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Identifying diffusive motions in single-particle trajectories on the plasma membrane via fractional
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In this paper we show that an autoregressive fractionally integrated moving average time-series model can
identify two types of motion of membrane proteins on the surface of mammalian cells. Specifically we analyze
the motion of the voltage-gated sodium channel Nav1.6 and beta-2 adrenergic receptors. We find that the
autoregressive (AR) part models well the confined dynamics whereas the fractionally integrated moving average
(FIMA) model describes the nonconfined periods of the trajectories. Since the Ornstein-Uhlenbeck process is a
continuous counterpart of the AR model, we are also able to calculate its physical parameters and show their
biological relevance. The fitted FIMA and AR parameters show marked differences in the dynamics of the two

studied molecules.
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I. INTRODUCTION

The advent of single-molecule techniques over the past two
decades has revolutionized molecular biophysics. Amongst
these techniques, single-particle tracking (SPT) has emerged
as a powerful approach to study a variety of dynamic pro-
cesses [1-4]. Individual trajectories have been obtained for
diverse biological systems, including measurements in cell
membranes [5—12], the cytoplasm [13-17], and the cell nu-
cleus [18-22]. The dynamics of molecules in living cells
typically exhibit complex behavior with a high degree of
temporal and spatial heterogeneities, due to different fac-
tors such as spatial constraints and complex biomolecular
interactions [23]. Each mechanism governing the diffusion
process has different characteristics, which can give important
information regarding the biological system [4,24-27].

A phenomenon often observed in single-molecule exper-
iments is subdiffusion, with a characteristic sublinear mean-
squared displacement (MSD), which largely departs from
the classical Brownian motion (BM). Determining the mech-
anisms underlying anomalous diffusion in complex fluids,
e.g., in the cytoplasm of living cells or in controlled in vitro
experiments [28-30], is a challenging problem. Subdiffusion
can be rooted in different physical origins including immobile
obstacles, binding, crowding, and heterogeneities [31]. Some
of the theoretical models employed to describe subdiffusion
are the continuous-time random walk [8], obstructed diffusion
[32,33], fractional Brownian motion (FBM) [29,34], diffusion
in a fractal environment [35,36], fractional Lévy stable mo-
tion (FLSM) [37], and fractional Langevin equation (FLE)
[16,20,34].
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A discrete-time model that generalizes the above fractional
models is the autoregressive fractionally integrated moving
average (ARFIMA) process [38,39]. From the physical point
of view, it is a discrete-time analog of FLE that incorpo-
rates the memory parameter d [40]. Other popular models of
subdiffusive dynamics like FBM and FLSM are the limiting
cases of the ARFIMA with different noises [41]. ARFIMA
exhibits power-law long-time dependencies, similar to FBM
and FLSM. Long-time dependencies result in anomalous dif-
fusion, evident in a nonlinear MSD [37]. In contrast to FBM
and FLSM, ARFIMA can also describe various light- and
heavy-tailed distributions and an arbitrary short-time depen-
dence.

ARFIMA was previously suggested as an appropriate
model for SPT dynamics for various biological experiments,
namely the motion of individual fluorescently labeled mRNA
molecules in bacteria [42,43] and transient anomalous dif-
fusion of telomeres in the nucleus of eukaryotic cells [44].
A special case of the ARFIMA process, namely fractionally
integrated moving average (FIMA), was proposed as a useful
tool for estimating the anomalous diffusion exponent for
particle tracking data with measurement errors [45]. FIMA
was also useful in introducing so-called calibration surfaces,
which are an effective tool for extracting both the magni-
tude of the measurement error and the anomalous exponent
for autocorrelated processes of various origins [46]. Since
ARFIMA models were successful in analyzing data in other
fields (econometrics, see 2003 Nobel Prize in Economic
Sciences for C. W. J. Granger and R. Engel; finance and
engineering [47-49]), many statistical tools and computer
packages are readily available, e.g., Interactive Time Series
Modelling ITSM) [50].

In this article, we focus on two types of motion in the
plasma membrane, namely free and confined. Transient con-
finement within membrane domains is a very common feature
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in the plasma membrane [23]. Here, we focus on confinement
within stable clusters. We propose the ARFIMA as a suitable
model to characterize both types of dynamics. In Sec. II we
discuss basic building blocks of the ARFIMA process: the
autoregressive (AR), fractionally integrated (FI), and moving
average (MA) parts. We show that the AR process is a dis-
crete counterpart of the continuous-time Ornstein-Uhlenbeck
(O-U) process. We also study the relationship between the
ARFIMA and MSD. In Sec. III our fitting procedure (pre-
sented in detail in Appendix B) is applied to the motion
of individual voltage-gated Na channels and beta-2 adren-
ergic receptors on the surface of live mammalian cells. In
the described examples, we show that the increments of the
nonconfined parts of the trajectories are well described by the
FIMA process, whereas the confined parts can be modeled by
the AR. The analysis also suggests that the beta-2 receptors
appear to be more subdiffusive in the free state and have a
lower autoregressive parameter in the confined state. Finally,
the distribution of the estimated ARFIMA noise sequence
appears to change from Gaussian in the free state to non-
Gaussian in the confined state.

II. ARFIMA MODEL

The ARFIMA process is a generalization of the classical
autoregressive moving average (ARMA) process that intro-
duces the FI part with the long memory parameter d [38,39],
see Appendix A for a presentation of general ARFIMA pro-
cesses.

In this paper we concentrate on a special case of the
ARFIMA proces, namely on the ARFIMA with AR and MA
parts of order 1, which is denoted by ARFIMA(1, d, 1). The
ARFIMA(1, d, 1) process X(¢) for t =0, £1, ... is defined
as a stationary solution of the fractional difference equation
(501

(=B (X(1) =Xt — 1) =Z@)—yZa —1), (1)

where Z(t) is the noise (independent and identically dis-
tributed sequence usually Gaussian or in general belonging
to the domain of attraction of Lévy stable law), |¢]| < 1
and |¢| < 1 are autoregressive and moving average param-
eters, respectively, and B is the backshift operator: BX(¢) =
X(t — 1). The fractional difference operator (1 — B)? is de-
fined by means of the binomial expansion, namely (1 —
B)Y! = Y%, b;j(d)B, where b;(d) = mﬁ{—)—ri)_d) and T is
the Gamma function. In the finite variance case we assume
that the memory parameter |d| < 1/2 and for the general Lévy
«-stable case we assume thatw > 1 and |[d| < 1 — 1/« [51].

Let us emphasize here a very convenient “building
block structure” of the ARFIMA (1,d,1) model:
ARFIMA(1,d, 1) = AR(1) + FI(d) + MA(1), where the
AR(1), FI(d), and MA(1) are defined by the following
equations:

X(t)—¢X(t —1)= Z(), )
(1-B)Y'X(t) = Z(@t), 3)
X(t)=Zt)—yZ(t—1), 4)

TABLE I. Physical (with and without measurement noise) and
corresponding ARFIMA(1, d, 1) models.

Physical model ARFIMA(1,d, 1)
Confinement by a potential well (O-U) AR(1)

O-U + noise ARMA(L,1)
BM MA(0)

BM + noise MA(1)
FBM Fl(d)

FBM + noise FIMA(, 1)
respectively.

The FI(d) part, which is related to the fractional differ-
ence operator, leads to the regularly varying (power-law)
correlations which are related to the classical definition of
long-range dependence (long memory): lack of summability
of correlations [52]. In this paper we will call all processes
with power-law correlations long-range dependent even if the
correlations are summable in contrast to the exponentially (so
much faster) decaying correlations. Long-memory processes
are often used to describe the dynamical behavior of com-
plex systems. Consequently, ARFIMA models have already
emerged in the physical literature, e.g., in the modeling of soft
x-ray solar emissions [53,54], heartbeat interval changes, air
temperature changes [55], and the motion of molecules in live
cells [42-44.,46].

The ARFIMAC(1, d, 1) process offers a lot of flexibility in
modeling long (power-law) and short (exponential or finite-
time) dependencies by choosing the memory parameter d
in the FI part, and appropriate AR(1) and MA(1) process
parameters (¢ and ). Hence, they can be tailored to different
empirical data. To illustrate it, let us recall three standard
models used in the biophysics literature: confinement by a
potential well, FBM and Brownian motion. These models
correspond to different components of the ARFIMA(1, d, 1)
process, namely the AR(1) part, FI(d) part and partial sum
process of MA(0) (which is MA(1) with ¥ = 0, so a pure
white sequence), respectively. Furthermore, the MA(1) which
introduces a one-lag dependence can be associated with the
measurement noise [45]. When added to the FI(d) process,
we obtain the FIMA(d, 1) model: (1 — B)Y!X(¢) = Z(t) —
Y Z(t — 1), which corresponds to FBM with noise [45]. This
leads to an efficient algorithm for extracting the magnitude
of the measurement error for fractional dynamics based on
the FIMA processes [46]. The relations between the different
models are summarized in Table 1.

If the sample comes from an ARFIMA(1, d, 1) process
with noise belonging to the domain of attraction of Lévy
a-stable law, then for large sample lengths the time-averaged

MSD §2(t) behaves like

8 ()~ (&)

where the bar stands for the time average, ~ denotes asymp-
totic behavior and a = 2d + 1 [37]. Therefore, the memory
parameter d controls the extent of the diffusion anomaly
regardless of the underlying distribution. If d < 0, the process
is subdiffusive, and if d > 0, the character of the process
changes to superdiffusive.
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Single-particle tracking data are commonly analyzed by
the MSD of the trajectories. However, past work has shown
that MSDs can be susceptible to errors and biases. To improve
accuracy in single particle studies guidelines with respect
to measurement length and maximum time lags have been
proposed [56].

In this article, for the purpose of identifying diffusive
motions in single-particle trajectories we apply two special
cases of the ARFIMA(l,d, 1) model, namely AR(1) and
FIMA(, 1). FIMA(d, 1) is characterized by three parame-
ters: fractional d giving rise to the long memory, the parameter
Y of the MA(1) part corresponding to the one-lag dependence,
and the distribution of the noise sequence, which in the case of
the Gaussian white noise is fully characterized by its variance
o2. The second model is AR(1), which is characterized by the
AR parameter ¢ and the distribution of the noise sequence.
This model is a discrete analog of the continuous-time O-U
process X(t) defined by the overdamped Langevin equation

dX(t) kX))

7 + &), (6)

where &(t) is white Gaussian noise with (£()&()) =
2D&(t — t'). A discretization of equation (6) gives

X(0) = _<5At - 1) X(t— 1)+ ME(D), (D)
Y y
—_— Z(t)
¢

which is the AR(1) model equation with ¢ = —(kAz/y — 1)
and Gaussian white noise Z(z) = Ar&(¢) with variance o> =
2D At.
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III. ANALYSIS OF INDIVIDUAL MEMBRANE PROTEIN
TRAJECTORIES

Single-particle tracking on the plasma membrane of mam-
malian cells indicates that often molecules are subjected to
transient confinement. Here we employ ARFIMA models
to characterize the motion of Nav1.6 channels in the soma
of transfected cultured rat hippocampal neurons and beta-2
adrenergic receptors (B2AR) in transfected human embryonic
kidney (HEK-293) cells. Nav1.6 channels were biotinylated at
an extracellular site and labeled with streptavidin-conjugated
CF640R. The B2AR were tagged with hemagglutinin (HA)
and labeled with anti-HA antibody conjugated to CF640.
Transfected cells were imaged by total internal reflection mi-
croscopy at 20 frames/s and individual fluorescent molecules
were tracked with the u-track algorithm [57]. Experimental
details about cell culture, transfection, and imaging were
published previously [36,58].

Following Ref. [59], we employed an automated algorithm
to detect changes in molecule dynamics. This algorithm was
based on a sliding-window MSD. As a result, we obtained
trajectories belonging to two states: free and confined. Fig-
ure 1 depicts two representative free and two representative
confined trajectories. Trajectories from the free state resemble
Brownian diffusion, whereas confined-state trajectories ap-
pear as realizations of a stationary process.

We selected five long representative trajectories corre-
sponding to each motion (free and confined). The shortest
were 174 (free state) and 153 (confined state) points for the
the Nav1.6, and 84 (free state) and 300 (confined state) points
for the beta-2 receptors. We focused on the x-coordinate of
the motions. We first fitted the ARFIMA(d, 1) model to the
increments of free-state trajectories. The simplest well-fitted
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FIG. 1. Representative Nav1.6 (left panel) and beta-2 receptor (right panel) trajectories. The top panel illustrates the receptor dynamics
in three dimensions, where the z axis corresponds to time. The (upper) blue trajectories show molecules in the free state and the (lower) red

trajectories show molecules in the confined state.
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FIG. 2. Fitted d parameter (with the 95% confidence interval) of
the FIMA(d, 1) model to the increments of the free state Nav1.6 and
beta-2 receptor five representative trajectories.

model common to all trajectories is FIMA(d, 1). Figures 2
and 3 show a scatter plot of the estimated d and ¥ parameters
with the corresponding 95% confidence intervals obtained by
Monte Carlo simulations. For the beta-2 receptor trajectories,
the memory parameter d and the moving average parameter
Y are usually lower than for Navl.6 trajectories. The MSD
anomalous exponent a = 2d + 1 is also shown in the right
axis of Fig. 2. The detailed results of the FIMA identification
and validation procedure are presented in the Supplemental
Material [60].

To check the goodness of fit of the FIMA model, we
calculated the MSD for 1000 simulated trajectories of the
model with parameters given in the Supplemental Material
[60] and compared the results with the MSD values of the
analyzed representative trajectories. We can see in Fig. 4 that
the fitted FIMA processes reproduce the sample MSD well.
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FIG. 3. Fitted ¥ parameter (with the 95% confidence interval) of
the FIMA(d, 1) model to the increments of the free state Nav1.6 and
beta-2 receptor five representative trajectories.

Some of the empirical MSD values fall outside the interquan-
tile range but they are always contained in the 95% confidence
interval [61], see Fig. S1 in the Supplemental Material [60].
By examining the width of the boxplots, we can also observe
that the variability of the MSD exponent in the beta-2 recep-
tor case seems bigger than in the Navl.6 case, which sug-
gests another difference between Nav 1.6 and beta-2 receptor
dynamics.

We also checked the distribution of the model residuals.
First, following the procedure in Appendix D we found that
the residuals belong to the domain of attraction of the normal
law. Next, it appeared that the residuals can be treated as
Gaussian since the test was rejected only for one trajectory
from the confined state. Hence we conclude that the incre-
ments of the trajectories in the free state can be modeled by
the Gaussian FIMA(d, 1). Recall that this model represents a
Gaussian fractional process with power-law memory, which
corresponds to fractional Brownian motion with Hurst index
H =d+1/2[41].

We performed the same analysis for the confined case and
we found that a simpler ARFIMA model describes well the
data, namely AR(1). Its estimated parameters are depicted
in Fig. 5 with the corresponding 95% confidence intervals
obtained by Monte Carlo simulations. Hence, with the use
of the ARFIMA model we are able to distinguish between
these two different states. Moreover, we can see that for beta-2
receptor trajectories the autoregressive parameter is usually
lower than for the Nav1.6 trajectories. The detail results of
the AR identification and validation procedure are presented
in the Supplemental Material [60].

As we showed in Sec. II, AR(1) corresponds to the O-U
process. From a physical point of view, this model describes
the motion of a Brownian particle in a harmonic potential
with restoring force F = —kx and damping coefficient y
[Eq. (7)]. Therefore, we calculated the corresponding O-U
parameters and, in turn, the corresponding physical parame-
ters that characterize the protein motion (Tables II and III).
Namely, the diffusion is D = o2/(2At), where o is the
variance of the noise term Z(t) and, in our time series, At =
0.05 s. By considering the Einstein-Smoluchowski relation,
y = kgT /D with kgT being thermal energy at 37°C. Next
the parameter ¢ yields the constant k = y (1 — ¢)/At. Atlast,
by equipartition, the variance of the particle position, i.e., the
square of the characteristic radius of the confining domain, is
found, (X?) = kpT/k = o?/[2(1 — ¢)]. We note that in the
analyzed trajectories, the confining radius of Nav1.6 channels
is larger than the confining radius of B2AR, where the former
yields a mean of 53 nm, while the latter has a mean of
23 nm.

To check the goodness of fit of the AR model, we calcu-
lated the MSD for 1000 simulated trajectories of the model
with parameters given in the Supplemental Material [60] and
compared the results with the MSD values for the analyzed
representative trajectories. We can see in Fig. 6 that the fitted
AR processes reproduce the sample MSD well. Some of the
empirical MSD values fall outside the interquantile range
but they are always (even beta-2 receptor trajectory no. 3)
contained in the 95% confidence interval [61], see Fig. S2
in the Supplemental Material [60]. By examining the width
of the boxplots, we can also observe that the variability of
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FIG. 4. Boxplots of estimated MSD exponents for 1000 simulated trajectories of the fitted FIMA processes for free state Nav1.6 and beta-2
receptor five representative trajectories. The dashed horizontal line stands for the MSD exponent obtained for the analyzed empirical trajectory.

the MSD exponent in the Nav 1.6 case seems bigger than in
the beta-2 receptor case, which suggests another difference
between Nav 1.6 and beta-2 receptor dynamics.

We also checked the distribution of the model residuals.
Following the procedure in Appendix D, first we found that
they belong to the domain of attraction of the normal law.
However, in contrast to the free state, Gaussianity was rig-
orously rejected for almost all trajectories. Normal inverse
Gaussian (NIG) and ¢ location-scale distributions were not
rejected for most of the trajectories. In order to make a rigor-
ous conclusion about the model residuals one should analyze

more trajectories. Hence we conclude that the confined state
trajectories can be modeled by the non-Gaussian AR(1).

For the detailed goodness-of-fit analysis of identified
AR(1) and FIMA (d, 1) models we refer the reader to the
Supplemental Material [60].

IV. DISCUSSION AND CONCLUSIONS

In this paper we demonstrated that the ARFIMA(1,d, 1)
model can identify two types of motions of membrane pro-
teins. We analyzed five representative trajectories chosen from
each of two categories: free and confined states of Navl.6
and beta-2 adrenergic receptors. We found that the two special
cases of the model, FIMA(d, 1) and AR(1), fully identify the
free and confined state dynamics, respectively. These results

0.5 T
O Nav 1.6 allowed us to propose a new unified methodology to detect
O Beta receptors certain types of motion in complex systems.
047 1 In the free state, the beta-2 receptors appear to be more
0} subdiffusive and, moreover, the moving average parameter
03r i1} . is lower. In the confined state the autoregressive parame-
ter for the beta-2 receptor trajectories seems to be lower
o 02l H | than for Navl.6 trajectories. Furthermore, the distribution
changes from being Gaussian in the free to non-Gaussian
0.1F o J
¢ TABLE II. Ornstein-Uhlenbeck process parameters for the rep-
ol o | resentative confined state Nav1.6 trajectories.
+ Traj. ¢ o*(mm?) D(um?/s) y(1078 kg/s) k(pN/um) (X?)(nm?)
o1 1 2 3 4 5 6 1 0.30 1948 0.019 22.0 3.08 1391
Number of trajectory 2 0.18 7966 0.080 54 0.88 4857
3023 4319 0.043 9.9 1.53 2804
FIG. 5. Fitted ¢ parameter (with the 95% confidence interval) of 4 0.14 4053 0.041 10.6 1.82 2356
the AR(1) model to the confined state Nav1.6 and beta-2 receptor 5 0.11 6105 0.061 7.0 1.24 3430

five representative trajectories.
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TABLE III. Ornstein-Uhlenbeck process parameters for the rep-
resentative confined state beta-2 receptor trajectories.

Traj. ¢  o(nm?) D(um?/s) y (1072 kg/s) k(pN/um) (X?)(nm?)
1 0.02 553 0.006 77.4 15.18 282
2 —0.05 1327 0.0013 32.3 6.77 632
3 0.07 1485 0.015 28.8 5.36 799
4 0.09 1696 0.017 25.2 4.59 932
5 0.33 252 0.003 169.9 22.76 188

in the confined state. Since the AR(1) is a discrete-time
counterpart of the O-U process, we calculated the parameters
of the corresponding O-U processes which, we found, are
biologically meaningful. We note that the estimated FIMA
memory parameters provide more accurate information on the
subdiffusion type than the MSD exponents since they are more
robust with respect to the measurement noise.

We would like to point out that a very popular model for
subdiffusion continuous-time random walk (CTRW) [62] is
not considered here, but it can be represented in the form
of subordinated O-U process, i.e., AR with randomized time
described by the inverse stable process [63,64].

Accurate motion analysis often requires a transient mo-
tion classification [65,66]. Many transient motion analysis
algorithms employ either rolling windows analysis [67,68] or
hidden Markov modeling [69,70]. Our studies show that one
can also consider the ARFIMA model as a possible tool for
such classification.

We believe that our methodology provides a simple unified
way to gain deeper information into processes leading to
anomalous diffusion in single-particle tracking experiments.
Finally, we note that in order to model the whole trajecto-

ries (free and confined parts of the trajectories together) the
ARFIMA process is not enough. One possible extension is
ARFIMA with noise described by the generalized autoregres-
sive conditional heteroskedasticity (GARCH) model [71,72].
Such models can be useful in description of changing diffu-
sivity which results in so-called transient anomalous diffusion
[73,74]. ARFIMA combined with GARCH can describe both
power-law decay of the autocorrelation function with arbitrary
finite-lag effects (ARFIMA part) and changing diffusion ex-
ponent (GARCH part). This is a subject of ongoing work.
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APPENDIX A: GENERAL ARFIMA MODEL

The ARFIMA(p, d, q) process X(t) for t =0, 1, ... is
defined as a solution of the equation

(1 —B)Y'®,(B)X (1) = V,(B)Z(t),

where Z(t) is the noise sequence (Gaussian or, in general,
in the domain of attraction of Lévy stable law) and B is
the backshift operator, i.e., BX(¢t) = X(t — 1) and B/ X(t) =
X(t — j) [39,50]. Moreover the ®, and W, are AR and
MA polynomials, respectively, known in classical time-series
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FIG. 6. Boxplots of estimated MSD exponents for 1000 simulated trajectories of the fitted AR processes for the confined state Nav1.6 and
beta-2 receptor five representative trajectories. The dashed horizontal line stands for the MSD exponent obtained for the analyzed empirical

trajectory.
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theory:
Q,(B)X(1) = X(1) =1 X(1 — 1) — ... — ¢ X(t — p),
V,(BYZ(t)=Z(@)—ynZ(t —1)— ... =Y, Z(t — q).

The crucial part of the above definition of ARFIMA series is
the fractional difference operator (1 — B)“ defined as a power
series

o0 d (o]
1-By=y" ( .)(—B)f =Y b;(d)B/,
=0 ™ j=0
where b;(d) = % with asymptotic behavior b;(d) ~

I'(=d)~!'j=?! and T" is the Gamma function.

In the finite variance case we assume that |d| < 1/2 and
for the general Lévy a-stable case we assume that o > 1 and
|d| <1 — 1/« [51]. The assumption about the exponent d
ensures a proper definition of the operator for the Gaussian
ARFIMA processes. The parameter d is called the memory
parameter. From the physical point of view, it is known
that ARFIMA is a discrete time analog of the fractional
Langevin equation that takes into account the memory param-
eter [40,54].

In the Gaussian case, the autocovariance function r (k) of
the ARFIMA process decays as k>*~!. Moreover, for d > 0
we have Z,fio |r(k)| = oo, which serves as a classical defi-
nition of long memory [52]. For the Lévy «-stable case with
o < 2 the covariance does not exist and one has to replace it,
e.g., with the codifference (see Ref. [75]). The codifference
of the ARFIMA process was studied in Ref. [51], where
it was proved that for d > 1 — 2/« the ARFIMA possesses
long-term dependence in the classical sense.

A partial sum of the ARFIMA process is asymptotically
self-similar with the Hurst index equal to d + 1/«, where
o is the index of stability [76]. As a consequence Gaus-
sian ARFIMA(0,0,0), which is just the pure white noise
sequence, corresponds, in the limit sense, to BM. Similarly,
ARFIMA(O, d, 0) corresponds to FBM with H =d + 1/2.
For more information about the ARFIMA processes with their
applications to biophysics see, e.g., Refs. [42,46].

The ARFIMA process (in the literature also called
FARIMA) is a generalization of the classical stationary
discrete-time ARMA process to account for the long-range
dependence (powerlike decaying autcorrelation function)
[50,52].

The ARMA models provide a general framework for
studying stationary short memory phenomena, i.e., processes
with exponentially decaying autocovariance. These models
consist of two broad classes of time-series processes, namely
the AR and the MA. The ARMA is usually referred to as the
ARMA(p, g) model where p is the order of the autoregressive
part and g the order of the moving average part.

Let us now concentrate on the ARMA(1,1) case which is
sufficient for many studies. The process X (¢) is ARMA(1,1)
if it is stationary and satisfies (for every ¢) a linear difference

equation with constant coefficients:
X(t)—¢X(@t—1)=2Z1)—¥Z(t - 1), (AD)

wheret =0, £1, ...

The basic building blocks of the model are the
AR(1): X(@t)=¢Xt -1+ Z(t) and MA(): X(t)=
Z(t)— ¥ Z(@t — 1) processes, where ¢ and 1 are real
parameters and Z(t) is the noise term [50]. AR(1) stands
for the autoregression and the explanatory variable is the
observation immediately prior to our current observation.
Its autocorrelation function r(k) decays as ¢*(X?(t)). The
MA(1) part introduces one-lag dependence in the time
series, namely X(#) is a stationary one-correlated time
series: X (s) and X (¢) are independent whenever |t — s| > 1.
The dependence is fully controlled by the parameter ¢¥r. A
stationary solution of ARMA(1,1) equation exists if and only
if  # £1.If |¢| < 1, then a unique stationary solution exists
and is causal, since X(#) can be expressed in terms of the
current and past values Z(s), s < t. Otherwise, if |¢| > 1,
then the solution is not causal since X (¢) is then a function
of Z(s), s > t. Moreover, if [{| < 1 then X (¢) is invertible,
so the noise process Z(¢) can be expressed in terms of past
values X (s), s < ¢ [50]. For the noise process Z(¢) we only
assume that it belongs to the domain of attraction of Lévy
«-stable law for o < 2 [75,77]. It can be a finite variance
white noise (uncorrelated random variables with mean zero
and variance o2, e.g., Gaussian or Student’s ) or infinite
variance independent and identically distributed sequence
(e.g., Lévy a-stable with o < 2 or Pareto).

The ARFIMA process is a d-differenced ARMA process,
where d is a fractional memory parameter. As a consequence,
ARFIMA(1, d, 1) process X(z) is defined as a stationary
solution of the fractional difference equation [50]

(1= B [X(t) =Xt = D] = Z(t) = Y Z(t = 1). (A2)

APPENDIX B: ARFIMA PARAMETER ESTIMATION

In order to estimate the ARFIMA parameters one can
apply the maximum likelihood estimation method, which is
implemented, e.g., in ITSM [50], or its approximation given
by the Whittle estimator [78,79]. The Whittle estimator is
particularly simple to implement in any computer software
and it benefits from the elementary form of the ARFIMA
spectral density. Briefly, let {x;, x2, ..., x5} be a trajectory of
length N. For the model FIMA(d, 1), we estimate the vector
B = (¢, d). We denote the normalized periodogram by

‘ vazl xfe_m‘z
ZzNzl xtz

The Whittle estimator is defined as the vector argument (¢, d)
for which the following function attains its minimum value:

I = , —m <A< (B1)

/ﬂ INOOWL, $)(2 — 2 cosh)dA, (B2)
0

where
W, ¢) = (1 —2¢cos i + ¢°). (B3)

For the AR(1) the estimator minimizes

/ﬂ Iy = 2¢ cos A + ¢p2)d. (B4)
0
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APPENDIX C: ARFIMA MODEL VALIDATION

Having fitted the ARFIMA process, the next step is to
investigate the residuals obtained either by fractional differ-
encing the data [80] or as prediction errors [50].

(i) If there is no dependence among the residuals, we can
regard them as observations of independent random variables
and there is no further modeling to be done except to estimate
their mean and variance [50].

(i) If there is a significant dependence among the residu-
als, we need to evaluate a more complex stationary time-series
model for the noise that accounts for the dependence, e.g. the
GARCH process [71,72].

We now recall some simple tests for checking the hypoth-
esis that the residuals are observed values of independent
and identically distributed random variables. If they are, we
conclude the model describes the data well.

First, we plot the sample autocorrelation function with its
95% confidence interval. In the Gaussian case about 95% of
the sample autocorrelations should fall between the bounds
+1.96/./n. The same can be done for squares of the observa-
tions to check for a dependence in variance. Next, we apply
the Ljung-Box, and McLeod-Li tests, which are portmanteau
tests [50]. The Ljung-Box test relies on the sample autocorre-
lation function, which, at lag &, has a chi-squared distribution
with & degrees of freedom. The McLeod-Li test is similar but
on the squared data.

APPENDIX D: ARFIMA RESIDUAL DISTRIBUTION

Having found an appropriate ARFIMA model describing
the data, we can identify the distribution underlying the noise
sequence. Information about the distribution is helpful in
determining confidence intervals for the estimated parameters
and also in construction of prediction intervals. We now
investigate the distribution of the residuals.

Following Ref. [81], we first check if the underlying distri-
bution belongs to the domain of attraction of the Gaussian or
non-Gaussian Lévy-stable distributions by examining its rate
of convergence.

(i) If the results suggest the Gaussian domain of attraction,
we consider three typical light-tailed probability distributions

for the residuals of the ARFIMA model, namely Gaussian, ¢
location-scale and NIG.

(i1) If the non-Gaussian Lévy stable domain of attraction
is suggested, we test for Lévy «-stable distributions.

The ¢ location-scale distribution generalizes ordinary Stu-
dent’s ¢ distribution. The probability density function (PDF)
of this distribution is given as

[ — /o) F
—GB(%,%){1+—n } s (D1)

where B is the beta function B(x, y) = fol 71— )Y lde
and n denotes the degrees of freedom parameter. This dis-
tribution is useful for modeling data with heavier tails than
the normal. It approaches the Gaussian distribution as n
approaches infinity and smaller values of n yield heavier tails.

A random variable X is said to have a NIG distribution if it

has a PDF,
s p - Kiloey/ 82 4 (r — )1
VT + (x — p)?
(D2)

The NIG distribution, introduced in Ref. [82], is described by
four parameters («, 8, 8, ), where o stands for tail heavi-
ness, B for asymmetry, § is the scale parameter, and w is
the location. The normalizing constant K, (¢) in (D2) is the
modified Bessel function of the third kind with index A, also
known as the MacDonald function. The NIG distribution is
more flexible than the Gaussian distribution since it allows for
fat-tails and skewness. The Gaussian distribution arises as a
special case by setting 8 = 0, § = o>, and letting & — 0.

In order to check the goodness of fit of the distributions
considered here, we apply the Anderson-Darling test [83],
which is based on the A? statistic:

F(x)P?

N/ ) = FOOV e

F)[1 = F(x)]
where Fy(x) and F(x) denote the empirical and theoretical
distribution functions, respectively. The test is one of the most
powerful statistical tools for detecting most departures from
normality [83].

1
n 2z

filx) =

1)
g (x) = e
T

(D3)

[1] F. Hofling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).

[2] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Phys.
Chem. Chem. Phys. 16, 24128 (2014).

[3] C. Manzo and M. F. Garcia-Parajo, Rep. Prog. Phys. 78, 124601
(2015).

[4] D. Krapf, Curr. Top. Membr. 75, 167 (2015).

[5] M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and
A. Triller, Science 302, 442 (2003).

[6] A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, Nat.
Methods 5, 687 (2008).

[7] S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F.
Hess, E. Betzig, and J. Lippincott-Schwartz, Nat. Methods 5,
155 (2008).

[8] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc.
Natl. Acad. Sci. U.S.A. 108, 6438 (2011).

[9] A. Kusumi, K. G. Suzuki, R. S. Kasai, K. Ritchie, and T. K.
Fujiwara, Trends Biochem. Sci. 36, 604 (2011).

[10] D. Calebiro, F. Rieken, J. Wagner, T. Sungkaworn, U. Zabel, A.
Borzi, E. Cocucci, A. Ziirn, and M. J. Lohse, Proc. Natl. Acad.
Sci. U.S.A. 110, 743 (2013).

[11] A. V. Weigel, M. M. Tamkun, and D. Krapf, Proc. Natl. Acad.
Sci. U.S.A. 110, E4591 (2013).

[12] J. B. Masson, P. Dionne, C. Salvatico, M. Renner, C. G. Specht,
A. Triller, and M. Dahan, Biophys. J. 106, 74 (2014).

[13] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Biophys. J.
87, 3518 (2004).

[14] I. M. Toli¢-Norrelykke, E.-L. Munteanu, G. Thon, L. Odd-
ershede, and K. Berg-Sorensen, Phys. Rev. Lett. 93, 078102
(2004).

[15] 1. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006).

012101-8


https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1126/science.1088525
https://doi.org/10.1126/science.1088525
https://doi.org/10.1126/science.1088525
https://doi.org/10.1126/science.1088525
https://doi.org/10.1038/nmeth.1233
https://doi.org/10.1038/nmeth.1233
https://doi.org/10.1038/nmeth.1233
https://doi.org/10.1038/nmeth.1233
https://doi.org/10.1038/nmeth.1176
https://doi.org/10.1038/nmeth.1176
https://doi.org/10.1038/nmeth.1176
https://doi.org/10.1038/nmeth.1176
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1016/j.tibs.2011.08.001
https://doi.org/10.1016/j.tibs.2011.08.001
https://doi.org/10.1016/j.tibs.2011.08.001
https://doi.org/10.1016/j.tibs.2011.08.001
https://doi.org/10.1073/pnas.1205798110
https://doi.org/10.1073/pnas.1205798110
https://doi.org/10.1073/pnas.1205798110
https://doi.org/10.1073/pnas.1205798110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1073/pnas.1315202110
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1103/PhysRevLett.93.078102
https://doi.org/10.1103/PhysRevLett.93.078102
https://doi.org/10.1103/PhysRevLett.93.078102
https://doi.org/10.1103/PhysRevLett.93.078102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102

IDENTIFYING DIFFUSIVE MOTIONS IN SINGLE- ...

PHYSICAL REVIEW E 99, 012101 (2019)

[16] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel,
K. Berg-Sorensen, L. Oddershede, and R. Metzler, Phys. Rev.
Lett. 106, 048103 (2011).

[17] S. Bdlint, I. V. Vilanova, A. Sandoval Alvarez, and M.
Lakadamyali, Proc. Natl. Acad. Sci. U.S.A. 110, 3375 (2013).

[18] T. Kues, R. Peters, and U. Kubitscheck, Biophys. J. 80, 2954
(2001).

[19] V. Levi, Q. Ruan, M. Plutz, A. S. Belmont, and E. Gratton,
Biophys. J. 89, 4275 (2005).

[20] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai,
and Y. Garini, Phys. Rev. Lett. 103, 018102 (2009).

[21] J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R.
Chapman, S. Basu, T. Maniatis and X. S. Xie, Nat. Methods 10,
421 (2013).

[22] I. Izeddin, V. Récamier, L. Bosanac, I. I. Cissé, L. Boudarene,
C. Dugast-Darzacq, F. Proux, O. Bénichou, R. Voituriez, and O.
Bensaude, eLife 3, e02230 (2014).

[23] D. Krapf, Curr. Opin. Cell Biol. 53, 15 (2018).

[24] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65, 29
(2012).

[25] E. Kepten, L. Bronshtein, and Y. Garini, Phys. Rev. E 87, 052713
(2013).

[26] 1. Bronshtein, E. Kepten, 1. Kanter, S. Berezin, M. Lindner,
Abena B. Redwood, S Mai, S. Gonzalo, R. Foisner, Y. Shav-Tal,
and Y. Garini, Nat. Commun. 6, 8044 (2015).

[27] Y. Zhang and O. K. Dudko, Annu. Rev. Biophys. 45, 117
(2016).

[28] W. Pan, L. Filobelo, N. D. Q. Pham, O. Galkin, V. V. Uzunova,
and Peter G. Vekilov, Phys. Rev. Lett. 102, 058101 (2009).

[29] J. Szymariski and M. Weiss, Phys. Rev. Lett. 103, 038102
(2009).

[30] G. Campagnola, K. Nepal, B. W. Schroder, O. B. Peersen, and
D. Krapf, Sci. Rep. 5, 17721 (2015).

[31] J.-H. Jeon and R. Metzler, Phys. Rev. E 81, 021103 (2010).

[32] A. V. Weigel, S. Ragi, M. L. Reid, E. K. P. Chong, M. M.
Tamkun, and D. Krapf, Phys. Rev. E 85, 041924 (2012).

[33] M. Hellmann, J. Klafter, D. W. Heermann, and M. Weiss, J.
Phys.: Condens. Matter 23, 234113 (2011).

[34] E. Kepten, L. Bronshtein, and Y. Garini, Phys. Rev. E 83, 041919
(2011).

[35] D. ben-Avraham and S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems (Cambridge University Press,
Cambridge, 2000).

[36] S. Sadegh, J. L. Higgins, P. C. Mannion, M. M. Tamkun, and D.
Krapf, Phys. Rev. X 7, 011031 (2017).

[37] K. Burnecki and A. Weron, Phys. Rev. E 82, 021130 (2010).

[38] J. R. M. Hosking, Biometrika 68, 165 (1981).

[39] C. W. J. Granger and R. Joyeux, J. Time Ser. Anal. 1, 15
(1980).

[40] M. Magdziarz and A. Weron, Studia Math. 181, 47 (2007).

[41] K. Burnecki and A. Weron, J. Stat. Mech. (2014) P10036.

[42] K. Burnecki, M. Muszkieta, G. Sikora, and A. Weron,
Europhys. Lett. 98, 10004 (2012).

[43] K. Burnecki, J. Stat. Mech. (2012) P05015.

[44] K. Burnecki, G. Sikora, and A. Weron, Phys. Rev. E 86, 041912
(2012).

[45] K. Burnecki, E. Kepten, Y. Garini, G. Sikora, and A. Weron,
Sci. Rep. 5, 11306 (2015).

[46] G. Sikora, E. Kepten, A. Weron, M. Balcerek, and K. Burnecki,
Phys. Chem. Chem. Phys. 19, 26566 (2017).

[47] N. Crato and P. Rothman, Econom. Lett. 45, 287 (1994).

[48] G. Fouskitakis and S. Fassois, IEEE Trans. Signal Process. 47,
3365 (1999).

[49] L. Gill-Alana, Econ. Bull. 3, 1 (2004).

[50] P. J. Brockwell and R. A. Davis, Introduction to Time Series
and Forecasting (Springer-Verlag, New York, 2002); ITSM
for Windows: A User’s Guide to Time Series Modelling and
Forecasting (Springer-Verlag, New York, 1994).

[51] P. Kokoszka and M. S. Taqqu, Stoch. Proc. Appl. 60, 19
(1995).

[52] J. Beran, Statistics for Long-Memory Processes (Chapman &
Hall, New York, 1994).

[53] A. Stanislavsky, K. Burnecki, M. Magdziarz, A. Weron, and K.
Weron, Astrophys. J. 693, 1877 (2009).

[54] K. Burnecki, J. Klafter, M. Magdziarz, and A. Weron, Phys. A
387, 1077 (2008).

[55] B. Podobnik, P. Ch. Ivanov, K. Biljakovic, D. Horvatic, H. E.
Stanley, and I. Grosse, Phys. Rev. E 72, 026121 (2005).

[56] E. Kepten, A. Weron, G. Sikora, K. Burnecki, and Y. Garini,
PLoS One 10, e0117722 (2015).

[57] K. Jagaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grin-
stein, S. L. Schmid, and G. Danuser, Nat. Methods 5, 695
(2008).

[58] E. J. Akin, L. Solé, B. Johnson, M. E. Beheiry, J. B. Mas-
son, D. Krapf, and M. M. Tamkun, Biophys. J. 111, 1235
(2016).

[59] A. Weron, K. Burnecki, E. J. Akin, L. Sole, M. Balcerek, M. M.
Tamkun, and D. Krapf, Sci. Rep. 7, 5404 (2017).

[60] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.99.012101 for detailed information about
the fitted models.

[61] J. Neyman, Philos. Trans. A Math. Phys. Sci. 236, 333
(1937).

[62] R. Metzler and J. Klafter, Phys. Rep. 339, 77 (2000).

[63] A. Weron and M. Magdziarz, Phys. Rev. Lett. 105, 260603
(2010).

[64] M. Magdziarz and A. Weron, Ann. Phys. 326, 2431 (2011).

[65] A. R. Vega, S. A. Freeman, S. Grinstein, and K. Jagaman,
Biophys. J. 114, 1018 (2018).

[66] V. Briane, Ch. Kervrann, and M. Vimond, Phys. Rev. E 97,
062121 (2018).

[67] Y.-L. Liu et al., Biophys. J. 111, 2214 (2016).

[68] G. Sikora, A. Wylomanska, J. Gajda, L. Solé, E. J. Akin,
M. M. Tamkun, and D. Krapf, Phys. Rev. E 96, 062404
2017)

[69] N. Monnier et al., Nat. Methods 12, 838 (2015).

[70] T. Sungkaworn, M.-L. Jobin, K. Burnecki, A. Weron, M. J.
Lohse, and D. Calebiro, Nature 550, 543 (2017).

[71] R. Baillie, C.-F. Chung, and M. A. Tieslau, J. Appl. Econ. 11,
23 (1996).

[72] S. Ling and W. K. Li, J. Amer. Statist. Assoc. 92, 1184
(1997).

[73] C. Manzo, J. A. Torreno-Pina, P. Massignan, G. J. Lapeyre, Jr.,
M. Lewenstein, and M. F. Garcia Parajo, Phys. Rev. X 5, 011021
(2015).

[74] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov, Phys.
Rev. X 7, 021002 (2017).

[75] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Ran-
dom Processes (Chapman & Hall, New York, 1994).

[76] S. Stoev and M. S. Taqqu, Fractals 12, 95 (2004).

012101-9


https://doi.org/10.1103/PhysRevLett.106.048103
https://doi.org/10.1103/PhysRevLett.106.048103
https://doi.org/10.1103/PhysRevLett.106.048103
https://doi.org/10.1103/PhysRevLett.106.048103
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1073/pnas.1219206110
https://doi.org/10.1016/S0006-3495(01)76261-3
https://doi.org/10.1016/S0006-3495(01)76261-3
https://doi.org/10.1016/S0006-3495(01)76261-3
https://doi.org/10.1016/S0006-3495(01)76261-3
https://doi.org/10.1529/biophysj.105.066670
https://doi.org/10.1529/biophysj.105.066670
https://doi.org/10.1529/biophysj.105.066670
https://doi.org/10.1529/biophysj.105.066670
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1038/nmeth.2411
https://doi.org/10.1038/nmeth.2411
https://doi.org/10.1038/nmeth.2411
https://doi.org/10.1038/nmeth.2411
https://doi.org/10.7554/eLife.02230
https://doi.org/10.7554/eLife.02230
https://doi.org/10.7554/eLife.02230
https://doi.org/10.7554/eLife.02230
https://doi.org/10.1016/j.ceb.2018.04.002
https://doi.org/10.1016/j.ceb.2018.04.002
https://doi.org/10.1016/j.ceb.2018.04.002
https://doi.org/10.1016/j.ceb.2018.04.002
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1103/PhysRevE.87.052713
https://doi.org/10.1103/PhysRevE.87.052713
https://doi.org/10.1103/PhysRevE.87.052713
https://doi.org/10.1103/PhysRevE.87.052713
https://doi.org/10.1038/ncomms9044
https://doi.org/10.1038/ncomms9044
https://doi.org/10.1038/ncomms9044
https://doi.org/10.1038/ncomms9044
https://doi.org/10.1146/annurev-biophys-062215-010925
https://doi.org/10.1146/annurev-biophys-062215-010925
https://doi.org/10.1146/annurev-biophys-062215-010925
https://doi.org/10.1146/annurev-biophys-062215-010925
https://doi.org/10.1103/PhysRevLett.102.058101
https://doi.org/10.1103/PhysRevLett.102.058101
https://doi.org/10.1103/PhysRevLett.102.058101
https://doi.org/10.1103/PhysRevLett.102.058101
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1038/srep17721
https://doi.org/10.1038/srep17721
https://doi.org/10.1038/srep17721
https://doi.org/10.1038/srep17721
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.85.041924
https://doi.org/10.1103/PhysRevE.85.041924
https://doi.org/10.1103/PhysRevE.85.041924
https://doi.org/10.1103/PhysRevE.85.041924
https://doi.org/10.1088/0953-8984/23/23/234113
https://doi.org/10.1088/0953-8984/23/23/234113
https://doi.org/10.1088/0953-8984/23/23/234113
https://doi.org/10.1088/0953-8984/23/23/234113
https://doi.org/10.1103/PhysRevE.83.041919
https://doi.org/10.1103/PhysRevE.83.041919
https://doi.org/10.1103/PhysRevE.83.041919
https://doi.org/10.1103/PhysRevE.83.041919
https://doi.org/10.1103/PhysRevX.7.011031
https://doi.org/10.1103/PhysRevX.7.011031
https://doi.org/10.1103/PhysRevX.7.011031
https://doi.org/10.1103/PhysRevX.7.011031
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.4064/sm181-1-4
https://doi.org/10.4064/sm181-1-4
https://doi.org/10.4064/sm181-1-4
https://doi.org/10.4064/sm181-1-4
https://doi.org/10.1088/1742-5468/2014/10/P10036
https://doi.org/10.1088/1742-5468/2014/10/P10036
https://doi.org/10.1088/1742-5468/2014/10/P10036
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1088/1742-5468/2012/05/P05015
https://doi.org/10.1088/1742-5468/2012/05/P05015
https://doi.org/10.1088/1742-5468/2012/05/P05015
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1038/srep11306
https://doi.org/10.1038/srep11306
https://doi.org/10.1038/srep11306
https://doi.org/10.1038/srep11306
https://doi.org/10.1039/C7CP04464J
https://doi.org/10.1039/C7CP04464J
https://doi.org/10.1039/C7CP04464J
https://doi.org/10.1039/C7CP04464J
https://doi.org/10.1016/0165-1765(94)90025-6
https://doi.org/10.1016/0165-1765(94)90025-6
https://doi.org/10.1016/0165-1765(94)90025-6
https://doi.org/10.1016/0165-1765(94)90025-6
https://doi.org/10.1109/78.806080
https://doi.org/10.1109/78.806080
https://doi.org/10.1109/78.806080
https://doi.org/10.1109/78.806080
https://doi.org/10.1016/0304-4149(95)00034-8
https://doi.org/10.1016/0304-4149(95)00034-8
https://doi.org/10.1016/0304-4149(95)00034-8
https://doi.org/10.1016/0304-4149(95)00034-8
https://doi.org/10.1088/0004-637X/693/2/1877
https://doi.org/10.1088/0004-637X/693/2/1877
https://doi.org/10.1088/0004-637X/693/2/1877
https://doi.org/10.1088/0004-637X/693/2/1877
https://doi.org/10.1016/j.physa.2007.10.024
https://doi.org/10.1016/j.physa.2007.10.024
https://doi.org/10.1016/j.physa.2007.10.024
https://doi.org/10.1016/j.physa.2007.10.024
https://doi.org/10.1103/PhysRevE.72.026121
https://doi.org/10.1103/PhysRevE.72.026121
https://doi.org/10.1103/PhysRevE.72.026121
https://doi.org/10.1103/PhysRevE.72.026121
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1038/nmeth.1237
https://doi.org/10.1038/nmeth.1237
https://doi.org/10.1038/nmeth.1237
https://doi.org/10.1038/nmeth.1237
https://doi.org/10.1016/j.bpj.2016.08.016
https://doi.org/10.1016/j.bpj.2016.08.016
https://doi.org/10.1016/j.bpj.2016.08.016
https://doi.org/10.1016/j.bpj.2016.08.016
https://doi.org/10.1038/s41598-017-05911-y
https://doi.org/10.1038/s41598-017-05911-y
https://doi.org/10.1038/s41598-017-05911-y
https://doi.org/10.1038/s41598-017-05911-y
http://link.aps.org/supplemental/10.1103/PhysRevE.99.012101
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1103/PhysRevLett.105.260603
https://doi.org/10.1103/PhysRevLett.105.260603
https://doi.org/10.1103/PhysRevLett.105.260603
https://doi.org/10.1103/PhysRevLett.105.260603
https://doi.org/10.1016/j.aop.2011.04.015
https://doi.org/10.1016/j.aop.2011.04.015
https://doi.org/10.1016/j.aop.2011.04.015
https://doi.org/10.1016/j.aop.2011.04.015
https://doi.org/10.1016/j.bpj.2018.01.012
https://doi.org/10.1016/j.bpj.2018.01.012
https://doi.org/10.1016/j.bpj.2018.01.012
https://doi.org/10.1016/j.bpj.2018.01.012
https://doi.org/10.1103/PhysRevE.97.062121
https://doi.org/10.1103/PhysRevE.97.062121
https://doi.org/10.1103/PhysRevE.97.062121
https://doi.org/10.1103/PhysRevE.97.062121
https://doi.org/10.1016/j.bpj.2016.09.041
https://doi.org/10.1016/j.bpj.2016.09.041
https://doi.org/10.1016/j.bpj.2016.09.041
https://doi.org/10.1016/j.bpj.2016.09.041
https://doi.org/10.1103/PhysRevE.96.062404
https://doi.org/10.1103/PhysRevE.96.062404
https://doi.org/10.1103/PhysRevE.96.062404
https://doi.org/10.1103/PhysRevE.96.062404
https://doi.org/10.1038/nmeth.3483
https://doi.org/10.1038/nmeth.3483
https://doi.org/10.1038/nmeth.3483
https://doi.org/10.1038/nmeth.3483
https://doi.org/10.1038/nature24264
https://doi.org/10.1038/nature24264
https://doi.org/10.1038/nature24264
https://doi.org/10.1038/nature24264
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1<23::AID-JAE374>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1<23::AID-JAE374>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1<23::AID-JAE374>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1<23::AID-JAE374>3.0.CO;2-M
https://doi.org/10.1080/01621459.1997.10474076
https://doi.org/10.1080/01621459.1997.10474076
https://doi.org/10.1080/01621459.1997.10474076
https://doi.org/10.1080/01621459.1997.10474076
https://doi.org/10.1103/PhysRevX.5.011021
https://doi.org/10.1103/PhysRevX.5.011021
https://doi.org/10.1103/PhysRevX.5.011021
https://doi.org/10.1103/PhysRevX.5.011021
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1142/S0218348X04002379
https://doi.org/10.1142/S0218348X04002379
https://doi.org/10.1142/S0218348X04002379
https://doi.org/10.1142/S0218348X04002379

BURNECKI, SIKORA, WERON, TAMKUN, AND KRAPF

PHYSICAL REVIEW E 99, 012101 (2019)

[77] A. Janicki and A. Weron, A Simulation and Chaotic Behaviour
of a=Stable Stochastic Processes (Marcel Dekker Inc., New
York, 1994).

[78] V. Pipiras and M. S. Taqqu, Long-Range Dependence and Self-
Similarity (Cambridge University Press, Cambridge, 2017).

[79] K. Burnecki and G. Sikora, IEEE Trans. Signal Process. 61,
2825 (2013).

[80] K. Burnecki and G. Sikora, Chaos Solitons Fractals 102, 456
2017).

[81] K. Burnecki, A. Wylomanska, and A. Chechkin, PLoS One 10,
e0145604 (2015).

[82] O. E. Barndorff-Nielsen, Normal Inverse Gaussian Processes
and the Modelling of Stock Returns (Research Report 300.
Department of Theoretical Statistics, University of Aarhus,
1995).

[83]1 R. B. D’Agostino and M. A. Stephens, Goodness-
of-Fit  Techniques  (Marcel = Dekker, New  York,
1986).

012101-10


https://doi.org/10.1109/TSP.2013.2253773
https://doi.org/10.1109/TSP.2013.2253773
https://doi.org/10.1109/TSP.2013.2253773
https://doi.org/10.1109/TSP.2013.2253773
https://doi.org/10.1016/j.chaos.2017.03.059
https://doi.org/10.1016/j.chaos.2017.03.059
https://doi.org/10.1016/j.chaos.2017.03.059
https://doi.org/10.1016/j.chaos.2017.03.059
https://doi.org/10.1371/journal.pone.0145604
https://doi.org/10.1371/journal.pone.0145604
https://doi.org/10.1371/journal.pone.0145604
https://doi.org/10.1371/journal.pone.0145604



