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High-temperature ratchets driven by deterministic and stochastic fluctuations
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We consider the overdamped dynamics of a Brownian particle in an arbitrary spatial periodic and time-
dependent potential on the basis of an exact solution for the probability density in the form of a power series in the
inverse friction coefficient. The expression for the average velocity of a Brownian ratchet is simplified in the high-
temperature consideration when only the first terms of the series can be used. For the potential of an additive-
multiplicative form (a sum of a time-independent contribution and a time-dependent multiplicative perturbation),
general explicit expressions are obtained which allow comparative analysis of frequency dependencies of
the average velocity, implying deterministic and stochastic potential energy fluctuations. For qualitative and
quantitative analysis of these dependences, we choose illustrative examples for spatial harmonic fluctuations:
with deterministic time dependences of a relaxation type and stochastic time dependences describing Markovian
dichotomous and harmonic noise processes. We explore the influence of fluctuation types on the ratchet effect
and demonstrate its enhancement in the case of harmonic noise.
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I. INTRODUCTION

The ability of Brownian particles to move directionally
subjected to a ratchet mechanism can appear under the ac-
tion of external processes of different nature [1–5]. Most of
human-created processes used in ratchets, as a source of driv-
ing, are deterministic ones; they are cyclically repeated in time
and described by periodic functions [2,3,5–11]. Stochastic
processes usually govern operation of ratchetlike objects in
biological systems (e.g., protein motors in cells) [1,5,12–17].
It is important that average values of driving forces acting
on a particle due to these processes are zero (unbiased per-
turbations), but asymmetry of a system and effects (induced
by the perturbations) that are nonlinear in potential energy
fluctuations lead to a directed particle current. Among the first
examples of such effect is the appearance of a constant electric
current under the action of a high-frequency electromagnetic
field in media without a center of symmetry (photovoltaic
effect) [18].

Speaking of deterministic fluctuations in ratchet systems,
it is necessary to single out a special class of harmonic (in
time) fluctuations [19–25]; they are easily realizable and can
be described by the Fourier transform method. Biharmonic
fluctuations can also be a source of a ratchet driving force
[26]. Deterministic dichotomic processes are no less pop-
ular in theoretical studies and experimental realizations of
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ratchets. These processes can be described as a two-state
model with the two states alternating in time (each of which
has time-invariant characteristics) [27–31]. At the same time,
there exist a number of ratchet systems characterized by the
relaxation delay on the deterministic dichotomic process, e.g.,
on periodic rectangular laser pulses [32]. In this case, a theory
must be expanded to describe an arbitrary periodic process
[28,32–34].

The presence of stochastic fluctuations usually assumes
that there is a set of discrete states (describing, for example,
conformational states of a protein, modeled by a Brownian
ratchet) between which transitions occur with certain rate
constants [1,35]. Since, in each conformational state, a par-
ticle (say, a protein) interacts with an environment in different
ways, we have the following problem statement: particle po-
tential energy is a function of a state’s number, and particle dy-
namics is governed by equations containing rate constants of
transitions between the states. If the states are well defined and
durations of transitions between them are essentially shorter
than lifetimes of the states, one can consider that the rate
constants are independent of the process history, that is, the
process is Markovian [36]. For the convenience of description,
it is usually limited to a small number of states [37–39], most
often two [27,28,33,39–48]; in the latter case, one speaks of
a stochastic dichotomous process. A somewhat more general
process is harmonic noise [49–53], the results of which are
interesting to compare with those obtained for the stochastic
dichotomous process. Along with Markov processes that can
control the ratchet operation, there exist various models of
anomalous molecular motors with non-Markovian diffusion,
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subdiffusing rocking [54–57] and flashing [58–60] ratchets
(see also [4,61,62] and references therein).

A vast majority of ratchet models suggest overdamped dy-
namics in which friction dominates inertia and hence inertial
effects can be neglected. On the other hand, there are ratchets
operating due to dry (Coulombic) friction [63–67]. Such
systems include unidirectional rotation of granular motors
[63,65], unidirectional motion of a solid object along a surface
[64], or the asymmetric Rayleigh piston [66]. The description
of these systems rejects the overdamped approximation and
requires taking into account inertial effects on the basis of a
Boltzmann-Lorentz equation [63] or Kramers equation [67]
in which velocity-dependent friction terms can be included.
Such ratchets are beyond the scope of our article.

The influence of fluctuations of different types on ratchet
characteristics can be compared effectively in case one has
explicit analytical expressions for quantities of interest. Such
an opportunity can be provided, for example, by the repre-
sentation of solutions of equations (namely, Smoluchowski
equation) in the form of a power series in the inverse friction
coefficient [28,33]. In the present paper, we generalize this
approach to obtain analytical expressions for the average
velocity of high-temperature ratchets driven by fluctuations
of different nature. The structure of the paper is as follows.
In Sec. II, we give the solution of the ratchet problem in a
series form. In Sec. III, we simplify the solution supposing the
high-temperature regime of ratchet operation with potential
energy fluctuations of different nature, including deterministic
periodic processes and stochastic Markovian processes with
the special emphasis on dichotomous and harmonic noises.
Further we restrict our consideration to a spatial harmonic sig-
nal (Sec. IV), which essentially simplifies the final expression
for the average particle velocity and, hence, the analysis of
different cases of stationary potentials and fluctuation types.
The results are summarized in Sec. V.

II. THE SOLUTION OF THE RATCHET PROBLEM
IN A SERIES FORM

Following the approach proposed in Refs. [28,33], con-
sider the overdamped dynamics of a Brownian particle in a
viscous medium, which can be statistically described by its

distribution function ρ(x, t ) that satisfies the Smoluchowski
equation [68],

∂

∂t
ρ(x, t ) = − ∂

∂x
J (x, t ) ,

(1)

J (x, t ) = ζ−1

[
F (x, t )ρ(x, t ) − kBT

∂

∂x
ρ(x, t )

]
,

and the normalization condition
∫ L

0 ρ(x, t )dx = 1. Here, ζ

is the friction coefficient, kB is the Boltzmann constant,
T is the equilibrium absolute temperature, and F (x, t ) =
−∂U (x, t )/∂x is a spatially periodic (with the period L)
and time-dependent applied force that corresponds to the
potential energy U (x, t ). The instantaneous particle velocity
is determined through the flux J (x, t ) as

v(t ) =
∫ L

0
dx J (x, t ). (2)

Spatial periodicity of the driving F (x, t ) and the consider-
ation of the steady-state process allow the Fourier representa-
tion for any spatial function f (x, t ) = f (x + L, t ) appearing
in our model:

f (x, t ) =
∑

q

fq (t ) exp(ikqx) ,

kq = (2π/L)q, q = 0,±1, . . .. (3)

On the basis of this, the integral form of differential equation
(1) can be written as

ρq (t ) = L−1δq,0 − iζ−1kq exp
( − Dk2

q t
)

×
∑
q ′

∫ t

−∞
dt ′Fq ′ (t ′)ρq−q ′ (t ′) exp

(
Dk2

q t
′), (4)

where D = kBT /ζ is the diffusion coefficient, δq,0 = 1 at q =
0, and δq,0 = 0 at q �= 0. The initial time t = −∞ has been
chosen here to eliminate the influence of transient processes
which “remember” initial conditions. Using (1) and (2), one
can also represent the velocity as a sum,

v(t ) = ζ−1L
∑

q

Fq (t )ρ−q (t ). (5)

Substituting an iterative solution of Eq. (4) in the form of a power series in ζ−1 into Eq. (5) yields a general expression for
the velocity,

v(t ) = ζ−1F0(t ) +
∞∑

n=1

inζ−n−1
∑

q1,...,qn

kq1kq1+q2 · · · kq1+q2+···+qn

∫ ∞

0
dτ1

∫ ∞

0
dτ2 · · ·

∫ ∞

0
dτn

× Fq1 (t )Fq2 (t − τ1) · · · Fqn
(t − τ1 − · · · − τn−1)F−q1−q2−···−qn

(t − τ1 − · · · − τn−1 − τn)

× exp
(−Dk2

q1
τ1 − Dk2

q1+q2
τ2 − · · · − Dk2

q1+q2+...+qn
τn

)
. (6)

Next we will use the fact that a broad class of functions of two variables can be represented in the following general additive-
multiplicative form:

F (x, t ) =
N∑

r=1

σ (r )(t )f (r )(x). (7)

The functions σ (r )(t ) govern the time dependence of the driving and describe the features of the fluctuations, which can be
either of stochastic or deterministic nature. We will consider the operation of averaging over the fluctuations; hereinafter it
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will be denoted by the brackets 〈·〉. It is clear that the definition of the operation depends on the nature of the time-dependent
quantities σ (r )(t ). Following the abstract in [1], directed transport in the case of so-called Brownian motors (ratchets) implies
the consideration of “a dissipative dynamics in the presence of thermal noise and some prototypical perturbation that drives the
system out of equilibrium without introducing a priori an obvious bias into one or the other direction of motion.” Thus, one
needs to distinguish a nontrivial ratchet effect from the trivial particle motion with an applied bias. It means that we must put
〈F0(t )〉 = ∑

r 〈σ (r )(t )〉f (r )
0 = 0; it can be realized when either f

(r )
0 = 0 while σ (r )(t ) is arbitrary or for f

(r )
0 �= 0 with 〈σ (r )(t )〉 =

0. The first and second cases describe, respectively, the so-called flashing (pulsating) and rocking (forced) ratchets, that is, the
appearance of a ratchet effect due to fluctuations of periodic potential profiles in the former case and of a tilting force in the
latter. Applying the operation of averaging to the instantaneous particle velocity (6), we obtain the desired general formula for
the average particle (ratchet) velocity:

v ≡ 〈v(t )〉 =
∞∑

n=1

inζ−n−1
∑

q1,...,qn

kq1kq1+q2 · · · kq1+q2+···+qn

∑
r1,...,rn+1

f (r1 )
q1

f (r2 )
q2

· · · f (rn )
qn

f
(rn+1 )
−q1−q2−···−qn

∫ ∞

0
dτ1

×
∫ ∞

0
dτ2 · · ·

∫ ∞

0
dτn〈σ (r1 )(t )σ (r2 )(t − τ1) · · · σ (rn )(t − τ1 − · · · − τn−1)σ (rn+1 )(t − τ1 − · · · − τn−1 − τn)〉

× exp
(−Dk2

q1
τ1 − Dk2

q1+q2
τ2 − · · · − Dk2

q1+q2+···+qn
τn

)
. (8)

This exact expression shows that the main ratchet characteristic, its average velocity, is determined by the correlation
functions of different orders, 〈σ (r1 )(t )σ (r2 )(t − τ1) · · · σ (rn )(t − τ1 − · · · − τn−1)σ (rn+1 )(t − τ1 − · · · − τn−1 − τn)〉. The low-
order correlation functions determine the average velocity of high-temperature ratchets (for which a ratio of a spatial amplitude
of a ratchet potential to the thermal energy is suggested to be small); in this case, the summation over n is confined, for the
flashing ratchet type, to n = 1 and 2. Such ratchets will be considered in detail further.

III. HIGH-TEMPERATURE RATCHETS

For the purposes of the analysis in this section, it is enough
to consider a flashing ratchet with the potential energy U (x, t )
of the simplest additive-multiplicative form,

U (x, t ) = u(x) + σ (t )w(x), (9)

which is a particular case of the representation (7) corre-
sponding to N = 2 with σ (1)(t ) = 1, f (1)(x) = −du(x)/dx,
σ (2)(t ) = σ (t ), and f (2)(x) = −dw(x)/dx. With these as-
sumptions made, the average particle velocity for high-
temperature ratchets can be written as

〈v〉 = i

Dζ 3

∑
qq ′( �=0)
(q+q ′ �=0)

kqkq ′kq+q ′wqwq ′
[
u−q−q ′�2

(
Dk2

q,Dk2
q ′
)

− Dkqkq ′w−q−q ′�3
(
Dk2

q,Dk2
q ′
)]

, (10)

where we have introduced the functions

�2(a, b) = 1

a − b

∫ ∞

0
dτK2(τ )(ae−aτ − be−bτ ) ,

(11)

�3(a, b) =
∫ ∞

0
dτ

∫ ∞

0
dτ ′K3(τ, τ ′)e−aτ−bτ ′

,

and

K2(τ ) ≡ 〈σ (t )σ (t − τ )〉 ,
(12)

K3(τ, τ ′) ≡ 〈σ (t )σ (t − τ )σ (t − τ − τ ′)〉
are the second- and third-order correlation functions.

The importance of the result (10)–(12) lies in the fact that
these relations allow analyzing fluctuations of any nature,
stochastic or deterministic, which hence can be described by
arbitrary functions of time. One can see that only two corre-
lation functions, of the second and third order, are enough for

the description of high-temperature ratchets. Time-symmetric
fluctuations are characterized by zero values of the odd corre-
lation functions, so that �3(a, b) = 0 and only one (first) term
remains in Eq. (10). In this case, the average particle velocity
is an odd functional of the stationary part u(x) of the potential
and equals zero at u(x) = 0 (as a simple example here, a
potential fluctuates in sign). For time-asymmetric fluctuations,
the first and the second terms in Eq. (10) can compete. Hence,
the direction of motion (the sign of 〈v〉) in this case will be
dictated by the result of the competition between the spatial
and time asymmetry of the particle potential energy. Such
a competition has been considered in detail in Ref. [47]
for potential energy fluctuations described by an arbitrary
dichotomous stochastic process. Below we consider various
types of processes which can operate time dependences of
fluctuations: deterministic and stochastic processes of the
general form.

Deterministic periodic processes. They are the simplest and
widely used processes. The processes of this type are respon-
sible, for example, for the motion of particles suspended in so-
lution and exposed to a periodic asymmetric potential [69,70]
(dielectrophoresis effect [71]), vortices in superconductors
[72], atoms in dissipative optical lattices [73], and electrons
in organic semiconductors [31]. The potential energy changes
are governed by the periodic function σ (t ) = σ (t + τ ) (τ is
the period); it can be expanded into the Fourier series

σ (t ) =
∑

j

σ̃j exp(−iωj t ) ,

ωj = 2πj/τ , j = 0, ±1, . . . , (13)

with the Fourier components σ̃j . The operation of averaging
in the case of periodic functions means the averaging over
the period, τ : 〈...〉 = τ−1

∫ τ

0 dt . . .; which gives the desired
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FIG. 1. The scheme of transitions between the states of
the Markovian process: (a) general case (N -state model) and
(b) dichotomous process.

correlation functions,

K2(t ) =
∑

j

|σ̃j |2 exp(−iωj t ) ,

(14)
K3(t, t ′) =

∑
jj ′

σ̃j σ̃j ′ σ̃−j−j ′ exp(−iωj t − iω−j ′ t ′).

By substitution of Eq. (14) to Eq. (11), one can arrive at the
following explicit expressions for the �2,3 functions:

�2(a, b) = 2(a + b)
∞∑

j=1

ω2
j |σ̃j |2(

ω2
j + a2

)(
ω2

j + b2
) ,

(15)

�3(a, b) = 1

2

∑
jj ′

σ̃j σ̃j ′ σ̃−j−j ′ + σ̃−j σ̃−j ′ σ̃j+j ′

(iωj + a)(iω−j ′ + b)
,

determining the average velocity. It can be shown that only
second-order correlation functions contribute to the average
velocity [�3(a, b) = 0] if σ (t ) belongs to the shift-symmetric
(supersymmetric) or antisymmetric functions [32,74] [for de-
terministic dichotomous processes, such functions σ (t ) de-
scribe transitions between the two states with equal lifetimes].

Stochastic Markovian processes. Let the function σ (t )
be a stochastic variable with its discrete values σn, n =
1, 2, . . . , N , and the σn � σn′ transitions are character-
ized by certain time-independent rate constants γnn′ and γn′n
[Fig. 1(a)]. The main quantity in the description of a stochastic
process is the conditional probability ρnn′ (t ) of finding the
system in a state n at time t given that it was in a state n′
at the previous initial time, t = 0; the time dependence of this

quantity is governed by the Pauli master equation,

d

dt
ρnn′ (t ) +

∑
n′′

�nn′′ρn′′n′ (t ) = 0 ,

�nn′′ = δnn′′
∑
n′

γnn′ − γn′′n, (16)

with the initial condition ρnn′ (0) = δnn′ . This equation de-
scribes the memoryless Markovian processes: the rate of
change of ρnn′ (t ) depends on ρnn′ (t ) at the same time moment
(future depends on the present and not the past). Note that the
equilibrium solutions ρ (0)

n of Eq. (16) do not depend on n′ and
obey the detailed balance principle, γn′nρ

(0)
n′ = γnn′ρ (0)

n , which
is valid for all systems in thermal equilibrium.

Following the approach proposed in Ref. [36] (see also
Refs. [20,75]), the solution of the differential equation (16)
can be represented in the most general form using the eigen-
values �j and corresponding eigenvectors Cnj of the matrix
�nn′ , defined by the equation∑

n′
�nn′Cn′j = �jCnj . (17)

The matrix �nn′ obeys the nonsymmetric condition �n′nρ
(0)
n =

�nn′ρ
(0)
n′ following from the detailed balance principle and

the definition of �nn′ in Eq. (16). Introduce an ancillary
symmetric matrix �̃nn′ = (ρ (0)

n )−1/2�nn′ (ρ (0)
n′ )1/2 and vectors

C̃nj = (ρ (0)
n )−1/2Cnj satisfying the equation

∑
n′ �̃nn′C̃n′j =

�j C̃nj similar to Eq. (17). This equation with �̃nn′ = �̃n′n
leads to the reality of the eigenvalues �j and to the unitarity
of C̃nj , from which the unitarity of Cnj accurate to the weight
factors ρ (0)

n follows:∑
n

(
ρ (0)

n

)−1
CnjC

∗
nj ′ = δjj ′ ,

∑
j

C∗
njCn′j = ρ (0)

n δnn′ . (18)

Since
∑

n �nn′ = 0, we have
∑

nn′ �nn′Cn′j =
�j

∑
n Cnj = 0. The linear independence of rows Cn

suggests that at least one eigenvalue �j is equal to
zero. Assume that j = 0 corresponds to the zero value,
�0 = 0, and that

∑
n Cnj = 0 at j �= 0. Using the second

Eq. (18) and the normalization condition
∑

n ρ (0)
n = 1, we

arrive at the following useful relations: Cn0 = ρ (0)
n and∑

n Cnj = δj0. With these relations, one can express the
matrix �nn′ in terms of its eigenvalues and eigenvectors
as �nn′ = (ρ (0)

n′ )−1 ∑
j �jCnjC

∗
n′j , and hence get the time

dependence of the desired conditional probability (the
solution of Eq. (16)):

ρnn′ (t ) = (
ρ

(0)
n′

)−1 ∑
j

CnjC
∗
n′j exp(−�j t ). (19)

Using the definition of �nn′ in Eq. (16), one can show that

�j = 1

2

∑
nn′

γnn′ρ (0)
n

∣∣∣∣∣
Cnj

ρ
(0)
n

− Cn′j

ρ
(0)
n′

∣∣∣∣∣
2

� 0. (20)

Thus, from this inequality, we get the non-negativity of the
eigenvalues �j , and the equality �0 = 0 follows for which the
corresponding eigenvector Cn0 = ρ (0)

n . Since �j > 0 at j > 0,
the equilibrium is established at t → ∞ [ρnn′ (∞) = ρ (0)

n ; see
Eq. (19)] as it should be.

012103-4



HIGH-TEMPERATURE RATCHETS DRIVEN BY … PHYSICAL REVIEW E 99, 012103 (2019)

Using the normalized orthogonal conditions (18) with the
weight factors ρ (0)

n , it is easy to obtain Kolmogorov-Chapman
equation, ∑

n′
ρnn′ (t )ρn′n′′ (t ′) = ρnn′′ (t + t ′), (21)

which is the basis for the derivation of the Pauli master
equation (16) valid for Markovian processes [36].

The operation of averaging of a product of r fluctuations
σ (t ), taken at different times t1, t2, . . . , tr , is defined by means
of r-point unconditional probabilities, pn1n2...nr

(t1|t2| · · · |tr );
the last are calculated using the conditional probabilities,

pn1n2...nr
(t1|t2| · · · |tr ) =

t1>t2>···>tr
ρn1n2 (t1 − t2)pn2...nr

(t2| · · · |tr ) ,

pn(t ) = ρ (0)
n , (22)

so that for the desired second- and third-order correlation
functions, we have

K2(t ) =
∑
nn′

σnσn′pnn′ (t |0) =
∑
nn′

σnσn′ρnn′ (t )ρ (0)
n′ ,

K3(t, t ′) =
∑
nn′n′′

σnσn′σn′′pnn′n′′ (t + t ′|t ′|0)

=
∑
nn′n′′

σnσn′σn′′ρnn′ (t )ρn′n′′ (t ′)ρ (0)
n′′ , (23)

or, after substituting Eq. (19) to Eq. (23), they become

K2(t ) =
∑

j

|σ̃j |2 exp(−�j t ) ,

(24)
K3(t, t ′) =

∑
jj ′

σ̃j σ̃
∗
j ′ σ̃jj ′ exp(−�j t − �j ′ t ′) ,

where

σ̃j =
∑

n

σnCnj , σ̃jj ′ =
∑

n

σn

(
ρ (0)

n

)−1
C∗

njCnj ′ . (25)

Integrals in Eq. (11) with the correlation functions (24) are
easily taken, and we come to the expressions for the auxiliary
functions,

�2(a, b) =
N∑

j=1

�j |σ̃j |2
(�j + a)(�j + b)

,

(26)

�3(a, b) = 1

2

∑
jj ′

σ̃j σ̃
∗
j ′ σ̃jj ′ + σ̃ ∗

j σ̃j ′ σ̃ ∗
jj ′

(�j + a)(�j ′ + b)
.

Stochastic Markovian dichotomous noise. As a simple
illustration of the stochastic Markovian processes, here we
consider dichotomous noise (there exists a great variety of
phenomena caused by dichotomous noise) which corresponds
to the particular case of the above model, when N = 2, and
the function σ (t ) can take only two values, +1 and −1, with
the rate constants γ12 = γ+ and γ21 = γ− [Fig. 1(b)]. The rate
constants matrix is readily written as

�̂ =
(

γ+ −γ−
−γ+ γ−

)
, (27)

and it has the following eigenvalues and eigenvectors
(columns of the Ĉ matrix):

�0 = 0 , �1 = γ+ + γ−,
(28)

Ĉ = 1

γ+ + γ−

(
γ− γ+

−√
γ+γ−

√
γ+γ−

)
.

This result allows obtaining the matrix elements (25),

σ̃0 = γ− − γ+
γ+ + γ−

, σ̃1 = −2
√

γ+γ−
γ+ + γ−

, σ̃jj ′ =
(

σ̃0 σ̃1

σ̃1 −σ̃0

)
,

(29)

and with them we arrive at the solution of the Pauli master
equation (16),

ρσσ ′ (t ) = 1
2 {1 + e−�1 t σσ ′ + [1 − e−�1 t ]σ̃0σ } ,

(30)
σ, σ ′ = ±1.

It is easy to check validity of the following equalities, which
the conditional probability (30) obeys:

ρσσ ′ (0) = δσσ ′, ρσσ ′ (∞) = 1

2
{1 + σ̃0σ } = ρ (0)

σ ,

∑
σ

ρσσ ′ (t ) = 1 ,
∑
σ ′

ρσσ ′ (t )ρσ ′σ ′′ (t ′) = ρσσ ′′ (t + t ′) .

(31)

Next, substituting expressions (29) to Eqs. (24) and (26)
gives both the desired correlation functions and the auxiliary
functions �2(a, b) and �3(a, b),

K2(t ) = σ̃ 2
0 + σ̃ 2

1 e−�1t ,
(32)

K3(t, t ′) = σ̃0
[
σ̃ 2

0 + σ̃ 2
1 (e−�1t + e−�1t

′ − e−�1(t+t ′ ) )
]
,

�2(a, b) = �1σ̃
2
1

(�1 + a)(�1 + b)
,

(33)

�3(a, b) = σ̃ 3
0

ab
+ σ̃0σ̃

2
1

�1(a + b) + ab

ab(�1 + a)(�1 + b)
,

so one can get the final expression (10) for the ratchet average
velocity [28],

〈v〉 = i�1σ̃
2
1 β3D

∑
qq ′( �=0)
(q+q ′ �=0)

kq+q ′wqwq ′

× Dkqkq ′u−q−q ′ + �1σ̃0w−q−q ′(
�1 + Dk2

q

)(
�1 + Dk2

q ′
) . (34)

Harmonic noise. We can consider a coordinate of a har-
monic oscillator driven by white noise as nonequilibrium
fluctuations controlling the motion of the ratchet. Such a
model was used for a correlation ratchet in Ref. [51]. Here
we apply this type of noise, called harmonic noise, to “drive”
high-temperature flashing ratchets, the average velocities of
which are defined by the lowest-order correlation functions
[see Eqs. (10)–(12)]. We will be interested in the second-
order correlation function K2(t ) = 〈ε(t )ε(0)〉/〈ε2(0)〉 of the
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harmonic noise process ε(t ) with zero average, 〈ε(t )〉 = 0,
described through the stochastic differential equation

ε̈(t ) + νε̇(t ) + �2
0ε(t ) = ξ (t ). (35)

Here, ν and �0 are the damping and frequency parameters,
and ξ (t ) is zero centered Gaussian white noise of intensity α

with the correlation function 〈ξ (t )ξ (t ′)〉 = 2αδ(t − t ′). It is
easy to show that the desired correlation function K2(t ) can
be written as [49–53]

K2(t ) = θ1e
−θ2t − θ2e

−θ1t

θ1 − θ2

= exp

(
−1

2
ν t

)(
cosh �1t + ν

2�1
sinh �1t

)
, (36)

where θ1 and θ2 are the roots of the quadratic equation θ2 −
νθ + �2

0 = 0, θ1,2 = ν/2 ± �1, �1 =
√

ν2/4 − �2
0.

Introduce the correlation time for harmonic noise, which
can be easily evaluated by the relation τ = ∫ ∞

0 K2(t )dt =
ν/�2

0. When ν → ∞, �0 → ∞, and τ is fixed, one ob-
tains K2(t ) = exp(−t/τ ) so that harmonic noise approaches
Ornstein-Uhlenbeck noise of correlation time τ . Since the
second-order correlation functions of Ornstein-Uhlenbeck
and symmetric dichotomous noises coincide [see Eq. (32)
with �1 = τ−1], we can use the quantity �2(a, b) to analyze
the effect of the damping parameter ν on the ratchet velocity.
Substituting Eq. (36) to (11) leads to the expression

�2(a, b) = �1
ν(ν + a + b)

[ν(�1 + a) + a2][ν(�1 + b) + b2]
. (37)

It is reduced to Eq. (33) for �2(a, b) with σ̃0 = 0 and σ̃1 = 1
in the limit ν → ∞, as it should be.

IV. ILLUSTRATIVE EXAMPLES FOR A SPATIAL
HARMONIC SIGNAL

We now will illustrate the ratchet behavior for concrete
laws of variation of a ratchet potential in time. To empha-
size the consideration of different time dependences of the
potential, we confine analysis to the simplest case of a spatial
harmonic signal which governs the ratchet functioning,

w(x) = w cos 2π (x/L − λ0) ,
(38)

wq = (w/2)(e−2πiλ0δq,1 + e2πiλ0δq,−1),

where 2πλ0 (0 � λ0 � 1) is the phase shift; it provides the
maximal positive signal value (w) to be reached at x/L = λ0.
Since the products wqwq ′w−q−q ′ equal zero for such a signal,
and summation in Eq. (10) is limited to the values q, q ′ =
±1, the average velocity is represented in the simple form:

〈v〉 = k1D�̃2β
3w2Im{u2e

4πiλ0}, (39)

where we introduce the dimensionless function

�̃2 ≡ Dk2
1�2

(
Dk2

1,Dk2
1

)
, (40)

which is “responsible” for the character of time fluctuations.
It is significant that the expression (39) contains the product
of functions �̃2 and β3w2Im{u2e

4πiλ0} depending on the time
(the former) and spatial (the latter) characteristics of the
ratchet potential energy. In this case, one can analyze the

contribution of those characteristics independently. So, let us
proceed to the examples of such dependences as well as to
discussing the role of the fluctuation’s nature.

Two-well stationary potential. One can see from Eq. (39)
that if a spatial signal w(x) is described by only the first
harmonic, only the second harmonic of the stationary po-
tential u(x) contributes to the average ratchet velocity. In
this connection, it is not surprising that potentials of the first
two harmonics, which provide the asymmetry necessary for
ratchet operating, are so popular in ratchet models [1]. An
example of a real system with potential energy of this type is
a planar dipole rotor in a two-well symmetric potential (of the
hindered rotation) placed in an alternating electric field E(t )
[20],

U (ϕ, t ) = 1
2u[1 − cos 2(ϕ − �)] − μE(t ) cos(ϕ − ϕ0),

(41)

where μ is the rotor dipole moment, u is the barrier of
the hindered rotation, and � and ϕ0 are the phase shifts of
the stationary and fluctuating parts of the potential. If we
put ϕ = 2πx/L, � = 2πλ, and ϕ0 = 2πλ0, we have u(x) =
(u/2)[1 − cos 4π (x/L − λ)] so that the second harmonic is
u2 = −(u/4)e−4πiλ, and the imaginary part from Eq. (39)
becomes

Im{u2e
4πiλ0} = u

4
sin 4π (λ − λ0). (42)

The direction of motion of this ratchet is determined by the
phase shifts of the potentials.

Sawtooth stationary potential. This is another practice
oriented example. The stationary (unperturbed) part of the
potential energy is a piecewise linear function,

u(x) =
{
ux/l , 0 < x < l,

u(L − x)/(L − l) , l < x < L
(43)

which second harmonic is

u2 = −u
1 − e−ik2l

l(L − l)k2
2

, k2 = 4π

L
, λ = l

L
, (44)

and we obtain

Im{u2e
4πiλ0} = − u

8π2
f2(λ, λ0) ,

(45)

f2(λ, λ0) = sin 2πλ sin 2π (λ − 2λ0)

λ(1 − λ)
.

The dependence on the geometrical parameters of potential
profiles turns out to be alternating (see Fig. 2). This means that
the direction of motion depends not only on the asymmetry of
a sawtooth potential, but also on the phase shift of harmonic
fluctuations. The inset of Fig. 2 shows the regions of λ and
λ0 values at which the motion in the positive and negative
directions is realized. Thus, the application of harmonic fluc-
tuations to an asymmetric sawtooth profile allows controlling
the direction of motion of Brownian motors. The experimental
realization of that can be, for example, the use of interference
of laser beams propagating in opposite directions and forming
a spatially periodic potential which is widely used in Brow-
nian motors on optical lattices [73,76,77]. In this case, the
phase shift of such a potential with respect to the asymmetric
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FIG. 2. Dependence of the dimensionless factor f2(λ, λ0) [see
Eq. (45)] determining the average velocity of a high-temperature
Brownian motor on the geometric parameters of fluctuating and
stationary parts of the potential. The inset illustrates the intervals of
λ (symmetry parameter) and λ0 (phase shift) values of the sawtooth
potential at which the motor moves to the right or left (light and dark
areas, respectively).

sawtooth potential, created, for example, by a polar substrate,
is easy to control by changing the settings of the lasers.

The family of deterministic processes of a relaxation type.
Among periodic processes governing ratchet operating, re-
laxation processes play an important role since usually there
is some delay in response of a ratchet to any external per-
turbation. Manifestation of such retardation in characteristics
of photoinduced diffusion molecular transport has been the-
oretically studied in Ref. [32] using solutions of a relaxation
equation with periodic boundary conditions which describe
a response of a Brownian photomotor on a controlling de-
terministic dichotomous process. Here, to analyze the effect
of a shape of the time dependence, σ (t ), on the average
velocity of a ratchet, governed by a spatial harmonic signal,
we will consider the shift-symmetric (supersymmetric) peri-
odic function σ (t ) = σ (t + τ ) = −σ (t + τ/2) of a relaxation
type. Unlike the function used in Ref. [32], this function obeys
fixed boundary conditions σ (0) = −1 and σ (τ/2) = 1 on the
interval 0 < t < τ/2:

σ (t ) = −1 + 2(1 − e−�τ/2)−1(1 − e−�t ), 0 < t < τ/2,

σ2j+1 = − 4�

ω2j+1τ (ω2j+1 + i �)
coth

(
�τ

4

)
, (46)

where � is the inverse relaxation time. The advantage of this
representation consists of the fact that it permits the universal
consideration of not only steplike and triangularlike limiting
shapes, popular among theoreticians, but also intermediate
(close to reality) shapes of σ (t ) [Fig. 3(a)]. The result of
substitution of the Fourier components σ2j+1 in Eq. (46)
to Eqs. (15) for �2(a, a) and (40) followed by analytical

(a) 

-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
t/ τ

σ(t )
Στ → ∞

Στ = 10
Στ → 0

sinusoidal

(b) 

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6
ξ

2Ψ

sinusoidal

s = 0

s = ∞

s = 0.7

FIG. 3. Different shapes of the relaxation-type periodic time
dependence σ (t ) [see Eq. (46)] for (a) different values of the nor-
malized inverse relaxation time �τ and (b) the character of their
influence on the frequency dependence [Eq. (47)] of the ratchet av-
erage velocity (b); ξ is the normalized frequency, s is the normalized
relaxation time defined in Eq. (48). The dotted lines correspond to
the sinusoidal time dependence σ (t ).

summation can be written as

�̃2 = coth2[(4sξ )−1]

1 − s2

{
8s3ξ

1 − s2
tanh[(4sξ )−1]

+ 4ξ

(
1 − 2s2

1 − s2

)
tanh[(4ξ )−1] − sech2[(4ξ )−1]

}
,

(47)

where we have introduced the dimensionless frequency and
the relaxation parameter

ξ = (
Dk2

1τ
)−1

, s = Dk2
1

/
�. (48)

If the process under study is deterministic dichotomic
fluctuations (s → 0), the function (47) reduces to

�̃
(step)
2 = 4ξ tanh[(4ξ )−1] − sech2[(4ξ )−1]. (49)

Another limiting case, s → ∞, corresponding to a triangular-
like shape of σ (t ), gives

�̃
(trian)
2 = 16ξ 2{2 − 12ξ tanh[(4ξ )−1] + sech2[(4ξ )−1]}.

(50)

The frequency dependences of �̃2 corresponding to differ-
ent relaxation times s are plotted in Fig. 3(b). The dependence
is nonmonotonous with the maximum position, which is also
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0
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0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
ξ

3ν =

ν → ∞

deterministic

2Ψ 10ν =

FIG. 4. Comparative frequency behavior of the average veloc-
ity of a ratchet controlled by deterministic dichotomous processes
(dotted curve) and stochastic processes (solid curves): dichotomous
(ν̃ → ∞) and harmonic noise (ν̃ = 3, 10) processes.

nonmonotonically dependent on the duration of the relaxation
process. Thus, there is an optimum frequency ξ of a driving
which must be chosen in the case when the system permits
variation in s values. Figure 3 also shows the influence of
sinusoidal time dependence σ (t ) = − cos(2πt/τ ) on the fre-
quency dependences of the average velocity, with �̃2 function
of the form

�̃
(sinusoidal)
2 = 4π2ξ 2/(1 + 4π2ξ 2)2. (51)

This dependence is similar to those for large values of the
relaxation parameter s.

Effect of damping on the ratchet velocity. Let us compare
the behavior of a ratchet with the space harmonic driving (38)
in two cases of its time dependence: symmetric dichotomous
and harmonic noises. Using Eqs. (33) and (37), we write
the frequency dependence of the ratchet average velocity,
which is determined by the function �̃2, for the two cases,
respectively, as

�̃
(Dich)
2 = 4ξ

(1 + 4ξ )2 , �̃
(HN)
2 = 4ν̃(2 + ν̃)ξ

[1 + ν̃(1 + 4ξ )]2 , (52)

where

ξ = (
Dk2

1τ
)−1 = �1

/(
4Dk2

1

)
, ν̃ = ν

/(
Dk2

1

)
. (53)

The corresponding curves are represented in Fig. 4. One
can see that the damping reduction results in enhanced values
of the ratchet velocity. Additionally, the decrease in the damp-
ing parameter ν̃ is accompanied by an increase in maximum
values of �̃2, and hence of the velocity, as well as by the
shift of the maximum position to the right. At this, the fre-
quency region for which the ratchet effect is still large enough
becomes larger with the damping reduction. The comparison
with the deterministic case (see the dotted curve) shows that
the bell-shaped frequency dependence of the average velocity
for stochastic driving becomes wider and is shifted to higher-
frequency values.

V. CONCLUSIONS

It is well known that the functioning of ratchets presup-
poses the existence of external processes of a different nature
that supply energy to the system, which is then converted into
the energy of directed motion. The variety of these processes
generates the need to create a variety of models describing
the characteristics of corresponding ratchets. As a result, the
question arises whether there is an effective way to compare
(qualitatively and quantitatively) these characteristics for dif-
ferent processes, that is, for different time dependences of per-
turbations. To answer it, to solve the problem of comparative
description, one must choose a class of systems that can be
described analytically. In this paper, such a choice implies
consideration of high-temperature ratchets as well as potential
energies of the additive-multiplicative form (in particular, a
sum of a time-independent contribution and time-dependent
perturbations). This allowed us to use only the first terms
of the series in powers of the inverse friction coefficient
and hence to obtain a general expression for the average
ratchet velocity, valid for arbitrary spatial dependences of
the stationary and fluctuating contributions to the potential
energy. The time dependence of the fluctuating part enters
into this expression in terms of the second- and third-order
correlation functions, which can be calculated for fluctua-
tions of a different nature. That was the program realized in
this article.

As time dependences of fluctuations, we considered de-
terministic periodic and stochastic Markovian processes. The
first can be described analytically through the expansion of
periodic functions into Fourier series, and the latter due to
the diagonalization of the generalized transition matrix in
the Pauli master equation. Expressions (15) and (26) for
correlation functions that determine the average velocity have
a similar form: they are sums in eigenvalues and eigenfunc-
tions of the problems under consideration. The specification
of these expressions has been carried out for the following
particular cases.

(a) As a deterministic periodic process, we considered a
process of a relaxation type, describing the response of a
system to an external stepwise signal. The prototype of such
a signal can be a cyclic process of switching a laser on and
off, causing directional motion of a Brownian photomotor.
A relaxation process in this case is a result of a delayed
response of the electronic subsystem of the photomotor to the
laser-induced perturbation. By varying the system relaxation
time, one can obtain results valid for limiting cases, such as a
deterministic dichotomous process and an external triangular
signal, as well as for intermediate relaxation responses. A
comparison of these results shows that the largest ratchet
effect can be achieved in the case of extremely short relaxation
times [see Fig. 3(b)].

(b) As stochastic processes, we considered symmetric di-
chotomous and harmonic noise processes. The Markovian
dichotomous process is a special case of a stochastic Marko-
vian process (with the number of states equal to two). It is
characterized by the second-order correlation function coin-
ciding with the Ornstein-Uhlenbeck one. On the other hand,
harmonic noise is reduced to the Ornstein-Uhlenbeck one
when the damping parameter tends to infinity. Thus, with

012103-8



HIGH-TEMPERATURE RATCHETS DRIVEN BY … PHYSICAL REVIEW E 99, 012103 (2019)

the comparison of ratchet velocities for different damping
parameters, we conclude that the damping reduction enhances
the ratchet effect.

The main dependence by which one can judge the influence
of various fluctuations on the average velocity of motion of
a high-temperature ratchet is the dependence of the velocity
on the frequency of the fluctuations. To get this dependence,
we limited ourselves to the case of spatially harmonic fluctua-
tions, for which it is possible to write the result as a product of
two functions: (i) “containing” the spatial shape of the static
part of the potential and (ii) describing the time dependence
of its fluctuations [see Eq. (39)]. This allowed us to write
explicit expressions for the cases of double-well and sawtooth
static potential profiles, as well as for the relaxation-type
deterministic and Markovian stochastic time dependencies
discussed above, which can be practiced for estimating ratchet
velocities. It turned out that the phase shift between the non-
fluctuating part of the potential and its fluctuating (spatially
harmonic) contribution can control the motion direction.

The main conclusion following from the illustrative exam-
ples is that deterministic governing (driving) processes lead to
a relatively narrow bell-shaped frequency dependence of the
average velocity, the maximum value of which corresponds to
dichotomous relaxation-free fluctuations. Stochastic driving
leads to a wide bell-shaped curve, extending far into the
region of high frequencies. In this case, damping reduction

of harmonic noise makes the frequency-dependence maxi-
mum higher and shifts the maximum to the high-frequency
region. Therefore, if the aim is to get the largest ratchet
effect in a narrow frequency domain, one should use de-
terministic relaxation-free dichotomous processes, while to
maintain the ratchet effect in a wide frequency range, it
is reasonable to choose stochastic dichotomous governing
processes.
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