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Monte Carlo study of the interfacial adsorption of the Blume-Capel model
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We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using
Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of
the pure model at both its first- and second-order transition regimes, as well as at the vicinity of the tricritical
point. Our analysis benefits from the currently existing quite accurate estimates of the relevant (tri)critical-point
locations. In all studied cases, the numerical results verify to a level of high accuracy the expected scenarios
derived from analytic free-energy scaling arguments. We also investigate the size dependence of the interfacial
adsorption under the presence of quenched bond randomness at the originally first-order transition regime
(disorder-induced continuous transition) and the relevant self-averaging properties of the system. For this
ex-first-order regime, where strong transient effects are shown to be present, our findings support the scenario of
a non-divergent scaling, similar to that found in the original second-order transition regime of the pure model.
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Critical interfacial phenomena have been studied exten-
sively over the last decades, both experimentally and theo-
retically [1–4]. A well-known example is wetting, where the
macroscopically thick phase, e.g., the fluid, is formed between
the substrate and the other phase, say, the gas. Liquid and gas
are separated by the interface. An interesting complication
arises when one considers the possibility of more than two
phases. A third phase may be formed at the interface between
the two other phases. An experimental realization is the two-
component fluid system in equilibrium with its vapor phase
[2,5]. Both of the above scenarios may be mimicked in statis-
tical physics in a simplified fashion, by either the two-state
Ising model in wetting—with the state “+1” representing,
say, the fluid, and “−1” the gas—or for the case of a third
phase via multi-state spin models, simply by fixing distinct
boundary states at the opposite sides of the system. In this
latter case, the formation of the third phase with an excess
of the non-boundary states has been called as interfacial
adsorption [6–8].

Throughout the years, various aspects of the interfacial
adsorption have been investigated via Monte Carlo methods
and density renormalization-group calculations on the basis
of specific multi-state spin models, namely Potts and Blume-
Capel models [6,7,9–17]. Additional scaling and analytic ar-
guments have been presented [7,10,13,18–20], though not all
of them have been confirmed numerically, due to the restricted
system sizes studied and, in some cases, the uncertainty in
the location of (tri)critical points. However, notable results in
the field include the determination of critical exponents and
scaling properties of the temperature and lattice-size depen-
dencies, as well as the clarification of the fundamental role of
the type of the bulk transition, with isotropic scaling holding
at continuous and tricritical bulk transitions, and anisotropic
scaling at bulk transitions of first-order type. More recently, a
formulation of the field theory of phase separation by Delfino

and colleagues has provided new insight into the problem
[21–28] and, what is more, the role of randomness has been
scrutinized on the basis of the disordered Potts model [29–32].

Clearly the Potts model offers the unique advantage that if
one considers the system at its self-dual point, then, the phase-
transition temperatures between the ordered ferromagnetic
phase and the high-temperature disordered phase are known
exactly from self-duality for arbitrary values of the internal
states q and particular implementations of the randomness
distribution [33]. On the other hand, for the Blume-Capel
model, one relies upon the existing estimates for the locations
of (tri)critical and transition points and this may be a source
of systematic error when uncovering the scaling behavior of
the interfacial adsorption, as has already been underlined in
the literature [10]. However, quite recently, important progress
has been reported with respect to an accurate reproduction
of the phase diagram of the model for a wide range of its
critical parameters [34–39], thus motivating the current study.
In the present work we investigate the finite-size scaling
behavior of the interfacial adsorption of the two-dimensional
square-lattice Blume-Capel model, at both the continuous and
first-order transition regimes of its phase diagram, as well as
at the vicinity of the tricritical point. Furthermore, we study
the effect of quenched bond randomness on the interfacial
adsorption at the disorder-induced continuous transition. Our
discussion below follows the seminal works by Selke and
collaborators [9,10], where the first Monte Carlo results for
the pure Blume-Capel model have been presented, corrob-
orated by analytical scaling arguments, which we will also
outline for the benefit of the reader in cases where a direct
comparison with the numerical data is possible. In a nutshell,
the main objectives of the current work are as follows: For the
pure case, previous numerical findings [9,10] based on less
extensive simulations are scrutinized, confirmed, and refined
to a high-level of numerical accuracy, especially for the areas
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FIG. 1. Phase diagram of the square-lattice zero-field Blume-
Capel model in the �-T plane. The phase boundary separates the
ferromagnetic (F) phase from the paramagnetic (P) phase. The solid
line indicates continuous phase transitions and the dotted line marks
first-order phase transitions. The two lines merge at the tricritical
point (�t, Tt ), as highlighted by the black diamond. The data shown
are selected estimates from previous numerical studies. As usual, we
have set J = 1 and kB = 1 to fix the temperature scale.

around the tricritical point and the first-order transition line
in the �-T plane (as will be explicitly elaborated in the
discussion of Figs. 2 and 3 below). Completely new results
are presented for the random case, an aspect that has not
been previously considered in the relevant literature, where
an intriguing crossover behavior, with a finite interfacial ad-
sorption, at the randomness-induced continuous transition is
observed and explained.

We consider the Blume-Capel model [40,41] defined by the
Hamiltonian

H = −J
∑

〈ij〉
SiSj + �

∑

i

S2
i . (1)

The spin variable Si takes on the values −1, 0, or +1, 〈ij 〉
indicates summation over nearest neighbors, and J > 0 is the
ferromagnetic exchange interaction. The parameter � denotes
the crystal-field coupling and controls the density of vacancies
(Si = 0). For � → −∞ vacancies are suppressed and the
model becomes equivalent to the Ising model. The phase
diagram of the Blume-Capel model in the crystal-field—
temperature plane consists of a boundary that separates the
ferromagnetic from the paramagnetic phase, see Fig. 1. The
ferromagnetic phase is characterized by an ordered alignment
of ±1 spins. The paramagnetic phase, on the other hand, can
be either a completely disordered arrangement at high temper-
ature or a ±1-spin gas in a 0-spin dominated environment for
low temperatures and high crystal fields. At high temperatures
and low crystal fields, the ferromagnetic-paramagnetic transi-
tion is a continuous phase transition in the Ising universality
class, whereas at low temperatures and high crystal fields
the transition is of first-order character [40,41]. The model is
thus a classical and paradigmatic example of a system with
a tricritical point (�t, Tt ) [42], where the two segments of
the phase boundary meet. At zero temperature, it is clear that
ferromagnetic order must prevail if its energy zJ/2 per spin

(where z is the coordination number, z = 4 in the present
case) exceeds that of the penalty � for having all spins in
the ±1 state. Hence, the point (�0 = zJ/2, T = 0) is on the
phase boundary [41]. For zero crystal-field �, the transition
temperature T0 is not exactly known, but well studied for a
number of lattice geometries. A most recent reproduction of
the phase diagram of the model can be found in Ref. [38],
and is also given here in Fig. 1, where a summary of results
is presented from various works in the literature. A recent
accurate estimation of the location of the tricritical point has
been given in Ref. [37]: (�t, Tt ) = [1.9660(1), 0.6080(1)].

In order to study the interfacial adsorption, denoted here-
after as W , and following the work of Selke and collabo-
rators [9,10] we shall employ special boundary conditions,
distinguishing the cases [1 : 1] and [1 : −1] that will favor
the formation of an interface within the system. For the case
[1 : 1], the spin variable is set at all boundary sites equal to
1, while for the case [1 : −1] the variable is set equal to 1
at one-half of the boundary sites and to −1 at the opposite
half of the boundary sites. Typical equilibrium configurations
have verified that under these special boundary conditions
an excess of the non-boundary states, Si = 0, is generated
at the interface (see for instance Fig. 1 in Ref. [9]). This
phenomenon is described quantitatively by the net adsorption
per unit length of the interface, that is defined with the help of
the following mathematical expression [9]:

W = 1

L

∑

i

[〈
δ0,Si

〉
[1:−1] − 〈

δ0,Si

〉
[1:1]

]
, (2)

where the angular brackets denote thermal averages and L is
the linear dimension of the square lattice. The critical behavior
of W is characterized by the critical exponents x and ω via
[10]

WL ∼ Lx (T = Tc) (3)

and

Wtc ∼ t−ω
c (L = ∞), (4)

where tc = (Tc − T )/Tc is the reduced critical temperature
for the standard case of a critical point. Although the above
equations (3) and (4) are expressed for the usual case of
continuous transitions, they can be similarly generalized for
the case of a tricritical point, where tt = (Tt − T )/Tt , or for
a first-order phase transition, t∗ = (T ∗ − T )/T ∗, where T ∗
denotes now the corresponding transition temperature.

In the present work we have studied the interfacial proper-
ties of the system at three values of the crystal-field coupling
�, including both the first- and second-order lines of the tran-
sition but also the tricritical point of the phase diagram shown
in Fig. 1. We have considered the values � = 1 (second-order
regime), � = �t = 1.966 (tricritical point), and � = 1.975
(first-order regime). The corresponding transition tempera-
tures for the cases � = 1 and � = 1.975 have been estimated
to be Tc = 1.398 and T ∗ = 0.574, respectively [36], whereas
for the case of the tricritical point we have used the most re-
cent estimate Tt = 0.608 [37]. Additionally, for the case � =
1.975 of the originally first-order transition regime, we have
also considered the disordered version of the Hamiltonian
(1) by selecting ferromagnetic couplings J → Jij between
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nearest-neighbor sites i and j , to be either J1, with probability
p, or J2 with probability 1 − p. In the case J1 > J2, one
has either strong or weak bonds. Then, the ratio r = J2/J1

defines the disorder strength, where (J1 + J2)/2 = 1. Clearly,
the value r = 1 corresponds to the pure model. For the needs
of the present work we fixed the ratio r = 0.6, for which
the critical temperature of the disorder-induced continuous
transition has been estimated to be Tc = 0.626 [36].

Our numerical protocol consists of canonical Monte Carlo
simulations, employing a combination of a Wolff single-
cluster update [43] of the ±1 spins and a single-spin flip
Metropolis update that enables the necessary updates of the
vacancies Si = 0 [44–46]. We adapted the relative frequencies
of using the two updates to optimize the performance and
discarded the initial part of each time series to ensure equi-
libration. Using this approach, we simulated for both versions
of the model and for all values of � system sizes in the
range L = 8–96, which, as will be shown below, is enough for
a safe estimation of the asymptotic behavior, in accordance
with the expected scaling arguments. For the pure model
we performed several independent runs to increase statistical
accuracy, whereas for the disordered system an extensive
averaging over the disorder [. . .] has been undertaken, varying
from 5 × 103 realizations for the smaller system sizes down
to 1 × 103 for the larger sizes studied. For the disordered
case, error bars were computed from the sample-to-sample
fluctuations which in all cases were found to be larger than
the statistical errors of the single disorder realizations.

For the various cases of phase transitions in the Blume-
Capel model along the �-T plane, some very useful analytic
and scaling arguments for the interfacial adsorption have been
presented in the early work of Selke, Huse, and Kroll [10].
In what follows, we shall only provide the main results of
this discussion that are also relevant for comparison with
our numerical data; for more details we refer the reader to
Ref. [10]. The main point in this description is the refor-
mulation of the interfacial adsorption W with the help of
the interface tension σ . According to Ref. [10], using that
〈δ0,Si

〉 = 1 − 〈S2
i 〉, the interface adsorption may be written

in the form W = (1/L)
∑

i [〈S2
i 〉[1:1] − 〈S2

i 〉[1:−1]]. Denoting
the total free energy for [1 : 1] boundary conditions by F[1:1]

(similarly F[1:−1] for [1 : −1]), W can then be expressed in
terms of the interface tension, σ = (1/L)(F[1:1] − F[1:−1]), as
W = β−1∂σ/∂�, where β = 1/(kBT ).

The presentation of our finite-size scaling analysis starts
with the most interesting cases referring to the vicinity of
the tricritical point and the first-order transition regime. As
already mentioned above, the location of the tricritical point
of the Blume-Capel model is known today with very good
accuracy [37], thus removing one source of error inherent in
previous simulation works [9,10]. According to the scaling
arguments of Ref. [10] the exponents appearing in Eqs. (3)
and (4) take on the values x = 4/5 and ω = 4/9, respectively,
for the case of the tricritical point. In Fig. 2 we present
our numerical data and the relevant scaling analysis for the
interfacial adsorption WL (main panel) and Wtt (inset) at
� = �t = 1.966. Fits of the form (3) and (4) shown by the
solid lines in the main panel and the corresponding inset,
respectively, provide us with the estimates x = 0.802(3) and
ω = 0.4441(5), both fully consistent with the expected values
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FIG. 2. Finite-size scaling of the interfacial adsorption WL (main
panel) and Wtt (inset) at the tricritical point.

x = 4/5 and ω = 4/9. We should point out here that the
numerical estimation of the exponent x for the tricritical point
has been reported as a quite difficult task in the literature, due
to the imprecise knowledge of the tricritical coordinates (see
Fig. 7 in Ref. [9] where �t ≈ 1.92(2)) and the presence of
strong finite-size effects for small system sizes (see Fig. 3 in
Ref. [10] where for the actual value of �t = 1.966 an effective
exponent of the order of ∼0.65 is obtained). Both of these
adversities have been satisfied in the present work, leading
to a clear verification of the scaling arguments presented in
Ref. [10].

As is well known, at the critical (and tricritical) points, the
singularities in the interfacial adsorption are induced by bulk
critical fluctuations. On the other hand, at first-order phase
transitions there are no bulk critical fluctuations and the diver-
gence of W arises from an interface delocalization transition
[47]. In the latter case and for lattices of square shapes a
linear divergence of the form WL ∼ L is expected, i.e., x = 1
[10]. Additionally, the critical exponent ω appearing in Eq. (4)
is expected to take the value 1/3, as was originally found
in the case of interface unbinding [48], and further general-
ized for first–order phases transitions in two dimensions [8–
10,47]. For the case of the Blume-Capel model, the prediction
ω = 1/3 has been numerically confirmed [9,10], though the
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FIG. 3. Finite-size scaling of the interfacial adsorption WL (main
panel) and Wt∗ (inset) at the first-order transition regime.
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FIG. 4. Finite-size scaling of the interfacial adsorption WL at the
second-order transition regime.

numerical data for WL did not allow for an accurate estimation
of the exponent x. In particular, in Ref. [9] a value x =
0.7 ± 0.05 has been found that was subsequently explained as
an apparent exponent due to strong metastability effects [10].
To fill in the gap with the scaling analysis of WL at the first-
order transition regime of the Blume-Capel model, we present
in Fig. 3 our numerical data for the interfacial adsorption
obtained at � = 1.975. The fitting results using the Eqs. (3)
and (4) as in Fig. 3, give x = 1.00(2) and ω = 0.337(6), in
excellent agreement with the theoretical expectations x = 1
and ω = 1/3.

For the spin-1/2 Ising model it is known that σ ∼ tc for
tc → 0+ at the critical point. Given that the Blume-Capel
model for � < �t belongs to the same universality class,
we also expect a similar statement to hold, where now tc
may be the distance from the critical curve. Since � is a
non-ordering field [49], as was also concluded in [10], W ∼
∂σ/∂tc ∼ const. We present in Fig. 4 the finite-size scaling
behavior of the interfacial adsorption WL for � = 1. Indeed,
a simple power-law fit of the form WL = W∞ + bLx gives a
negative exponent x = −1.42(9) and a finite value of W∞,
thus a non-divergent behavior, in agreement with the above
arguments. Similar results have been presented in Ref. [9]
for a few values of � in the second-order transition regime
but for smaller system sizes and are overall in contrast to the
Potts case, where a clear diverging behavior has been observed
in many relevant works [6,7,31,32]. This may be due to the
different geometric nature of the interfacial adsorption among
the two models, which in the present Blume-Capel model
occurs in a layer-like fashion as expected on the basis of single
spin-flip energy considerations, see Fig. 1 in Ref. [9], whereas
in Potts models a droplet-like adsorption of non-boundary
states takes place due to the energetic equivalence of all
states [6].

The last part of our work is dedicated to the study of
the interfacial adsorption under the presence of quenched
bond randomness at the originally first-order phase transition
regime of the phase diagram and particularly at the crystal-
field value � = 1.975. Simulations have been performed for
a single value of the disorder strength, namely r = 0.6, at the
estimated in Ref. [36] critical temperature Tc = 0.626. The
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FIG. 5. Finite-size scaling of the disorder-averaged interfacial
adsorption [W ]L of the random-bond Blume-Capel model at the
disorder-induced continuous transition. The inset illustrates the rele-
vant self-averaging properties in terms of the relative-variance ratio
R[W ]L as a function of the inverse system size.

numerical data for the disorder-averaged [W ]L are shown in
the main panel of Fig. 5, where a very strong saturation is
observed1 and should be compared to the diverging behavior
of the corresponding pure system (see Fig. 2). This result is in
agreement with the theoretical expectations discussed above
for a non-divergent behavior of W in the case of continuous
transitions for the present model. Finally, in the inset of
Fig. 5 we present the self-averaging properties of the system
using the relative-variance ratio R[W ]L = V[W ]L/[W ]2

L, where
V[W ]L = [W 2]L − [W ]2

L. The limiting value of this ratio is
characteristic of the self-averaging properties of the system
[50,51]. The solid line in the inset illustrates a simple poly-
nomial fit over the larger system sizes, indicating the restora-
tion of self-averaging at the thermodynamic limit, given that
R[W ]L → 0 as L → ∞. Similar results have been presented
for the the case of various random-bond Potts models in two
dimensions [32]. Finally, it is worth noting that the finite-
size scaling behavior of both [W ]L and R[W ]L is affected by
strong transient effects with a crossover length-scale L∗ ≈ 32,
where a turnaround in the behavior sets off. This is consistent
with previous observations on the scaling behavior of the
correlation length and other thermodynamic observables of
the system for the same range of parameters [39]. Indeed,
in Ref. [39] it has been explicitly shown that L ≈ 32 is the
apparent size where the first-order characteristic signatures of
the transition disappear. Of course, we expect that the value
of L∗ depends on the disorder strength r as well as on the
strength of the first-order transition and it would be interesting
to investigate the shift of this crossover length-scale as a
function of � and r . However, this is a task that goes beyond
the scope of the present work.

To conclude, we have investigated the scaling aspects of the
interfacial adsorption of the two-dimensional Blume-Capel
model using a combined Monte Carlo scheme. We presented

1In fact we have not been able to fit the current data using a power-
law fit of the form (3), even after discarding the smaller system sizes.
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a detailed analysis of the finite-size scaling behavior of the
interfacial adsorption of the pure model at both its first- and
second-order transition regimes, as well as at the area of the
tricritical point, taking advantage of the current high-accuracy
estimates of (tri)critical-point locations. A dedicated part of
our work regarding the scaling of the interfacial adsorption
under the presence of quenched bond randomness at the
originally first-order transition regime (disorder-induced con-
tinuous transition) revealed the scenario of a non-divergent
scaling, similar to that found in the original second-order
transition regime of the pure model. Overall, our results and
analysis nicely verified the predicted from analytic arguments

scaling scenarios of Ref. [10], overcoming the numerical
difficulties highlighted in that seminal work.
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