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The following question is the subject of our work: could a two-dimensional (2D) random path pushed by some
constraints to an improbable “large-deviation regime” possess extreme statistics with one-dimensional (1D)
Kardar-Parisi-Zhang (KPZ) fluctuations? The answer is positive, though nonuniversal, since the fluctuations
depend on the underlying geometry. We consider in detail two examples of 2D systems for which imposed
external constraints force the underlying stationary stochastic process to stay in an atypical regime with
anomalous statistics. The first example deals with the fluctuations of a stretched 2D random walk above a
semicircle or a triangle. In the second example we consider a 2D biased random walk along a channel with
forbidden voids of circular and triangular shapes. In both cases we are interested in the dependence of a typical
span 〈d (t )〉 ∼ tγ of the trajectory of t steps above the top of the semicircle or the triangle. We show that
γ = 1

3 , i.e., 〈d (t )〉 shares the KPZ statistics for the semicircle, while γ = 0 for the triangle. We propose heuristic
derivations of scaling exponents γ for different geometries, justify them by explicit analytic computations, and
compare with numeric simulations. For practical purposes, our results demonstrate that the geometry of voids in
a channel might have a crucial impact on the width of the boundary layer and, thus, on the heat transfer in the
channel.
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I. INTRODUCTION

Intensive investigation of extremal problems of correlated
random variables in statistical mechanics has eventually led
mathematicians, and then physicists, to understanding that
the Gaussian distribution is not as ubiquitous in nature as
it has been thought over the centuries, and that it shares its
omnipresence (at least in one dimension) with another distri-
bution, known as the Tracy-Widom (TW) law. The necessary
(though not sufficient) feature of the TW distribution is the
width of the distribution, controlled by the critical exponent
ν = 1

3 , the so-called Kardar-Parisi-Zhang (KPZ) exponent.
The KPZ exponent appeared in a seminal paper [1] (see
Ref. [2] for a review) as the growth exponent in a nonequi-
librium one-dimensional (1D) directed stochastic process, for
which the theoretical analysis is focused mainly on statistical
properties of the enveloping surface developing in time.

Nowadays one has accumulated many examples of 1D
statistical systems of seemingly different physical nature,
whose fluctuations are controlled by the KPZ exponent γ =
1
3 , contrary to the exponent γ = 1

2 typical for the distribu-
tion of independent random variables. Among such examples
it is worth mentioning the restricted solid-on-solid [3] and
Eden [4] models, molecular beam epitaxy [5], polynuclear
growth [6–10], several ramifications of the ballistic deposition
[11–14], alignment of random sequences [15], traffic models

of the TASEP type [16], (1+1)D vicious walks [17], area-
tilted random walks [18], and 1D directed polymers in a ran-
dom environment [19]. Recently this list has been replenished
by the 1D modes describing the fluctuational statistics of cold
atoms [20].

Here we study a two-dimensional (2D) model demonstrat-
ing the 1D KPZ critical behavior. The interest in such systems
is inspired by the (1+1)D model proposed by Spohn and
Ferrari [21] where they discussed the statistics of 1D directed
random walks evading the semicircle. As the authors stated in
Ref. [21], their motivation was as follows. It is known that
the fluctuations of a top line in a bunch of n 1D directed
“vicious walks” glued at their extremities (ensemble of world
lines of free fermions in one dimension) are governed by the
TW distribution [17]. Proceeding as in Ref. [22], define the
averaged position of the top line and look at its fluctuations.
In such a description, all vicious walks lying below the top
line play a role of a “mean field” of the “bulk,” pushing the
top line to some equilibrium position. Fluctuations around
this position are different from fluctuations of a free random
walk in the absence of the “bulk.” Replacing the effect of
the “bulk” by the semicircle, one arrives at the Spohn-Ferrari
model where the 1D directed random walk stays above the
semicircle, and its interior is inaccessible for the path. In
Ref. [21] the authors confirmed that this system has a KPZ
critical exponent.
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In our work we study fluctuations of a 2D random path
pushed by some geometric constraints to an improbable
“large-deviation regime” and ask the question whether it
could possess extreme statistics with 1D KPZ fluctuations. We
propose the “minimal” model and in its framework formulate
the answer to the question posed above.

We consider an ensemble of 2D random paths stretched
over some forbidden void with prescribed geometry and the
characteristic scale, R. Stretching is induced by the restriction
on wandering times, t , such that cR < t � R2. The result-
ing path conformations are “atypical” since their realizations
would be highly improbable in the ensemble of unconstrained
trajectories which exhibit the Gaussian behavior. Statistics
in such a tiny subset of the Gaussian ensemble is naturally
controlled by the collective behavior of strongly correlated
modes; thus, for some geometries one might expect an ex-
treme distribution with KPZ scaling for fluctuations, similarly
to the (1+1)D model of Ref. [21]. Simple dimensional anal-
ysis supports this hypothesis. Indeed, consider a realization
of the stretched random walk in two dimensions with the
diffusion coefficient D evading a circular void in two distinct
regimes. An unconstrained t-step random walk, with t �
R2, fluctuates freely and does not feel the constraint; thus,
the only possible combination of D and t , which has the
dimension of length, could be d ∼ (Dt )1/2 for the typical
span of the path. In the opposite regime, πR < t � R2, the
chain statistics is essentially perturbed by the constraint. In
the limit of strong stretching, t ∼ R, these two parameters
(t and R) should enter symmetrically in the combination
for the span. The suitable dimension is given by the scaling
expression d ∼ (DRt )γ with γ = 1/3, which is the unique
combination that in the limit t � R2 recovers a physically
relevant condition d � R and at t ∼ R2 gives d ∼ R. Such
a dimensional analysis strongly relies on the uniqueness of
the scale characterizing constraint, which is true only for
homogeneously curved boundaries and breaks down for more
complex algebraic curves, like a cubic parabola or boundaries
with a local cusp (triangle). In particular, trajectories above
triangular obstacles fluctuate irrespectively of the size of the
void even in the “strong stretching regime.”

The paper is organized as follows. in Sec. II we formulate
the model of a 2D stretched random walk above the semicircle
(model “S”) and the triangle (model “T”) and provide scaling
arguments for the averaged span of paths above the top of
these voids, supported by numeric simulations. In Sec. III we
solve the diffusion equation in two dimensions in the limit
of stretched trajectories N = cR above the semicircle and
the triangle. In Sec. IV we discuss the results of numeric
simulations for fluctuations of biased 2D random walks above
forbidden voids of different shapes. In Sec. V we summarize
the obtained results and discuss their possible generalizations
and applications.

II. TWO-DIMENSIONAL RANDOM WALK STRETCHED
OVER THE VOIDS OF VARIOUS SHAPES

A. The model

We begin with the lattice version of the model. Consider
the N -step symmetric random walk, rn = {xn, yn}, on a 2D

FIG. 1. Two-dimensional random walk on a square lattice in the
upper half-plane, which evades (a) the semicircle of radius R (model
“S”) and (b) the rectangular triangle of base 2R (model “T”). The
number of steps N � R2.

square lattice in a discrete time n (n = 1, 2, . . . , N). The walk
begins at point A, terminates after N steps at point B, and
satisfies three requirements: (1) for any n one has yn � 0, (2)
the random walk evades the semicircle of the diameter 2R or
the rectangular triangle of the base 2R, i.e., it remains outside
the obstacles shown in Fig. 1, and (3) the total number of steps
is much less than the squared size of the obstacle, N � R2.
Note that requirement (1) is not crucial and can be easily
relaxed. Points A and B are located in one lattice spacing
from left and right extremities of the obstacle (semicircle or
triangle); see Fig. 1.

We are interested in the critical exponents γ of in the
dependence 〈d(R)〉 ∼ Rγ as R → ∞ for the model “S” and
the model “T.” In this section we provide qualitative scaling
estimates for the mean span of 2D stretched paths above any
smooth algebraic curve and support our analysis by numeric
simulations.

B. Scaling arguments: From semicircle to algebraic curve

Normally, a stretched path follows the straight line as much
as possible and gets curved only if curving cannot be avoided.
A random path which has to travel a horizontal distance,
xS , is localized within a strip of typical width (“span” in a
vertical direction), yS ∼ √

xS . If the path is forced to travel a
distance xS along some curved arc, and the arc fits this strip,
the curving of the arc can be ignored. Consider a path that has
to follow a circle of radius R. Note that the arc of that circle of
length xS fits a strip of width x2

S/R. Therefore the arc length,
curving of which can be ignored, is

x2
S/R � √

xS. (1)

This puts a limit to xS : it has to be at most R2/3. At shorter
distances the stretched path can be considered as an uncon-
strained random walk. Therefore, the span in the vertical
direction is of the order of yS ∼

√
R2/3 = R1/3. Beyond this

“blob” of length xS = R2/3 the arc itself deviates considerably
from a straight segment, and the estimate

√
xS for fluctuations

above it is no longer applicable.
To add some geometric flavor to these arguments, consider

Fig. 2(a) and denote by yS an average span of the path in
vertical direction above point C of the semicircle, and by xS ,
the typical size of the horizontal segment, along which the
semicircle can be considered as nearly flat. We divide the path
in three parts: AA′, A′B ′, and B ′B. Parts AA′ and BB ′ of the
trajectory run above essentially curved domains, while part
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FIG. 2. (a) Two-dimensional random walk evading the semicir-
cle. Part A′B ′ lies above the essentially flat region of the semicircle.
(b) An auxiliary geometric construction for Eq. (2).

A′B ′ constitutes a segment that is mainly flat. Schematically
this is shown in Fig. 2(b): in the limit yS � R, the horizontal
segment LM linearly approximates the corresponding arc of
the circle. Our goal is to estimate xS and to provide self-
consistent scaling arguments for fluctuations yS (R) ∼ Rγ of
the stretched path.

From the triangle KLM we have

|LM| =
√

R2 − |KM|2 =
√

R2 − (R − yS )2 |yS�R

≈
√

2RyS. (2)

Since |LM| ≡ xS , the condition of stretched trajectories,
yS � R, implies the relation

xS ∼
√

RyS. (3)

Consider now a 2D random walk which starts at the point L

near the left extremity of the excluded shape and terminates
anywhere at the segment MN (|MN | ≡ yS). Since the hori-
zontal support, |LM| = xS , of the path is flat, the span of the
trajectory in a vertical direction is the same as for an ordinary
random walk. Thus, we can estimate the typical span, yS , as

yS ∼ √
xS. (4)

On scales larger than xS the curvature of the semicircle
becomes essential, and the relation (3) is not valid anymore.

It should be noted that (4) is insensitive to a specific way
of stretching. Equation (4) remains unchanged even if we
introduce an asymmetry in random jumps along the x axis
while keeping the symmetry of jumps in the y direction. Sub-
stituting the scaling (4) into (2), we obtain for the semicircle
(the model “S”)

xS ∼
√

R
√

xS. (5)

From (5) we get for the semicircle

xS ∼ R2/3, yS ∼ √
xS ∼ R1/3, (6)

which implies that γ = 1
3 . The analytic computations pre-

sented in Sec. III for the model “S” support this conclusion.
We expect that our scaling can be extended to random

walks above any algebraic curve. The critical exponent γ for
the fluctuations of the stretched random walk above the curve
�: y = xη in two dimensions should be understood as follows.
Define the characteristic length scale, R, and represent the

curve � in dimensionless units:

y

R
≈

(
x

R

)η

. (7)

For η = 2 we are back to semicircle (3). As in the former case,
Eq. (7) should be equipped by (4). Solving these equations
self-consistently, we get the following scaling dependence for
the span yG(R) of the path above the curve �:

yG(R) ∼ Rγ , γ = η − 1

2η − 1
. (8)

Note that for η → ∞ the curve is straight, and we get the
fluctuations with the standard Gaussian exponent, γ = 1/2,
which is the exponent of fluctuations above the straight line.
The opposite case of a cusp can be approached in the limit
η → 1, which gives γ = 0. This result is consistent with
simulations of paths stretched over the triangle (see below)
and with the analytic solution of the diffusion equation (see
Sec. III).

C. Heuristic arguments: Triangle

To estimate the fluctuations of the path of N steps stretched
over the triangle of base 2R, the above arguments for the
semicircle need to be modified since the curvature of the
triangle is nonanalytic, being concentrated at one single point
C at the tip of the obstacle. To proceed, some auxiliary
construction should be used; see Fig. 3(a) and its zoom in
Fig. 3(b).

We split the full trajectory between points A and B into
three parts: the part of N1 steps running between point A and
first entry to point A′, the part of M steps running between
points A′ and B ′, and the part N2 running between B and first
entry to point B ′. Parts N1 and N2 lie above the flat boundaries
of the triangle AOB, while part A′B ′ is located in the vicinity
of the tip of the triangle. The partition function, ZN , of the full
N -step path with the extremities at A and B can be written as

ZN (R) =
∑

{N1+M+N2=N}

∑
{m1,m2}

UN1 (m1, R) WM (m1,m2)

× UN2 (m2, R), (9)

where UN1 (m1, R), WM (m1,m2), UN2 (m2, R) are, respec-
tively, the partition functions of parts AA′, A′B ′, and B ′B, the
first sum runs over N1,M,N2 such that N1 + M + N2 = N

and m1 and m2 are the positions of points A′ and B ′ at the
edges of the wedge [see Fig. 3(b)]. The partition functions
UNi

(mi,R) (i = 1, 2) can be computed on the lattice in the
geometry shown in Fig. 3(c) with zero boundary conditions in
the wedge

UNi
(mi,R) = 1

π2

∫ π

0
dq1

∫ π

0
dq2 sin(q1R

√
2)

× sin q1 sin(q2mi ) sin q2(cos q1 + cos q2)Ni ,

(10)

where q1 and q2 are the Fourier-transformed coordinates along
the wedge sides. In (10) the subpath of Ni steps is not yet
stretched, i.e., Ni, mi , and R are all independent.

Our goal now is to estimate the typical length M of
the subpath between points A′ and B ′ in stretched regime
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FIG. 3. (a) Two-dimensional random walk evading a triangle, and (b) the magnified part of the system near the tip of the triangle. The
points A′ and B ′ are, respectively, the points of the first entry by the random walk into the wedge above the point O and the last exit from it.
(c) Subpart of the random walk from A to A′ which does not escape the wedge with zero boundary conditions.

as shown in Fig. 3(b). Below we show that M = const,
which immediately leads to the conclusion that yT = const.
To proceed, it is convenient to move to the grand canonical
formulation of the problem. Let us define the generating
function Z(s, R) = ∑∞

N=0 ZN (R)sN of the grand canonical
ensemble and introduce the variable β = − ln s, which has the
sense of an “energy” attributed to each step of the trajectory
(note that β > 0 since 0 < s < 1). To “stretch” the trajectory,
we should imply β � 1. In the stretched regime β � 1 the
generating function of UNi

(mi,R) can be estimated as

U (β,mi, R) =
∫ ∞

0
UNi

(mi,R)e−βNi dNi

∼
miR β

3/4
s exp

(−2
√

βs

√
m2

i + 2R2
)

(
m2

i + 2R2
)5/4 , (11)

where we also supposed that R � 1 and introduced βs =
β − ln 4. The shift by ln 4 in β comes from the fact that the
partition function (10) on the square lattice has the exponential
prefactor 4Ni ≡ eNi ln 4 which should be properly taken into
account in the generation function.

The generation function of ZN (R) reads

Z(β,R) =
∞∑

N=0

ZN (R)sN

=
∑

{m1,m2}
U (β,m1, R) W (β,m1,m2) U (β,m2, R).

(12)

Now we should account for the contribution of W (β,m1,m2)
to (12). Note that each step of the path of length M between
points A′ and B ′ carries the energy β > 0. To maximize the
contribution of W (β,m1,m2), one should make the corre-
sponding length M between A′ and B ′ as small as possible,
since we lose the energy βM for M steps. Thus, M should
be of order of max(m1,m2). From Eqs. (11)–(12) we immedi-
ately conclude that at βs � 1 the major contribution to Z(β )
comes from mi , which should be as small as possible, i.e.,
m1 ∼ m2 = const. This implies that M = const, and the span
yT (for N = cR and R � 1) becomes independent of R:

yT = const. (13)

The same conclusion follows from the solution of the bound-
ary problem in the open wedge for the model “T”; see
Sec. IV. Note that putting η = 1 into (8), we get γ = 0, thus
arriving at the same conclusion of independence of the span
of fluctuations of a stretched path above the tip of the triangle
on R.

D. Numerics

Here we confirm our scaling and heuristic analyses of
the mean height of the 2D ensemble of stretched trajectories
above the top of the semicircle and the triangle using numeric
simulations. Let us emphasize that this part pursues mainly
the illustrative goals, while detailed analytic computations for
distribution functions are provided in Sec. III.

Specifically, we have enumerated all N -step paths on the
square lattice, traveling from point A(−R − 1, 0) to point
D(0, R + d ) above the top of the semicircle or triangle, as
shown in Figs. 1(a) and 1(b). Let us emphasize that this is
an exact path counting problem. The step length of a path
coincides with the lattice spacing. We allow all steps: “up,”
“down,”“right,” and “left” and set the constraint N = cR on
the total number of steps. The values of R and c in the simula-
tions are as follows: R = {10, 20, 40, 60, 100, 200, 300, 400}
and c = {5, 10, 20}. A counting ensemble of trajectories from
A to D is sufficient for extracting the scaling dependence
〈d(R)〉 ∼ Rγ since the part of the path from A to C is
independent from the part from C to B. The enumeration
of trajectories respects boundary conditions and is performed
recursively within the box of size 3R × 3R with the bottom
left corner located at the point (−2R, 0).

The results of simulations in doubly logarithmic scale
log 〈d(R)〉 versus log R for the averaged span 〈d〉 of paths
above the top of the semicircle of radius R and the triangle
of base 2R are presented in Fig. 4. The physical meaning of
the constant c is the effective “stretching” of the path: the less
c, the more stretched the path (definitely, on the square lattice
c > 4.

As one sees from Fig. 4(a), all stretched paths above
the semicircle demonstrate the scaling 〈d(R)〉 ∼ Rγ with the
exponent γ close to 1/3. For less stretched paths (larger values
of c) the deviation from the scaling with γ = 1

3 becomes
notable. The span of stretched 2D trajectories above the tip
of the triangle shown in Fig. 4(b) is almost independent of R
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FIG. 4. The mean deviation of the path of N steps above the
semicircle (a) and the triangle (b) for different values of the param-
eter c, which controls “stretching” of the path (the less c, the more
stretched the path).

(i.e., the exponent γ is close to 0). This result is consistent
with our scaling estimates, as well as with the theoretical
arguments presented below. Some conjectures about possible
physical consequences of the difference between fluctuations
of stretched random trajectories above the semicircle and
above the triangle are formulated in Sec. IV.

III. 2D STRETCHED RANDOM WALKS ABOVE THE
SEMICIRCLE AND TRIANGLE: ANALYTIC RESULTS

A. Semicircle

The symmetric 2D random walk on a lattice depicted in
Fig. 1(a) in the limit N → ∞, a → 0 (a is the lattice spacing)
where Na = t , converges to the 2D Brownian motion of time
t with diffusion coefficient D = a2

4 , which evades the semicir-
cular void of radius R. Let P (ρ, φ; ρ0, φ0; t ) be the probability
density to find the random walk of length (time) t at the
point (ρ, φ) above the void under the condition that the path
begins at the point (ρ0, φ0). The function P (ρ, φ; ρ0, φ0; t ) ≡
P (ρ, φ, t ) satisfies the diffusion equation in polar coordi-
nates:

∂P (ρ, φ, t )

∂t
= D

{
1

ρ

∂

∂ρ

[
ρ

∂P (ρ, φ, t )

∂ρ

]

+ 1

ρ2

∂2P (ρ, φ, t )

∂φ2

}

P (ρ = R, φ, t ) = P (ρ → ∞, φ, t )

= P (ρ, φ = 0, t ) = P (ρ, φ = π, t ) = 0

P (ρ, φ, 0) = δ(ρ − ρ0)δ(φ − φ0). (14)

The explicit solution of (14) reads

P (ρ, φ, t ) =
∞∑

k=1

2ρ0

π
sin(kφ0) sin(kφ)

×
∫ ∞

0
e−λ2DtZk (λρ, λR)Zk (λρ0, λR)λ dλ,

(15)

where

Zk (λρ, λR) = −Jk (λρ)Nk (λR) + Jk (λR)Nk (λρ)√
J 2

k (λR) + N2
k (λR)

, (16)

and J and N denote correspondingly the Bessel and the
Neumann functions. Introducing the new variables, μ and r ,
and making in (16) the substitution

λ = μ

R
, ρ = R + r, (17)

we arrive at the following expression for P (ρ, φ, t ):

P (r, φ, t ) = 2ρ0

πR2

∞∑
k=1

sin(kφ0) sin(kφ)
∫ ∞

0
e
− μ2Dt

R2 Zk

×
(

μ + μr

R
,μ

)
Zk

(
μ + μr0

R
,μ

)
μdμ. (18)

The probability to stay above the top of the semicircle
consists of two parts: the probability P ′ = P (r, φ = π

2 , t ′)
to run from point A to the point (r, φ = π

2 ) during time t ′
and probability P ′′ = P (r, φ = π

2 , t ′′) to run from the point
(r, φ = π

2 ) to point B during time t ′′ = t − t ′. Obviously, P ′
and P ′′ are independent, thus the total probability to find
the path at the point (r, φ = π

2 ) above the semicircle can be
estimated as Q = P ′ × P ′′ where t ′ = t ′′ = t/2:

Q

(
r, φ = π

2
, t

)
= 1

N P 2

(
r, φ = π

2
, t = cR

)
,

N =
∫ ∞

0
P 2

(
r, φ = π

2
, t

)
dr. (19)

Recall that we are interested in stretched trajectories only,
meaning that we should impose the condition t = cR and
consider the typical width, d(R), of the distribution Q(r, R),
where d2(R) is defined as

〈d2(R)〉 =
∫ ∞

0
r2 Q

(
r, φ = π

2
, cR

)
dr

−
[ ∫ ∞

0
r Q

(
r, φ = π

2
, cR

)
dr

]2

(20)

at large R. By the condition t = cR to deal with stretched tra-
jectories, our consideration differs from the standard diffusion
process above the impenetrable disk, which was exhaustively
discussed in many papers, for example, in Ref. [23]. In Fig. 5
we have plotted (for D = 1):

(a) The expectation d̄ (R) =
√

〈d2(R)〉 as a function of
R in doubly logarithmic coordinates, which enables us to
extract the critical exponent γ in the dependence d̄ (R) ∼ Rγ

[Fig. 5(a)],
(b) The distribution function Q(r, φ = π

2 , cR) of r at
some fixed c (c = 5) and R in comparison with the func-
tion b Ai2(a1 + �r ), where Ai(z) = 1

π

∫ ∞
0 cos(ξ 3/3 + ξz) dξ

is the Airy function (see, for example, Ref. [24]), a1 ≈
−2.3381 is the first zero of Ai, b = ∫ ∞

0 Ai2(a1 + �r )dr , and
�(c) is the c-dependent numeric constant [Fig. 5(a)].

As one sees from Fig. 5, the function Ai2(a1 + �r ) per-
fectly matches the probability distribution Q(r, φ = π

2 , cR).
The detailed analysis of this correspondence will be discussed
in Ref. [25], which is devoted to the discussion of the statistics
of closed stretched random “flights” above the circle.
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FIG. 5. (a) Expectation d̄ as a function of R is doubly logarithmic coordinates for stretched trajectories above the semicircle; (b) comparison
of the distribution Q(r ) with Ai2(a1 + �r ), where a1 ≈ −2.3381 is the first zero of Ai and � is some constant.

B. Triangle

The statistics of random paths above the triangle can be
treated in polar coordinates centered at the tip C of the triangle
as shown in Fig. 1(b). The random walk is free in the outer

sector ACB with the angle 3π
2 , and zero boundary conditions

at the sides AC and BC are applied. Seeking the solution for
the corresponding diffusion equation in the form P (r, v, t ) =
T (t )P (r, v), we have

ν2P (r, v) +
(

∂2
rr + ∂r

r
+ ∂2

vv

r2

)
P (r, v) = 0 P (r = 0, v) = P (r → ∞, v) = P (r, 0) = P

(
r,

3π

2

)
= 0

∂tT (t ) + ν2DT (t ) = 0. (21)

Separating variables, we can write P (r, v) = Q(r )V (v) and get a set of coupled eigenvalue problems for the “angular,” v, and
“radial,” r , coordinates:

∂2
vvV (v) + λ2

nV (v) = 0,
[
r2∂2

rr + r∂r + (
ν2r2 − λ2

n

)]
Q(r ) = 0,

V (0) = V

(
3π

2

)
= 0, Q(r = 0) = Q(r → ∞) = 0. (22)

The particular solutions to the “angular” and “radial” boundary problems read as

Vn ∝ sin

(
2nv

3

)
Qn ∝ J 2n

3
(νr ). (23)

The function P (r, v, t ) can be written now as

P (r, v, t ) =
∞∑

n=1

∫ ∞

0
An(ν)J 2n

3
(νr ) sin

(
2nv

3

)
e−ν2Dtdν, (24)

where constants An(ν) satisfy the initial conditions:

∞∑
n=1

∫ ∞

0
An(ν)J 2n

3
(νr ) sin

(
2nv

3

)
dν = δ(r − R)δ(v − v0) (25)

and

An(ν) = 4R

3π
sin

(
2nv0

3

)
νJ 2n

3
(νR). (26)

Rewrite the sum in (24) as

P (r, v, t ) =
∞∑

n=1

4R

3π
sin

(
2nv0

3

)
sin

(
2nv

3

)∫ ∞

0
νJ 2n

3
(νR)J 2n

3
(νr )e−ν2Dtdν. (27)

Evaluating the integral in (27): ∫ ∞

0
νJ 2n

3
(νR)J 2n

3
(νr )e−ν2Dtdν = 1

2Dt
e− r2+R2

4Dt I 2n
3

(
rR

2Dt

)
, (28)
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we arrive finally at the following expression for the probability distribution:

P (r, v, t ) = 4R

3π

1

2Dt
e− r2+R2

4Dt

∞∑
n=1

sin

(
2nv0

3

)
sin

(
2nv

3

)
I 2n

3

(
rR

2Dt

)
. (29)

Consider a conditional probability distribution for the trajec-
tory passing from A to B above the triangle through point D:

P (A → D → B ) = P (A → D)P (B → D)∫ ∞
0 P (A → D)P (B → D) dr

,

(30)

where P (X → D) is the probability to run from the point X

to the point D(d, 3π
4 ) above the tip of the triangle. The sum in

(28) has the following asymptotic behavior:

∞∑
n=1

sin

(
2nv0

3

)
sin

(nπ

2

)
I 2n

3
(x) ∼ xe−x6/7

. (31)

Collecting (29)–(31), we find the behavior of 〈d〉 for t = cR:

〈d〉 =
∫ ∞

0
rP (A → D → B )dr ∼ const, (32)

which means that the fluctuations of stretched trajectories
above the tip C of the triangle are bounded and do not depend
on R. This result supports the simple scaling consideration
exposed in Sec. II.

IV. BIASED 2D RANDOM WALKS IN A CHANNEL
WITH FORBIDDEN VOIDS

As a further development of the problem of 2D random
walk statistics above the semicircle and triangle, we numer-
ically consider an ensemble of 2D random walks with a
horizontal drift in the presence of forbidden voids of different
shapes, as is shown in Fig. 6. The setting of this model slightly
differs from the one discussed above. We regard an ensemble
of long trajectories (t � R) starting at point A located to the
left from the semicircle of the triangle; however, we do not fix
the terminal point of the path, allowing it to be everywhere.
Instead of controlling the lengths of the path, t , we have fixed

d d

drift drift

)b()a(

y

x

y

x

"T" ledoM"S" ledoM

R

2R

FIG. 6. Biased 2D random walk in a channel with forbidden
voids in a form of semicircle (a) and a triangle (b).

the value of the horizontal drift, ε. Thus, the coordinates of the
tadpole of a growing lattice path obey the following recursive
transformations:

(xt+1, yt+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(xt − 1, yt ) with probability 1
4 − ε

(xt + 1, yt ) with probability 1
4 + ε

3

(xt , yt + 1) with probability 1
4 + ε

3

(xt , yt − 1) with probability 1
4 + ε

3

, (33)

and at ε = 0 we return to the symmetric 2D random walk,
while at ε = 1

4 the backward steps are completely forbidden.
We have performed Monte Carlo simulations to determine

the fluctuations of 2D trajectories with the drift ε (ε � 0)
above the top of the semicircle (triangle). The corresponding
results are presented in Fig. 7 for ε = 3

28 , for which the
quotient of forward to backward horizontal jump rates is
equal to 2. In the case of a semicircle, the KPZ scaling for
the expectation, 〈d(R)〉 ∼ R1/3, holds, while for the case of
the triangle the fluctuations do not depend on R, and the
behavior 〈d(R)〉 = const is clearly seen. We have simulated
on the order of 103 lattice trajectories up to the length
tmax = 2 × 103 in the presence of voids characterized by R =
{250, 500, 750, 1000, 1250, 1500} (measured in the units of
lattice spacing). Thus, the statistics of biased 2D random
walks in the presence of forbidden voids of semicircular and
triangular shapes matches the fluctuations of stretched 2D
random walks above the same shapes discussed at length of
Sec. II.

The uncovered behavior of biased random walks in the
vicinity of excluded voids of various shapes allows us to make
a conjecture about possible thermodynamic properties of lam-
inar flows in tubes with periodic contractions. The combina-
tion of the drift and geometry pushes the laminar flow lines,
which spread near the boundary, into a large-deviation regime
with the extreme value statistics, typical for 1D systems with
spatial correlations. Since the width of the fluctuational (skin)
layer near the boundary is shape-dependent, one may expect

600 1200 1800
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10

600 1200 1800
3

4
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6
7
8
9

10

(b)(a)

Model "T"

numeric simulation
fit: slope -0.02

lo
g

<d
>

log R

Model "S"

numeric simulaton
fit: slope 0.31

lo
g

<d
>

log R

FIG. 7. Mean deviations of open random paths shown in Fig. 6
for ε = 3

28 : (a) above the top of the semicircle; (b) above the tip of
the triangle.
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FIG. 8. (a) Two-dimensional random walk evading the semicircle. The part A′B ′ lies above the essentially flat region of the semicircle;
(b) splitting in blobs of a trajectory evading a curved surface (semicircle).

different heat emission of laminar flows in the presence of
excluded voids of different geometries.

V. DISCUSSION AND CONCLUSION

In this work we considered simple 2D systems in which
imposed external constraints push the underlying stochastic
processes into the “improbable” (i.e. large-deviation) regime
possessing the anomalous statistics. Specifically, we dealt
with the fluctuations of a 2D random walk above the semicir-
cle and the triangle in a special case of “stretched” trajectories.
We proposed the simple scaling arguments supported by an
analytic consideration. As a brief outline of the results, it is
worth highlighting three important points:

(1) Imposing constraints on a conformational space,
which cut off a tiny region of available ensemble of trajec-
tories, we can push the subensemble of random walks into the
atypical large-deviation regime possessing anomalous fluctu-
ations, which could have some similarities with the statistics
of correlated random variables.

(2) Stretching 2D random paths above the semicircle,
we may effectively reduce the space dimension: in specific
geometries we force the system to display the 1D KPZ fluctu-
ations.

(3) Strong dependence of the fluctuation exponent γ on
the geometry of the excluded area manifests the nonuni-
versality in the underlying reduction of the dimension. We
outline three archetypical geometries: stretching above the
plane (Gaussian, with γ = 1/2), above the semicircle (KPZ
type, with γ = 1/3), and above the triangle or the cusp (finite,
with γ = 0). For an algebraic curve of order η the fluctuation
exponent is γ = η−1

2η−1 .
Our results demonstrate that geometry has a crucial impact

on the width of the boundary layer in which the laminar
flow lines diffuse. We could speculate that such an effect is
important for some technical applications in the rheology of
viscous liquids, for instance, for cooling of laminar flows
in channels with periodically displaced excluded voids of
various shapes (like shown in Fig. 5). Such a conjecture is
based on the following obvious fact. The heat transfer through
walls depends not only on the total contact surface of the

flow with the wall, but also on a width of a mixing skin
layer: the bigger a mixing layer near the boundary, the better
cooling. However, as we have seen throughout the paper,
the mixing layer width is shape dependent, and hence, it
might influence the “optimal” channel geometry for cooling
of laminar viscous liquid flows.

One-dimensional KPZ-type behavior in a 2D restricted
random walk goes far beyond purely academic interest. Two
important relevant applications should be mentioned. First,
by this model we provide an explicit example of the 2D
statistical system, which, being pushed to the large-deviation
(“atypical”) region, mimics the behavior of some 1D corre-
lated stochastic processes. Second, our study deals with the
manifestations of a 1D KPZ-type scaling in the localization
phenomena of 2D constrained disordered systems. Namely, let
us estimate the free energy, F (N ), of an ensemble of N -step
paths stretched above the semicircle as shown in Fig. 8(a).

One can split the entire stretched path of length N running
from A to B above the semicircle into the sequence of in-
dependent “blobs” with the longitudinal size LS = xS ∼ R2/3

and the transversal size DS = yS ∼ R1/3; see Fig. 8(b). Thus,
taking into account the additive character of the free energy,
we can estimate F (N ) of ensemble of N = cR-step paths as

F (R) ∼ N

LS

∼ R

R2/3
∼ R1/3. (34)

Therefore, the Gibs measure, which provides expression of the
“survival probability” in the curved channel of length N ∼ R

and diameter ∼R1/3, can be estimated as

P (R) = e−F (R) ∼ e−αR1/3
, (35)

where α is some model-dependent numerical constant. Pass-
ing to the grand canonical formulation of the problem, i.e.,
attributing the energy E to each step of the path (remembering
that N = cR), one can rewrite the expression for P (R) in (35)
as

P (E) =
∫ ∞

0
P (R) e−ER dR ∼ ϕ(E) e−b/

√
E, (36)

where b = 2α3/2

33/2 and ϕ(E) is a power-law function of E.
To provide some speculations behind the behavior (36),

recall that the density of states, r (E), of the 1D Anderson

012110-8



ANOMALOUS ONE-DIMENSIONAL FLUCTUATIONS OF A … PHYSICAL REVIEW E 99, 012110 (2019)

model (the tight-binding model with the randomness on the
main diagonal) at E → 0 has the asymptotics, known as
the “Lifshitz singularity” r (E) ∼ e−a/

√
E , where E is the

energy of the system and a is some positive constant (see
Refs. [26,27] for more details).

It is known [28] that the asymptotics (35) has appeared
in the literature under various names, like “stretched expo-
nent,” “Griffiths singularity,” and “Balagurov-Waks trapping
exponent,” but in all cases this is nothing else than the in-
verse Laplace-transformed Lifshitz tail of the 1D disordered
systems possessing Anderson localization. We claim that the
KPZ-type behavior with the critical exponent γ = 1

3 can also
be regarded as an incarnation of a specific “optimal fluctua-
tion” for the 1D Anderson localization. Finding in some 2D
systems a behavior typical for 1D localization seems to be a
challenging problem of connecting localization in constrained
2D and 1D systems. This issue will be discussed in detail in a
forthcoming publication.

Note added in proof. The large-scale deviation principle for
the constrained 1D random walk process has been discussed
in a recent publication [29].
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