to so-called binary
operators Ol = c1(P + c2), where all eigenvalues of P are
either 0 or 1, and c1 and c2 are some real constants. Then,
P2 = P and P describes a projection. Binary operators are,
e.g., local fermionic occupation numbers [39–42] and local
energy densities [42,43] in the isotropic Heisenberg spin-
1/2 chain. (These two examples will be considered in our
numerical simulations below.)

Moreover, let us focus on the regime of high temperatures
and strong external forces, i.e., we want to consider the regime
β → 0 but βε > 0. In this regime, we can write to good
approximation

ρneq ≈ eβεc1(P+c2 )

Tr[eβεc1(P+c2 )]
= eβεc1P

Tr[eβεc1P ]
. (9)
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From now on, to simplify notation, we absorb c1 in the defi-
nition of ε. A Taylor expansion of this exponential, combined
with the projection property P i = P , then yields

ρneq ∝ 1 + βεP + 1
2β2ε2P2 + 1

6β3ε3P3 + . . .

= 1 + βεP + 1
2β2ε2P + 1

6β3ε3P + . . .

= 1 + (eβε − 1)P . (10)

Next, let us focus on the situation where one measures the
relaxation of exactly the same observable which is used to
prepare the initial state, i.e., we have Ol′ = Ol = c1(P + c2).
Then, it follows from Eq. (10) that the time-dependent expec-
tation value 〈Ol′ (t )〉neq = c1(〈P (t )〉neq + c2) is given by the
relation

〈P (t )〉neq = 〈P〉eq + (eβε − 1) · 〈PP (t )〉eq

1 + (eβε − 1) · 〈P〉eq
. (11)

Thus, at high temperatures, the nonequilibrium dynamics of
binary operators is generated by the equilibrium correlation
function 〈PP (t )〉eq for all ε, i.e., even beyond the regime of
small perturbations. This prediction is a central result of our
paper.

In particular, for small ε, Eq. (11) can be linearized (Taylor
expansion up to linear order around ε = 0) and becomes
〈P (t )〉neq = 〈P〉eq + ε χP,P (t ) with

χP,P (t ) ≈ β
(〈PP (t )〉eq − 〈P〉2

eq

)
, (12)

as expected from LRT. It is worth pointing out that such a
dynamical independence of ε can hardly be expected at low
temperatures. There, the time dependence of χP,P (t ) is not
just given by 〈PP (t )〉eq, cf. Eq. (6).

B. Arbitrary temperatures and strong perturbations

In addition to the above considerations for β → 0, it is also
instructive to study the limit of infinitely strong perturbations
ε → ∞ at arbitrary temperatures β � 0. In the following, we
will again consider binary operators which fulfill P2 = P . As
discussed in the context of Eq. (7), ρneq in Eq. (1) acts as
projector in the limit ε → ∞. Hence we find

lim
ε→∞ ρneq ∝ P e−βH P (13)

and

lim
ε→∞〈P (t )〉neq = C̃(t ) = 〈PP (t )P〉eq

〈P〉eq
, (14)

which is valid for any temperature β � 0. In some cases,
C̃(t ) can be connected to the usual correlation function
〈PP (t )〉eq in Eq. (11). Specifically, one can require some sort
of “particle-hole symmetry,” i.e., invariance of C̃(t ) under

P (t ) → 1 − P (t ). (15)

(In fact, this requirement is fulfilled by the local fermionic
occupation numbers in the XXZ spin-1/2 chain discussed
later.) Exploiting this property, one can write

C̃(t ) = 〈[1 − P][1 − P (t )][1 − P]〉eq

〈P〉eq
. (16)

Multiplying out the brackets on the right-hand side of this
relation, using 〈P〉eq = 1/2, and rearranging a bit yields

2〈P P (t )P〉eq = 〈P P (t )〉eq + 〈P (t )P〉eq, (17)

and, since 〈P (t )P〉eq = 〈P P (t )〉∗eq,

〈P P (t )P〉eq = Re 〈P P (t )〉eq. (18)

Thus, as a consequence of this identity, we can rewrite the
correlation function C̃(t ) as

C̃(t ) = Re
〈P P (t )〉eq

〈P〉eq
. (19)

Comparing Eqs. (14) and (19), the nonequilibrium expectation
value 〈P (t )〉neq in the limit ε → ∞ eventually recovers the
real part of the equilibrium correlation function 〈P P (t )〉eq at
any temperature. This is another main result.

IV. DYNAMICAL TYPICALITY AND
PURE-STATE PROPAGATION

Time-dependent expectation values of the form
〈Ol′ (t )〉neq = Tr[ρneq(t )Ol′] can be calculated exactly, if
the eigenstates and eigenvalues of the Hamiltonians H − εOl

and H are obtained from the exact diagonalization (ED) of
finite systems. But, in addition to the main limitation set by
the exponential growth of many-body Hilbert spaces, this
procedure is also costly since it requires to perform the exact
diagonalization of two operators. Therefore we here proceed
differently and rely on the concept of dynamical typicality
(QT) [17–30]. This concept states that a single pure state
can have the same properties as the ensemble density matrix.
Precisely, the main idea is to replace the trace Tr[ρneqOl′ (t )]
by the scalar product 〈φ| ρneqOl′ (t ) |φ〉, where the pure state
|φ〉 is drawn at random according to the unitary invariant
Haar measure [21,22]. By the use of this replacement, the
expectation value 〈Ol′ (t )〉neq can be written as

〈Ol′ (t )〉neq = 〈ψneq(t )|Ol′ |ψneq(t )〉 + f (|φ〉) (20)

with the nonequilibrium pure state |ψneq(t )〉 = e−iHt |ψneq(0)〉
and

|ψneq(0)〉 =
√

ρneq |φ〉√〈φ|ρneq|φ〉 . (21)

Note that the statistical error in Eq. (20) scales as f (|φ〉) ∝
1/d

1/2
eff , where deff = Zneq/e

−βEneq is the effective dimension
of the Hilbert space and Eneq denotes the energy of the
ground state. Thus, as the size of a many-body quantum
system is increased, f (|φ〉) vanishes exponentially fast and
can be neglected for medium system sizes already [37,38] (cf.
Appendixes B and C). For a recent discussion of dynamical
typicality and similar classes of pure states, see Ref. [51]. Note
further that the concept of typicality has also been recently
used to study linear and nonlinear responses in a different but
related setup [52].

Relying on the QT relation in Eq. (20) we do not need
to deal with density matrices and can consider pure states
instead. Moreover, given the class of pure states (21) in combi-
nation with Eqs. (11) and (19), only a single state is required,
compared to earlier calculations of correlation functions based
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on two (auxiliary) pure states [37,38]. While a forward propa-
gation with respect to H − εOl in imaginary time β allows
us to prepare |ψneq(0)〉, another forward propagation with
respect to H in real time t allows us to calculate |ψneq(t )〉.
The main advantage of the pure-state approach comes from
the fact that these propagations can be done by iteratively
solving the Schrödinger equation (in real and imaginary time),
e.g., by a fourth-order Runge-Kutta scheme with a small time
step δt [25,37,38,53]. This scheme does not require exact
diagonalization and, due to the fact that few-body operators
are relatively sparse, also the matrix-vector multiplications
can be implemented in a very memory-efficient way. Hence,
in comparison to exact diagonalization, we can treat systems
with much larger Hilbert spaces. Note that also more sophis-
ticated schemes can be applied such as Trotter decomposi-
tions or Chebyshev polynomials [40,41,54]. However, for the
purposes of our paper, i.e., the numerical illustration of our
analytical results, Runge-Kutta will be sufficient.

V. NUMERICAL ILLUSTRATION

A. Model

Next, we turn to our numerical simulations and study, as
an example, nonequilibrium dynamics in the XXZ spin-1/2
chain. The Hamiltonian of this chain reads (with periodic
boundary conditions) H = ∑L

l=1 hl ,

hl = J
(
Sx

l Sx
l+1 + S

y

l S
y

l+1 + �Sz
l S

z
l+1

)
, (22)

where S
x,y,z

l are spin-1/2 operators at site l, L is the number
of sites, J = 1 is the antiferromagnetic exchange coupling
constant, and � is the anisotropy. By the use of the Jordan-
Wigner transformation, this Hamiltonian can be also mapped
onto a one-dimensional model of spinless fermions with inter-
actions between nearest neighbors. In this picture, the operator
nl = Sz

l + 1/2 becomes a local fermionic occupation number.
Because such an operator has only the two eigenvalues 0 and
1, it naturally fulfills the projection property n2

l = nl . Conse-
quently, we prepare the initial state ρneq by using the choice
Ol = nl and subsequently measure the observable Ol′ = nl′ .
In fact, we here restrict ourselves for simplicity to the single
case l = l′. Note that our numerical simulations are performed
for all subsectors of fixed magnetization Sz = ∑

l S
z
l (or, in

the fermionic language, all subsectors of fixed particle number
N = ∑

l nl).

B. Results

1. Static expectation values

We now discuss our numerical results. First, we study the
influence of the perturbation ε on static expectation values,
i.e., we investigate the validity range of the LRT prediction
in Eq. (5) at t = 0. In Fig. 2(a), we show 〈nl′=l (0)〉neq for a
wide range ε � 500, high temperatures β = 0.01, 0.02, 0.05,
and 0.1, as well as anisotropy � = 1. At ε = 0, we have
〈nl′=l (0)〉neq = 〈nl′=l〉eq = 1/2. As ε increases, we observe a
linear growth of 〈nl′=l (0)〉neq with ε. As depicted in Fig. 2(b),
this linear growth is very well described by the LRT prediction
in Eq. (5) and χl,l′=l = β/4. For large ε, 〈nl′=l (0)〉neq even-
tually saturates at the constant value 〈nl′=l (0)〉neq = 1. This
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FIG. 2. (a) Static expectation value 〈nl′=l (0)〉neq versus perturba-
tion ε for high temperatures β = 0.01, 0.02, 0.05, and 0.1 (arrow).
Exact diagonalization (ED) is compared to quantum typicality (QT).
The analytical prediction in Eq. (11) is depicted for comparison. The
vertical dashed lines indicate those values of ε which will be used to
study the nonequilibrium dynamics in the following. (b) Same data
as in (a) but shown for ε � 100 only. The LRT prediction in Eq. (5)
is now indicated (dashed line). Parameters: � = 1 and δt = 0.01 as
well as L = 8 (ED) and L = 24 (QT).

saturation is expected due to Eq. (7) and the maximum eigen-
value nl,max = 1. In Figs. 2(a) and 2(b), the QT relation in
Eq. (20) is additionally confirmed by a direct comparison with
data from exact diagonalization. For all β considered here,
the statistical error f (|φ〉) turns out to be negligibly small.
Overall, the numerical results in Figs. 2(a) and 2(b) confirm
our analytical predictions. In particular, static LRT breaks
down for sufficiently large ε. As an additional orientation, the
vertical dashed lines in Fig. 2(a) indicate those values of ε

which will be used to study the nonequilibrium dynamics in
the following. Note that these values are chosen in such a way
that we cover the whole range from states inside the linear
regime, as well as initial states which are almost maximally
perturbed.

2. Dynamical expectation values

Next, we turn to dynamical expectation values, with the
focus on a high temperature β = 0.01. In Fig. 3(a), we
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FIG. 3. (a) Time evolution of the expectation value 〈nl′=l (t )〉neq

for perturbations ε = 100, 200, and 300 (arrow) at a high temperature
β = 0.01. As a comparison, the (normalized) equilibrium correlation
function 〈nl (t )nl〉eq is shown. (b) Data collapse of (a) using a simple
linear map. Parameters: L = 28 and δt = 0.01 as well as � = 1.
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FIG. 4. Time evolution of the expectation value 〈hl′=l (t )〉neq for
perturbations ε = 100, 200, and 300 (arrow) at a high temper-
ature β = 0.01 for (a) � = 1 and (b) � = 1.5. As a compari-
son, the (normalized) equilibrium correlation function 〈hl (t )hl〉eq is
shown. Other parameters: L = 28 (� = 1), L = 24 (� = 1.5), and
δt = 0.01.

depict 〈nl′=l (t )〉neq for perturbations ε = 100, 200, and 300, as
resulting from the QT relation (20). Further, as a comparison,
we depict the (normalized) equilibrium correlation function
〈nl (t )nl〉eq, which can be calculated by means of a pure-state
approach as well [37,38]. While we observe that all curves
shown differ from each other, this observation is not surprising
because, as illustrated in Fig. 2, the initial values 〈nl′=l (0)〉neq

depend on ε. In view of this fact, we try a data collapse using
the simple map (see Appendix A)

M(〈nl′=l (t )〉neq) = a 〈nl′=l (t )〉neq + b, (23)

where the strictly time-independent coefficients a and b can
be chosen as

a = nl,max − 〈nl′=l〉eq

〈nl′=l〉neq − 〈nl′=l〉eq
, b = (1 − a)〈nl′=l〉eq. (24)

Note that in the case of a traceless operator, 〈O〉eq = 0, this
map essentially reduces to a normalization of the data to the
initial value,

M(〈O(t )〉neq) ∝ 〈O(t )〉neq

〈O(0)〉neq
. (25)

Due to our discussion in the context of Eqs. (5) and (11),
such a linear map is reasonable for small and large ε. And
indeed, as shown in Fig. 3(b), the rescaled curves lie on top
of each other for all values of ε. This finding is a main result
of our paper, as it clearly confirms our analytical prediction
in Eq. (11) that the dynamical behavior at high temperatures,
even outside the linear response regime, is generated by a
single equilibrium correlation function, at least for binary op-
erators. Moreover, it is worth noting that the data is presented
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FIG. 5. (a) Time evolution of the expectation value 〈nl′=l (t )〉neq

for perturbations ε = 1, 2, and 10 (arrow) at a lower temperature
β = 1. (b) Rescaling of (a) using a simple linear map. As a compar-
ison, the (normalized) equilibrium correlation function 〈nl (t )nl〉eq is
shown. Parameters: L = 24, δt = 0.01, and � = 1.

for system size L = 28, substantially beyond what is possible
in conventional ED [39].

The local fermionic occupation numbers nl considered
so far appear in various physical models, not just in the
Heisenberg model or in one dimension. To demonstrate, how-
ever, that our results are not restricted to such nl , we extend
our analysis to other operators and consider the local energy
density hl in Eq. (22). This local energy density is a spin
dimer. For anisotropy � = 1, this dimer features a triplet state
(|↑↑〉, |↓↓〉, |↑↓〉 + |↓↑〉) with energy Et = 1/4 and a singlet
ground state (|↑↓〉 − |↓↑〉) with energy Es = −3/4. Hence
Eq. (11) holds for the projector P = hl − Es, and dynamical
independence of the perturbation is obviously expected for the
choice Ol = hl as well. Indeed, as shown in Fig. 4(a), the
rescaled expectation values 〈hl′=l (t )〉neq for different pertur-
bations ε all lie on top of each other. Therefore our results are
clearly valid for a larger class of binary operators.

3. Nonbinary operators

The natural question arises if and to what extend our
results also apply to nonbinary operators. To work towards an
answer of this question, let us also consider a larger anisotropy
� = 1.5. In this case, the local energy density hl becomes a
nonbinary operator (since the degeneracy of the triplet state
is partially lifted). As a consequence, P = hl − Es does not
fulfill the projection property, P2 = P , and our derivation
from Eq. (10) will certainly break down. Thus we cannot
expect a priori that the relaxation dynamics is still indepen-
dent of the perturbation ε. However, as depicted in Fig. 4(b),
the numerical results reveal that even for this example of a
nonbinary operator, the dynamics are still very well generated
by a single correlation function. Although this finding cannot
be explained within the framework discussed in the paper at
hand, it suggests that there might exist a more general theory
for arbitrary operators.

4. Lower temperatures

In the context of Eqs. (10) and (11), we proved that at
high temperatures the nonequilibrium dynamics of binary
operators is already characterized by a single equilibrium
correlation function. Moreover, we numerically confirmed

012114-5



JONAS RICHTER AND ROBIN STEINIGEWEG PHYSICAL REVIEW E 99, 012114 (2019)

this prediction in Figs. 3 and 4(a) by demonstrating that the
relaxation curves for different perturbation strengths ε lie
on top of each other after the simple linear map. Clearly,
such an independence of ε can hardly be expected at low
temperatures. However, it may occur over a wider range of
high temperatures β > 0.01. Thus, we redo the calculation for
〈nl′=l (t )〉neq in Figs. 3(a) and 3(b) for the lower temperature
β = 1 and depict the corresponding results in Figs. 5(a) and
5(b). For comparison, we also show the (normalized) correla-
tion function 〈nl (t )nl〉eq at β = 1. While the data collapse is
certainly not as good as before, it is still convincing.

VI. CONCLUSION

To summarize, we have studied the nonequilibrium dynam-
ics for a class of initial states resulting from a certain type
of quench. Specifically, we considered thermal states of the
system in the presence of an additional external force which,
however, become nonequilibrium states when this force is
eventually removed. Moreover, by tuning the strength of the
external force, these states can be prepared close to as well as
far away from equilibrium, i.e., inside as well as outside the
linear response regime, at arbitrary temperature.

In particular, we discussed the case of so-called binary
operators and specific examples for such observables. For
these operators, we proved that the nonequilibrium dynamics
at high temperatures is characterized by a single correlation
function evaluated exactly at equilibrium, even in the case
of arbitrarily strong perturbations. This analytical result can
also help to understand earlier numerical experiments where
nonequilibrium dynamics has been related to linear response
theory [42,55].

In order to verify our results, we employed an efficient nu-
merical approach based on the concept of dynamical typicality
and studied the nonequilibrium dynamics in the spin-1/2 XXZ
chain. In addition to confirming our analytical predictions,
these simulations also provided evidence that our results
might be (at least qualitatively) applicable in a much wider
context, i.e., lower temperatures as well as more general types
of operators. Albeit our numerical examples are certainly very
different, it is in this context also worth mentioning two very
recent experiments where universal dynamics in a far-from-
equilibrium situation has been observed [56,57].

Promising future directions of research include the analysis
of nonbinary operators and low temperatures (in more detail),
as well as the application of the pure-state approach to specific
questions in many-body quantum systems. In this context,
the study of nonequilibrium dynamics, transport properties,
and thermalization in disordered systems is one important
example [58]. Moreover, a very recent work [59] shows
that our results also hold true for a wider class of generic
observables and models, as long as the off-diagonal eigenstate
thermalization hypothesis applies.
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APPENDIX A: LINEAR MAP

The time-independent coefficients of the linear map in
Eq. (23) follow from two conditions. The first condition is
about the initial value, i.e.,

a 〈nl′=l (t = 0)〉neq + b = c0. (A1)

The second condition is about the long-time value, i.e.,

a 〈nl′=l (t → ∞)〉neq + b = c∞. (A2)

We choose c0 = nl,max and c∞ = 〈nl′=l〉eq and get the
parameters

a = nl,max − 〈nl′=l〉eq

〈nl′=l〉neq − 〈nl′=l〉eq
(A3)

and b = (1 − a)〈nl′=l〉eq. Other choices are also possible, of
course.

APPENDIX B: ERROR ANALYSIS

Eventually, let us further comment on the accuracy of
our pure-state approach, i.e., of the typicality relation in
Eq. (20) of the main text. While the comparison with exact
diagonalization in Fig. 2 has illustrated this accuracy already
for static expectation values, there is another convenient way
to demonstrate the smallness of statistical errors. This way is
the comparison of results for two or even more instances of
the reference state |φ〉 in Eq. (21). Note that a single instance
of this pure state is |φ〉 = ∑

k ck |ϕk〉, where the real and
imaginary part of the complex coefficients ck are drawn at
random according to a Gaussian distribution with zero mean
and |ϕk〉 is the Ising basis.
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In Fig. 6(a), we exemplarily compare the dynamical
expectation values 〈nl′=l (t )〉neq for two different random

realizations |φ1〉 and |φ2〉. For both realizations, we use
the same perturbation ε = 300, temperature β = 0.01, and
system size L = 16. Since the two curves coincide almost
perfectly, we can conclude that statistical errors are indeed
very small, even for chains with only L = 16 sites. Because
these errors decrease exponentially fast as the number of sites
increases, our calculations for larger system sizes L = 28 in
the main text can be considered as practically exact.

Eventually, we compare in Fig. 6(b) the time evolution of
the expectation value 〈nl′=l (t )〉neq for the same set of param-
eters but two different Runge-Kutta time steps δt = 0.01 and
0.1. As the curves do not differ for these two choices, the time
step δt = 0.01 chosen throughout our paper is certainly small
enough to ensure negligibly small numerical errors.

APPENDIX C: FINITE-SIZE EFFECTS

While it is evident from Fig. 2 that finite-size effects are
negligibly small for static expectation values, let us also com-
ment briefly on finite-size effects for dynamical expectation
values. To this end, we compare in Fig. 7 numerical data
for two different system sizes L = 24 and 28. Apparently,
for 〈nl (t )nl〉eq in Fig. 7(a), both curves coincide with each
other, at least for all times t � 20 depicted. (Data from exact
diagonalization can be found for small L = 16 � 28 in [39].)
For 〈hl (t )hl〉eq in Fig. 7(b), one can see minor deviations at
times t ∼ 20.

However, we should stress that such finite-size effects
do not affect the conclusions in the main text. In fact, all
relations discussed do not require the convergence to the
thermodynamic limit.
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