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Pattern recognition with neuronal avalanche dynamics
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Pattern recognition is a fundamental neuronal process which enables a cortical system to interpret visual

stimuli. How the brain learns to recognize patterns is, however, an unsolved problem. The frequently employed
method of back propagation excels at this task but has been found to be unbiological in many aspects. In this
Rapid Communication we achieve pattern recognition tasks in a biologically, fully consistent framework. We
consider a neuronal network exhibiting avalanche dynamics, as observed experimentally, and implement negative
feedback signals. These are chemical signals, such as dopamine, which mediate synaptic plasticity and sculpt
the network to achieve certain tasks. The system is able to distinguish horizontal and vertical lines with high
accuracy, as well as to perform well at the more complicated task of handwritten digit recognition. Resulting
from the learning mechanism, spatially separate activity regions emerge, as observed in the primary visual cortex
using functional magnetic resonance imaging techniques. The results therefore suggest that negative feedback
signals offer an explanation for the emergence of distinct activity areas in the visual cortex.
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Learning in neural networks occurs through the modifi-
cation of the synaptic structure of the neuronal system [1,2]
and many different mechanisms have been explored in the
attempt to explain it. One of the most successful methods is
the back-propagation algorithm [3-5] which excels at pattern
recognition tasks [4]. It has, however, been stressed that back
propagation does not occur in real biological systems [6]. A
prominent issue is the weight transport problem [7]: Each
neuron in the back-propagation algorithm requires the knowl-
edge of the full downstream path through the network to
precisely calculate the necessary synaptic changes to mini-
mize the error [8]. Other nonbiological ingredients in back
propagation include the fact that the computation of error gra-
dients would need to be precisely clocked between forward-
and backward-propagation phases [9]. How biological neural
networks modify the synaptic efficacies to achieve learning
can therefore not be explained by this algorithm [6]. Back
propagation has been modified to avoid some of the unbi-
ological aspects [9]. Lillicrap et al. used random synaptic
feedback weights which circumvents the weight transport
problem [8] and Brand et al. developed a mechanism to mod-
ify synaptic strengths without using a feedback network [10].
Other approaches use, for example, the output of a bio-
logically inspired model to train a linear classifier using
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back propagation [11]. Another promising approach involves
liquid state machines (LSMs) but some of the aspects of
LSMs are difficult to motivate biologically [12—15]. How the
brain achieves pattern recognition remains, therefore, an open
problem.

Recent experimental and numerical results have sug-
gested that spontaneous brain activity consists of neuronal
avalanches with critical features [16—27]. These are bursts
of firing neurons whose size and duration distribution follow
a power law, indicating that avalanches do not exhibit a
characteristic size. This is the fingerprint of self-organized
criticality (SOC) [28] and models inspired in SOC have
accurately reproduced the experimentally observed behavior
of spontaneous brain activity [29-34]. Furthermore, these
models are able to learn simple boolean rules through negative
feedback signals [35-37]. In contrast to the back-propagation
method, negative feedback signals provide a biologically
plausible mechanism for learning [38] which is based on the
release of specific chemicals, as, for example, a monoamine
such as dopamine, which has been found to mediate synaptic
plasticity [39—41]. These chemicals are released by specific
neurons and diffuse into extracellular space [42]. In this
Rapid Communication we explore the capabilities of negative
feedback signals to tackle pattern recognition in a neuronal
model which exhibits avalanche dynamics and incorpo-
rates the main neurobiological mechanisms [43] such as in-
hibitory neurons [44], synaptic plasticity [45], synaptic fatigue
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[46-50], and the neuronal refractory time [S1]. The system
identifies patterns by exhibiting increased neuronal activity at
a specific output region. In case the answer is wrong, chemical
signals are released which mediate plasticity and modify the
synaptic structure. Over time the plasticity mechanism sculpts
the network until it performs the tasks correctly. As soon as the
system provides the right response, we investigate the cortical
dynamics arising from the input of the specific patterns. From
experiments it is known that the primary visual cortex V1
contains specific areas, called orientational columns [52-54].
These are organized regions of neurons that respond to vi-
sual line stimuli of different orientations. These orientational
columns are subject to synaptic plasticity as shown in visual
deprivation experiments [55]. Our results show how such
pattern-specific activity regions emerge from the local release
of the chemical negative feedback signals, thus providing a
possible explanation for the formation of these columns.

Consider a network of N neurons, each characterized by a
membrane potential v;. Neurons are connected via synapses
with weight w;; and a fraction p;, of them are inhibitory.
As soon as at time ¢ the potential at some neuron reaches
the threshold v., the neuron fires, triggering the release of a
fraction u of the available neurotransmitter. It has been shown
that the readily releasable pool of neurotransmitter is about
5% of the total available transmitter [49,50], and therefore
we set u = 0.05. The potential of the postsynaptic neurons j
then changes proportionally to the amount of neurotransmitter
released according to

vi(t+ 1) =v;(t) £ viuw;;(t), (1

where the 4+ and — stand for excitatory and inhibitory presy-
naptic neurons, respectively. After firing, the synaptic weight
w;; will have less neurotransmitter available according to

wij(t + 1) = wi; (£)(1 — w), 2

and the neuron enters a refractory state for one time step,
during which it will not generate further action potentials. If
the change in potential in the postsynaptic neurons is sufficient
to surpass the threshold, an avalanche of neuronal activity
propagates through the network. It stops as soon as all neurons
are below threshold and an external stimulation is needed to
trigger further activity. During an avalanche the synapses lose
some neurotransmitter and a recovery is needed to sustain net-
work activity. In Ref. [43] the synapses recover continuously
as randomly stimulated avalanches propagate throughout the
network. In the present work the stimulation always occurs at
the input neurons which would quickly deplete their outgoing
synapses of the neurotransmitter. One option to recover these
synapses is to simulate many random avalanches between two
input patterns to allow the system’s recovery. This is very
demanding from the computational point of view, therefore
we consider the time between two external stimuli sufficient
for the synapses to recover to the original value W;;. In this
way the synaptic strength is represented by two variables, the
long-term synaptic strength W;; and the short-term synaptic
strength w;;.

The network (Fig. 1) consists of an input layer arranged on
a grid, an intermediate network, and output regions. In pattern
recognition different patterns need to be classified into classes
where many similar patterns belong to each class. For each

FIG. 1. A network of 8000 neurons with ten output regions
(green) and the input grid (black). The intermediate scale-free net-
work has a color map indicating (r;)c — (r;), the localized activity
for an input class C in the MNIST task. (r;)¢ is the average activity
for the class C =3 and (r;) is the overall average activity of the
network. The parameters used are p;, = 0.3, Np = 50, kpin = 10.

class an output region of Ny neurons is placed randomly, in
such a way that they do not overlap, on the side of the network
opposite to the input grid. The neurons in the intermediate
network are randomly placed in a cuboid whose dimensions
are fixed to zg in the z direction and the x and y directions
scale depending on the number of neurons N in the network
to keep the density constant. Maintaining a constant height z
for various network sizes N ensures that the chemical distance
between input and output does not increase with N, affecting
the performance, as has been found in the learning of boolean
rules [35]. The numerical value for z( is not important as all
other distance-dependent quantities will be defined relative to
zo. In order to choose the network structure, we notice that
functional magnetic resonance imaging (fMRI) measurements
have reported that the functional network has scale-free prop-
erties. Namely, the distribution of outgoing degrees k follows
a power law P(k) oc k=2 [56]. The intermediate network
is therefore scale free, i.e., the neurons have an outdegree
distribution following a power-law decay in the range ko, €
[kmin» kmax 1. We will vary kn, and set kp,x = 100. The visual
cortex has mostly feed-forward connections, i.e., it does not
contain cycles [57,58], and we therefore use forward-directed
synapses for the entire system, which are connected according
to a distance-dependent probability P (r) oc e™/"0 with ry =
0.3z [37].

Neuronal bursts of activity are triggered by stimulating
the input neurons according to various patterns. This activity
percolates towards the output regions and once the activity
cedes, the system’s response is evaluated according to the
action potentials which occurred in the output regions. If the
most active output region, i.e., the output region with the most
firing events during the neuronal propagation, corresponds
to the correct class, we consider the response as correct and
no modification of the synaptic structure occurs. Conversely,
if the system made a mistake, all output neurons release
the “learning signal.” The output neurons which should have
remained silent, but which incorrectly fired, release a negative
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feedback signal, weakening the active synapses in the net-
work, reducing their future activity. The output neurons which
should have been active but did not fire release a positive
signal which strengthens the active connections to increase
activity. The signal diffuses through the extracellular space
and reaches the synapses in the network. Those synapses
which were active during the avalanche will modify according
to the error signals received,

Wi — Wy £ ae,f(djn), (3)

where « is a parameter which determines the strength of
plastic adaptation. Inhibitory and excitatory synapses due to
their inverse effect on postsynaptic neurons need to modify
their weights differently, according to homeostatic plastic-
ity [59], + for excitatory and — for inhibitory synapses.
The value for e, is either {—1, 0, 1}, depending on whether
the neuron incorrectly fired (—1), behaved correctly (0), or
incorrectly remained silent (1). The function f(d;,) describes
the dependence of the learning signal strength on the distance
d;, between the synaptic button j and the output neuron n
releasing the error signal e,. For the function f(d;,) we use
fldj,) = e~4n/% with dy = 0.3z9. The dependence of the
learning performance on dy has been studied in Ref. [37],
where it is shown that the learning performance is optimized
when the learning length dj is of the order of the system
size. According to Eq. (3), the negative feedback learning
mechanism modifies the synaptic strengths solely on the basis
of local information, the neuronal activity, and the chemical
error signals. In contrast to back propagation, the neurons
therefore do not require any global information about down-
stream paths, nor their position within the network. This
rule implies that the concentration of messenger molecules
implementing negative feedback, and therefore the strength of
the synaptic modification, decays exponentially over distance,
i.e., synapses close to the output neurons are affected more
strongly than distant synapses. We also explored other types
of decay functions, such as power laws or Gaussian functions,
confirming that the analytic form of f(d;,) does not influence
the results significantly.

When a pattern is presented to the network for the first
time, it usually generates incorrect classifications and feed-
back signals are released by the output neurons. These adapt
the synaptic strengths and over time the learning mechanism
sculpts the structure of the network. We define the learning
performance as P = Rcorrect/ Piotal, Where nyg is the total
number of input patterns presented to the network and 7coprect
is the number of times the system gives the correct response.
To evaluate this performance all patterns of the given task
are presented to the network in a random sequence. We first
investigate how the network learns simple patterns such as
horizontal and vertical lines. The patterns used are of size
20x20 with lines of width 3 as shown in Fig. 2. In this case
the inputs need to be classified into two classes. To ensure
that the task is nonlinearly separable, we add random shifts
to these patterns [5], which leads to a total of six different
shifted patterns for each class. The task can be made more
challenging by adding additional classes such as zigzag lines
or a checkerboard. Figure 2 shows how the performance of
the network changes when more classes are added to the
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FIG. 2. Performance vs the number of patterns presented to the
network. The used pattern classes are shown in the bottom right
corner. First, only the horizontal and vertical lines are presented
(N¢c = 2). Other classes are then added to the task to increase

the complexity. The parameters used are N = 8000, p;, = 0.3,
No =50, kyin = 10.

classification task. The number of trials the networks needs
to classify the patterns grows exponentially with the number
of classes N¢[60]. Our patterns have significant overlap with
each other, yet the system can learn to distinguish them with
100% accuracy. We therefore consider next more complicated
tasks such as handwritten digit recognition using the Modified
National Institute of Standards and Technology (MNIST)
database [61] which contains 60000 images of handwritten
digits for training the network and 10000 images for testing
the performance. The network needs to classify the input
patterns into ten different classes and therefore ten output
regions are needed. Figure 3 shows how the performance
changes as a function of the number of training patterns.
The performance initially increases rapidly and saturates at
around 85%. The maximum performance obtained depends
on various parameters which define the network structure [60]
and a significant dependency is found on the fraction of
inhibitory neurons pj,. At low fractions of inhibitory neurons
pin = 0 the performance is poor and optimal performance is
found in the range of py, = 20%—-40%, close to the value
found in mammalian brains, confirming previous results on
boolean multitask learning [36]. The presented learning mech-
anism is not intended to compete with back-propagation im-
plementations which with various techniques, such as data
preprocessing techniques, different network topologies (con-
volutional networks), elastic distortions, and more, achieve
performances greater than 99% [62—64]. Rather, it provides
a learning mechanism which is founded on biological consid-
erations applied to a biological neural network model.
Experimental studies agree that the distribution of neuronal
avalanches occurring during spontaneous activity in the rest-
ing state exhibits universal critical properties. The avalanche
size s can be obtained during pattern recognition by measuring
the number of active neurons, as a response to an input. For
this we present the 10 000 digits of the test set (N¢ = 10) to
the system and measure the avalanche size distribution P(s)
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FIG. 3. Performance on the MNIST data set vs the number of
handwritten digits (patterns) presented to the network. As the per-
formance increases, the activity vectors (r;)c become increasingly
different from each other, leading to the decrease in the average
cosine similarity S.os. The parameters used are N = 8000, p;, = 0.3,
No =50, kpin = 10, Nc = 10. The values presented are an average
over 100 Conﬁgurations The performance approaches the saturation
level Py ~0.85 as Pg — N,%7. The cosine similarity decays
exponentially to the saturation level Sy ~ 0.68 as Sg + ye Ny
with y = 0.23 and § = 5.5x1073. Some example patterns from the
MNIST database are shown below.

shown in Fig. 4. It should be noted that the response to a
pattern generates stimulated activity, not spontaneous activity,
and therefore no power-law distribution is expected. Rather,
P (s) is normally distributed and changes during the evolution
of the synaptic weights. At the beginning, when the system
gives mostly incorrect responses, the distribution is broader
and has its maximum at larger avalanches. An avalanche of
size s represents a configuration where s neurons are active
and N — s are inactive. In the framework of spin models, this
avalanche might be described as a configuration with s up
spins and N — s down spins. The probability P(s) to obtain
an avalanche of size s, regardless of the individual firing
neurons, might be identified as the probability to observe such
a configuration. We can therefore define a Shannon entropy
as H=—) _P(s)log[P(s)] and monitor the evolution of
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FIG. 4. (a) As the performance increases, the entropy H =
— Y, P(s)log[P(s)] decreases. (b) The normalized avalanche size
distribution P(s) narrows as the system starts to recognize the
patterns.
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FIG. 5. The network after learning to recognize MNIST patterns.
The colors of each neuron indicate for which digit C it has the
highest activity (r;)c. Segregated activity regions emerge. The output
neurons are shown in black. The parameters used are N = 8000,
Pin = 0.3, No = 50, kpyin = 10, N¢ = 10.

H as the system performs the task. In Fig. 4 we see that as
the system learns, the entropy decreases, confirming that the
response of the system becomes more and more predictable.

Since in real brains different stimuli lead to different
regions being active, we investigate the activity patterns in
the network after learning. Let r be the firing rate of each
neuron i for a given input pattern p. We can then define the
average firing rate of each neuron (r;) = 1/1) » r} for all
input patterns I of all classes in the test set (/ = 10000) and
the average firing rate (r;)c = 1/Ic >_ peC r! for each neuron
for all the input patterns /¢ of a given class C. The (r;)¢ are
vectors where the ith component represents the firing rate of
the ith neuron and their differences can be quantified by calcu-
lating the average cosine similarity S.os, defined in Eq. (1) in
the Supplemental Material [60]. Figure 3 shows that the cosine
similarity of the activity vectors decreases as the performance
increases, implying that the firing rates for the various classes
are initially very similar and then separate into different
activity areas. Figure 1 shows one of the activity regions of
a configuration by color coding (r;)3 — (r;), illustrating the
localization of neuronal activity due to class 3. If we ask for
which input class each neuron has the highest response, i.e.,
for which C it has the largest (r;) ¢, we can assign each neuron
to a class. Figure 5 shows that as the system learns to rec-
ognize different patterns, segregated activity regions emerge
for different pattern classes. Pattern recognition is performed
in the visual cortex. Visual stimulus experiments have shown
that distinct areas in the primary visual cortex V1 respond to
different patterns [51]. For example, a horizontal line stimulus
will trigger activity in a different cortical column than a
vertical line stimulus [52,53]. Our results show that such
activity areas emerge naturally from an initially untrained
neural network through the mechanism of negative feedback
signals.

Pattern recognition has received wide attention in com-
puter and information science, leading to the development of
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efficient algorithms such as the back-propagation method [4].
These algorithms excel at recognition tasks but require each
synapse to know its position within the network and the full
downstream path to the outputs. This is generally considered
biologically implausible [6] and another mechanism based on
neurological ingredients is needed to explain pattern recogni-
tion in the brain. We have shown that negative feedback sig-
nals provide such a mechanism, motivated by the experimen-
tal observation that chemical signals such as dopamine [65]
mediate synaptic plasticity [39-41]. In this mechanism
synapses are only influenced by locally available variables
and synaptic adaptation depends solely on the neuronal ac-
tivity and chemical signals which diffuse through extracellular

space. The presented results focus on the scenario that only the
output neurons release chemical error signals. Future research
could investigate the addition of dopamine-releasing neurons
within the main network, which would allow for a more
detailed tuning of the structure and possibly a performance
increase. Nevertheless, the network learns to recognize line
patterns with high accuracy and performs reasonably well
on the MNIST database. The interesting observation of the
spatial segregation of activity further supports that learning in
biological systems occurs through negative feedback signals.

H.J.H. acknowledges funding from the Brazilian Founda-
tions CAPES and FUNCAP.
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