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Modularity maximization using greedy algorithms continues to be a popular approach toward community
detection in graphs, even after various better forming algorithms have been proposed. Apart from its clear
mechanism and ease of implementation, this approach is persistently popular because, presumably, its risk
of algorithmic failure is not well understood. This Rapid Communication provides insight into this issue
by estimating the algorithmic performance limit of the stochastic block model inference using modularity
maximization. This is achieved by counting the number of metastable states under a local update rule. Our
results offer a quantitative insight into the level of sparsity at which a greedy algorithm typically fails.
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Introduction. Since the proposal of the modularity func-
tion [1], a number of its maximization algorithms and related
objective functions have been put forward, and some of them
have been widely applied to the discovery of community
structures in real-world networks [2]. Modularity maximiza-
tion is also known to be equivalent to the maximum likelihood
method of a statistical model [3,4]. The corresponding greedy
algorithms, such as the Louvain algorithm [5], are commonly
used for optimization. However, greedy algorithms have often
been employed as baselines in benchmark tests and various
better performing algorithms have been proposed. Moreover,
from a Bayesian viewpoint [6,7], modularity maximization is
known to be suboptimal when a graph is generated from an
assumed statistical model, which implies the risk of overfit-
ting [8]. Nevertheless, greedy algorithms remain very popular
partly because, presumably, we do not know in which cases
we should not expect greedy algorithms to work.

We conducted a theoretical performance analysis to pro-
vide insight into this issue. In this Rapid Communication, we
considered a random graph model with a planted modular
structure, called the stochastic block model [9–11], which is
a canonical model for a theoretical investigation with regard
to community detection. We derive the limit of the model
parameters beyond the point at which a greedy algorithm
completely loses the ability to identify the planted modu-
lar structure. Such a limit is termed as the algorithmic de-
tectability limit [12]. The corresponding limits of other algo-
rithms, e.g., spectral clusterings [13–17], and the expectation-
maximization algorithm [18,19] have also been investigated.
In contrast, the limit where all algorithms fail is known as
the information-theoretic limit [20–23]. Such a limit exists
because, when a planted modular structure is too weak, the
corresponding graph instances can also be typically generated
by a uniform random graph model.

Note that, in this Rapid Communication, the structure
specified by the planted group assignments is the only
community structure defined. Although we consider algo-

rithms that aim to maximize modularity, we do not regard
the group assignments that achieve the true maximum as the
“real” community structure. (See the Supplemental Material
for further discussions [24].)

Benchmark tests are an experimental approach toward
investigating the detectability limits [25–28]. Although such
tests have the advantage of being conducted in a straightfor-
ward manner, a definite conclusion can rarely be obtained. For
example, it is usually unclear whether a better implementation
of the adopted algorithm can significantly improve perfor-
mance, or if there is no hope of improvement because the
difficulty is inherent in the formulation. By contrast, although
theoretical investigations [29,30] with regard to the detectabil-
ity limit are available only for limited situations, they enable
a more concrete understanding regarding the feasibilities and
limitations of community detection.

In this study, we considered sparse undirected graphs with-
out self-loops or multiedges. With regard to a planted modular
structure, we focused on the community structure, i.e., the
assortative structures of two groups. We define a graph as
G = (V,E), where V and E are the sets of vertices and edges,
respectively. We let N = |V | and the average degree be c.
We denote σ ∈ {1, 2} as a group label and σi as the group
assignment of vertex i. We also denote the set of vertices in
group σ as Vσ , i.e., ∪σVσ = V and γσ ≡ |Vσ |/N .

Stochastic block model. We denote the adjacency matrix of
a graph as A, where Aij = 1 when vertices i and j are con-
nected, and Aij = 0 otherwise. The stochastic block model
defines the considered probability distribution of the graph
configurations, i.e., the graph ensemble. In this model, the
vertices of a graph have planted group assignments, and the
edges are generated independently and randomly on the basis
of these assignments. For example, the connection probability
of the pair of vertices i and j being connected is given by
Pij (Aij = 1) = ρσiσj

. Note that, for the graphs to be sparse,
we have ρσσ ′ = O(N−1). In community detection, A is the
only input and the objective is to infer the hidden group

2470-0045/2019/99(1)/010301(5) 010301-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.010301&domain=pdf&date_stamp=2019-01-17
https://doi.org/10.1103/PhysRevE.99.010301


TATSURO KAWAMOTO AND YOSHIYUKI KABASHIMA PHYSICAL REVIEW E 99, 010301(R) (2019)

assignments. A particular case wherein the planted group
sizes are equal and the connection probability is parametrized
as ρ11 = ρ22 = ρin and ρ12 = ρ21 = ρout is often referred to
as the symmetric stochastic block model. In this case, the
strength of the community structure can be parametrized as
ε ≡ ρout/ρin.

Modularity maximization and its detectability. The objec-
tive function of modularity for bipartition can be expressed as

Q(s) =
∑
ij

siBij sj = const +
∑

i,j (i �=j )

siBij sj , (1)

where si ∈ {−1,+1} is a spin variable representing the group
assignment of vertex i ∈ V , and matrix B is defined as

Bij ≡ Aij − αcicj , (2)

where ci is the degree of vertex i defined as ci = ∑
j Aij ,

α is an O(N−1) scaling parameter given as the input, and
α is called the resolution parameter. For a given adjacency
matrix A, the set of most plausible group assignments s =
{s1, . . . , sN } is obtained as that maximizing Eq. (1).

Here, we consider the update of group assignments s by
a single spin flip, i.e., we may flip only one component si

at each update. Note that the global maximum of Q(s) may
not be achieved by a single spin flip, owing to the existence
of metastable states. We define the metastable state as a spin
configuration s such that Q(s) does not increase by any single
spin flip.

An intuitive understanding of the algorithmic detectabil-
ity limit is presented below. When Eq. (1) does not have
metastable states, i.e., local maxima and saddle points, a
local update algorithm is able to find its global maximum
by starting from an arbitrary random initial state of group
assignments. Even when metastable states exist, unless their
number is sufficiently large, a local update algorithm can still
achieve the global maximum of Eq. (1) by repeating the algo-
rithm with various initial states. However, when the number
of metastable states grows exponentially with respect to N ,
it is practically impossible to achieve the global maximum,
because a repeated search from an extremely large number of
initial states is required. Therefore, the detectability limit can
be evaluated by counting the number of metastable states. To
illustrate such a situation, the modularity landscape near the
global optimum for the small stochastic block model is shown
in Fig. 1 for ε = 0.04 and ε = 0.4, respectively. As the planted
modular structure becomes less clear (larger ε), the landscape
becomes more ragged. In fact, in many real-world networks,
modularity landscapes are often very ragged near their global
maximum [32].

Number of metastable states. The variation of the objective
function �Q(si ) caused by the spin flip with respect to si

reads as

�Q(si ) = (−si )
∑
j ( �=i)

Bij sj − si

∑
j ( �=i)

Bij sj

= −2si

∑
j ( �=i)

Bij sj . (3)

Thus, the metastable state is the spin configuration s such
that �Q(si ) � 0 for all i. In other words, it is either si =
sgn(

∑
j ( �=i) Bij sj ) or

∑
j ( �=i) Bij sj = 0. This condition can

FIG. 1. Modularity landscapes and network figures for instances
of the small stochastic block model with equal group sizes (N = 20).
The average degrees and strengths of the modular structures are
(c = 9.6, ε = 0.04) (top) and (c = 9.2, ε = 0.4) (bottom), respec-
tively. The landscapes were drawn using the code of the curvilinear
component analysis distributed by Ref. [31] (see Ref. [32] for a
detailed description of the visualization).

also be expressed such that there exists a non-negative value
of λi for each i ∈ V such that

λi = si

∑
j ( �=i)

Bij sj . (4)

Based on the observation expressed in Eq. (4), the number
of metastable states Nm can be counted as follows [33],

Nm =
∑
{si }

∏
i

∫ ∞

0
dλi δ

⎛
⎝λi − si

∑
j ( �=i)

Bij sj

⎞
⎠, (5)

where δ(·) is Dirac’s delta function.
We are interested in the typical number of metastable states

within the graph ensemble, rather than a single graph instance.
To this end, we estimate the configuration average of graphs
generated by the stochastic block model in the limit of N →
∞, which we denote as [Nm]A. However, its exact calculation
is technically difficult. Therefore, we adopt the rotating-wave
approximation [34] or low-frequency approximation for the
contribution from the delta functions in Eq. (5). By conducting
the calculation described in the Supplemental Material [24],
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we arrive at the following expression,

[Nm]A ∼ eNf . (6)

Here, instead of the result obtained for a general case (found
in the Supplemental Material [24]), we show a compact
expression obtained by considering the symmetric stochastic
block model and adopting an approximation such that the
graph is regular, i.e., the degree is constant for all vertices.
Additionally, we let the resolution parameter be αN = 1/c,
which is often employed as the “standard value.” In such a
case, the following relationship holds,

f = − 1

2c
Ê2

1 − 1

c

1 + ε

1 − ε
G̃1F̃1 + log Z1. (7)

The subscript 1 indicates that the variables are values for σ =
1. Because of symmetry, the magnitudes of the variables for
σ = 2 are equal to those of σ = 1. In Eq. (7), Zσ is a function
of Êσ , F̃σ , and G̃σ ,

Zσ =
∑

s

esF̃σ �

(
1√
c

(Êσ + sG̃σ )

)
, (8)

where �(·) is the standard normal cumulative distribution
function,

�(y) ≡
∫ y

−∞

dx√
2π

e− 1
2 x2

. (9)

Therefore, the number of metastable states can be evaluated if
Ê1, F̃1, and G̃1 are determined. According to the saddle-point
conditions, these variables are evaluated by the following self-
consistent equations,

Ê1 = 2c

Z1

√
2πc

exp

[
− 1

2c

(
Ê2

1 + G̃2
1

)]
cosh(F̃1 − c−1Ê1G̃1),

(10)

F̃1 = G
Z1

√
2πc

exp

[
− 1

2c

(
Ê2

1 + G̃2
1

)]
sinh(F̃1 − c−1Ê1G̃1),

(11)

G̃1 = G
2Z1

∑
s

s esF̃1�

(
1√
c

(Ê1 + sG̃1)

)
, (12)

where G ≡ 2c(1 − ε)/(1 + ε) = (ρin − ρout )N .
Detectability limit of a simple greedy algorithm. From

Eq. (7), it is evident that the graphs have an exponentially
large number of metastable states as long as f > 0. Other-
wise, they only have a subexponential number of metastable
states. Thus, the detectability limit is located at the value of ε∗
where

c log Z1 = 1

2
Ê2

1 + 1 + ε∗

1 − ε∗ G̃1F̃1 (13)

is satisfied.
The accuracy of our estimate is shown in Fig. 2. Here, we

consider a simple greedy algorithm, wherein the vertex to be
updated is chosen randomly and its spin si variable is flipped if
�Q(si ) > 0. This algorithm is exactly the process considered
in metastable state counting. The detectability phase diagram
of this algorithm is shown in Fig. 2(a) as a density plot,

FIG. 2. (a) Detectability phase diagram of a simple greedy algo-
rithm for the symmetric stochastic block model with N = 10 000.
The density plot represents the overlaps, while the solid yellow
line represents our detectability limit estimate. The shaded region
at the upper-left corner represents the region where the detection is
information-theoretically impossible. (b) Overlaps of c = 10 (top),
c = 20 (middle), and c = 30 (bottom) as functions of ε for different
graph sizes N . The shaded region with the dashed border line
represents our undetectable region estimate. In all plots, the average
overlap value of 100 graph instances was determined for each pair of
c and ε values.

and is obtained by executing the algorithm for the graphs
generated by the stochastic block model with various values
of the average degree c and strength of community structure ε.
The color depth represents the overlap, which is defined as the
fraction of vertices correctly assigned to the planted groups,
i.e., max {∑i (1 + si ti )/2N, 1 − ∑

i (1 + si ti )/2N}, where ti
is the planted group assignment such that {ti = +1|σi = 1}
and {ti = −1|σi = 2}. The minimum overlap is 0.5 and is
achieved when the group assignments are determined in a
completely random manner. Owing to the finite size effect,
the overlap only gradually decreases around the estimate of
the detectability limit (solid yellow line). However, as shown
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FIG. 3. Detectability phase diagrams of Louvain algorithm for a
symmetric stochastic block model with (a) N = 500, (b) N = 1000,
(c) N = 2000, and (d) N = 4000, respectively. Plotting was carried
out in the same manner as that shown in Fig. 2. The overlap is set
to 0.5 whenever the graph is partitioned into more than two groups.
In all plots, the average overlap value of ten graph instances was
determined for each c and ε pair.

in Fig. 2(b), when the average degree is sufficiently high, the
overlap decreases more sharply as N increases, which implies
that our estimate is accurate in the limit of N → ∞. In the
case of low average degrees, our result appears overestimated,
likely because of the adopted approximations.

The notion of a metastable state is algorithm dependent be-
cause it is defined with respect to a single spin flip. However, it
is doubtful whether other update rules, such as cluster updates
(i.e., multispin flips), may significantly improve performance
in the case where the single-spin-flip algorithm (simple greedy
algorithm) has a highly ragged modularity landscape. There-
fore, it is worth comparing our estimated detectability limit
with more sophisticated greedy algorithms.

Detectability limit of Louvain algorithm. The Louvain
algorithm [5] is a widely used greedy heuristic for modu-
larity maximization (see Ref. [5] for details regarding this
algorithm). For the specific implementation, we used the
code distributed at Ref. [35]. The Louvain algorithm does
not exactly correspond to the situation that we considered
in the metastable state counting. First, the number of groups
is determined automatically during the optimization process.
Second, the Louvain algorithm contains multispin updates or
cluster updates.

The detectability phase diagrams of the Louvain algorithm
are shown in Fig. 3 as density plots. When the algorithm
identifies more than two groups, we set the overlap to 0.5.

Interestingly, when the graph size N is not very large, the
detectability limit estimated by Eq. (13) (solid yellow line)
coincides with the phase boundary of the region where the

overlap is greater than 0.5, although the detectable region of
the lower average degrees decreases as N increases. To the
extent of our investigation, the detectable region did not ex-
ceed Eq. (13). This experimental observation implies that our
estimate of the detectability limit is an intrinsic upper bound
of modularity maximization, which holds more generally for
greedy algorithms than for the single-spin-flip algorithm. The
same analysis was carried out for the so-called fast greedy
algorithm, as presented in the Supplemental Material [24].

Discussion. Greedy algorithms have simple mechanisms
and are relatively easy to implement. However, it is known
that modularity maximization using a greedy algorithm is
not optimal for inferring the stochastic block model. Here,
we conducted a quantitative investigation with regard to this
algorithm’s feasibility and limitations. Our result indicates
that the algorithm fails for a considerably large region in the
parameter space of the stochastic block model, even when the
corresponding graphs have statistically significant structures.
Note that we never focused on the true maximum of modu-
larity; whether the partition with the maximum modularity is
correlated to the planted partition is a very different problem
and is not of our interest at all.

Most importantly, our result indicates that greedy algo-
rithms are expected to fail when a graph has a sufficiently
low average degree, regardless of the modular structure’s
strength. In the case of the symmetric stochastic block model,
our approximated estimation predicted that this happens when
c � 7. Although this value is not very accurate, our analysis
successfully explains the experimentally observed limitations
of the greedy algorithms in a qualitative manner. Thus, a quan-
titative insight into the limited utility of greedy algorithms
is provided in terms of sparsity level. We also note that this
limitation will be relaxed for the stochastic block models with
different group sizes. This is because the symmetric stochastic
block model, in which the group size is uninformative to the
inference, is a relatively difficult problem.

When our objective is to extract meaningful structures
from real-world networks, we should carefully investigate the
behaviors of the considered algorithm. For example, while
modularity maximization entails the risk of underfitting [36],
it tends to overfit [37,38] in comparison with other model
selection criteria for various real-world networks. However,
without quantitative knowledge, one might falsely expect a
greedy algorithm to work well in a certain case, although there
is very little chance that it will work appropriately.

Note that the overfit and underfit concepts depend on the
assumed graph ensemble, and many modern algorithms are
formulated on the basis of the graph ensemble defined by the
stochastic block model [8,39–43]. Therefore, the present re-
sult can be used as a practical reference to perform modularity
maximization.
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