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Liquid state anomalies and the relationship to the crystalline phase diagram
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A relationship between the observation of a density anomaly and the underlying crystalline phase diagram is
demonstrated. The crystal phase diagram and temperature of maximum density (TMD) lines are calculated over a
range of parameter space using a Stillinger-Weber potential. Relationships between the loci of density maxima in
the PT plane for the liquid state and the underlying crystalline phase diagram are investigated. Two key potential
parameters are systematically varied in order to control the balance between the model two- and three-body
interaction terms, and the relative effects of varying the potential parameters analyzed. The respective TMD lines
diverge at extreme values with one set of lines showing a reentrant behavior. For each parameter set the TMD
lines are extrapolated to T = 0 K. The corresponding pressures are related to the crystalline phase diagram and
are found to lie on or near specific crystal-crystal coexistence lines for a wide range of potential parameters. The
density anomaly is observed to vanish corresponding to regions in the crystal phase diagram which lack crystal-
crystal coexistence lines potentially offering a new interpretation for the emergence of anomalous behavior.
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The origin of anomalous behavior in liquids is a long-
standing mystery in the field of condensed matter and,
significantly, in the water community. Although exhaustive
thermodynamical studies have been performed [1] and sig-
nificant progress made, no unified theory as to the origin of
anomalous behavior exists. Recently the focus has shifted
toward studying the relationship between anomalies and liq-
uid structure [2–6]. The two-state model has, for example,
proved to be successful in tackling many of the intricacies of
this problem [7] leading to the identification of specific local
environments that relate to the observed anomalous behavior.
To date there has been relatively little work which considers
any relationship between the coexistence lines on the crys-
talline phase diagram and lines that define the thermodynamic
anomalies [8,9]. Previous work relies on the observation that
the systems which show anomalies have more than one clearly
related and thermodynamically accessible crystal structure
[8,9].

Crystalline (highly ordered) and amorphous or liquid (dis-
ordered) structures may be reasonably expected to show sig-
nificant similarities. However, connections between the evo-
lution of liquid structure with state point (which is generally
continuous) and any underlying crystalline phase transforma-
tions (which are generally discontinuous) are often unclear.
Clear links should be possible given that the interactions in
the different states are likely to be similar (in the absence
of, e.g., traversing a metal-insulator transition). Extensions
of the phase diagram into the thermodynamically metastable
regimes (e.g., on supercooling) may uncover a richness of
phase behavior, showing distinct amorphous regions which
differ in density and show well-defined phase boundaries
[10]. A prevalent characteristic is a balance between forming
relatively low-density (“open”) structures at low pressures
and significantly higher density (“close-packed”) structures
at higher pressures. This balance is mirrored in the crys-

talline phase diagram and in the metastable supercooled
amorphous regimes. Furthermore, systems of this type often
display pressure-induced amorphization in which an amor-
phous structure is generated directly from a crystal on applica-
tion of pressure [11–13]. Network systems (e.g., Si, Ge, H2O,
SiO2, GeO2, and BeF2) also often display anomalous proper-
ties which may extend into both the structure and dynamics.
Of these, perhaps the most well-known anomaly is in the
density of H2O (see, e.g., Ref. [13], and references therein).
Constructing a locus of the turning points (usually in the PT

or ρT planes) generates a temperature of maximum density
(TMD) line. Further anomalies are observed in, for example,
the heat capacity, isothermal compressibilities, and diffusiv-
ities [13–30]. The origins and relationships between these
anomalies appear complex, potentially arising from a subtle
disruption of the tetrahedral network and have been studied
using accurate models for SiO2 [18,19,26,29], BeF2 [27–29],
GeO2 [29], and H2O [3,6,13,15–17,29,31] and their evolution
traced using the Stillinger-Weber potential [32,33] and using
ramp [26,34–36] or core-softened [37] potentials. Potential
models, in which the energy of interaction is deconvoluted
into a series of n-body (n � 2) interactions are attractive both
for their relative simplicity (computational efficiency) and
for the ability to control fundamental interactions in a well-
defined manner. For example, many of the issues outlined
above may be considered insightfully using potential models
in which the two- and three-body interactions are determined
explicitly and their relative magnitudes varied.

In this work we present systematic numerical evidence
for the conditions under which the density anomaly emerges
in systems modeled with a Stillinger-Weber (SW) potential
[38]. The purpose of this work is to outline that the origin
of anomalous behavior can be traced back to elementary
properties of the underlying crystalline phase diagram rather
than relying on a more standard “hunt” for the source of this
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behavior (e.g., searching for the liquid-liquid critical point).
We systematically explore the liquid and crystalline phase
space and the model parameter space by tuning two different
physically intuitive parameters in the SW model. The SW
model is a widely used potential that can effectively model
a range of monatomic systems which are based on local
tetrahedral geometries, including silicon [38], phosphorus
[39,40], germanium [41], carbon [42], water [43], and even a
range of multicomponent systems [40,44,45]. Here we extend
the studies to nontetrahedral local environments, offering the
possibility of exploring a range of additional systems. We
focus on the TMD lines as a signature of significant struc-
tural change in the disordered environment and consider their
relationship to the underlying crystalline phase diagram by
extrapolating to T = 0 K in order to uncover links with the
crystalline phase diagrams as well as relating to changes in the
local structure. A Stillinger-Weber potential [38] is employed
throughout as an example of a well-studied model known
to show key anomalous properties and in which the relative
strengths of the two- and three-body terms is easily controlled
[32,33,41,46–49]. The two key parameters varied (labeled λ

and θ0) control the strength of the three-body term and the
preferred local bond angle. The effect of varying λ (with θ0

set at the ideal tetrahedral angle, θTd
) has been considered

previously [32,33,41,46–48] whilst the effect of varying θ0

has been less well studied [49]. A study using a somewhat
different model (a Kern-Frenkel model [50]) which focused
on the liquid-liquid critical point progression as a function of
the angle of interaction has been reported [51].

Figure 1 shows the crystal phase diagrams obtained at
T = 0 K both as a function of λ and θ0 with all other pa-
rameters fixed at the values used to model silicon [38]. The
phase diagrams are constructed by determining the energy and
volume curves for each potential crystal structure. For struc-
tures which show either orthorhombic or tetragonal symmetry,
different ratios of unit cell lengths are considered and the
lowest free energy at a given volume identified. The system
pressure is calculated from the derivative of the energy which
allows the free energy to be evaluated and coexistence lines
to be constructed. A useful feature of this approach is that
the results are exact in the limit that all the possible crystal
structures can be assessed. Consider first the ideal tetrahedral
potential model (θ0 = θTd

) as a function of λ [Fig. 1(a)]. At
high λ the diamond crystal structure becomes stable, reflecting
the relatively large energetic penalty imposed on local config-
urations which deviate from the ideal tetrahedron. For λ < 27
a richer phase diagram emerges in which the thermodynam-
ically stable crystal structures reflect a balance between the
close-packed and more open structures favored by the two-
and three-body interactions, respectively. At (small) negative
pressures the low-density clathrate (SII and SIII) structures
are stable. At positive pressures the BC8, SC16, and o-X
crystal structures become stable. These all have distorted
tetrahedral nearest-neighbor topologies with a relatively short
next-nearest- (fifth) neighbor length scale [52–56]. The o-X
crystal structure has been recently characterized [56] (having
been first observed theoretically [54]) and can be considered
as a distorted β-Sn crystal structure. The SC16 and BC8
crystal structures are closely related and hence occupy similar
regions of the phase diagrams. The figures also highlight the
regions for which the SC16 structure is thermodynamically

λ=21

DIAMOND

SC

SC16
ORTHO-X

BCC

BC8

SII SIII
16 18 20 22 24 26 28

0

1

2

3

4

5

(b)

(a)

Strength of tetrahedral interactions λ

P
re

ss
u
re

P
∗

(r
ed

u
ce

d
u
n
it

s) TMD pressure at 0K
SC16 coexistence without BC8

θ0 = θTD ≈ 109.45(deg)

DIAMOND

DIAMONDSC

SC16
ORTHO-X

BCC

BC8

SII SIII
100 110 120

0

2

4

ideal angle θ(deg)

P
re

ss
u
re

P
∗

(r
ed

u
ce

d
u
n
it

s) TMD pressure at 0K
SC16 coexistence without BC8

FIG. 1. Crystal phase diagrams determined at T = 0 K for the
Stillinger-Weber potential and shown as a function of the reduced
pressure, p∗, as a function of (a) the magnitude of the three-body
interaction energy (as controlled by the parameter λ), and (b) the
favored angle formed by atoms in the local coordination polyhedra
(as controlled by the parameter θ0). The dotted lines highlight the
regions in which the SC16 crystal structure is thermodynamically
stable over the diamond structure but metastable with respect to the
BC8 structure. The dashed lines highlight the θ0 = θTd

and λ = 21
lines, respectively, and which represent the line of intersection of
the two phase diagrams. In both cases the solid circles highlight
the extrapolation of the TMD lines (shown in Fig. 2) to T = 0 K
as described in the text.

stable over the diamond structure but metastable with respect
to BC8. At low λ structures with nearest-neighbor coor-
dination numbers greater than four become stable (bcc at
low pressure, simple cubic at high pressure) reflecting the
increased dominance of the two-body interactions. Figure 1(b)
shows the phase diagram at fixed λ (λ = 21) as a function
of the local geometry parameter, θ0. Figures 1(a) and 1(b)
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FIG. 2. Temperature of maximum density (TMD) lines determined using a Stillinger-Weber potential and varying (a) λ (fixing θ0 = θTd
)

and (b) θ0 (fixed λ = 21) shown as a function of reduced pressure, P ∗, and temperature, T ∗. In panel (a) successive TMD lines are shown
for λ = 18–27 (in unit increments) as highlighted, whilst in panel (b) successive lines are shown for θ0 = 104–128◦ (in increments of 2◦).
In both panels (a) and (b) the dashed lines show fits to the linear sections of the TMD lines which are used to extrapolate to T = 0 K.
(c) Comparison of the progression of the TMD lines for different values of λ (dashed) and θ0 (solid). The TMD lines at relatively low
temperature show the same trend as a function of either λ or θ0, in which increasing the respective parameters shifts the TMD lines to higher
pressures and temperatures. At higher temperature the differently shaded TMD lines highlight the onset of divergent behavior with increasing
λ or θ0. The solid (dark) blue TMD lines at high pressures show a progression with increasing θ0 for which no λ counterpart has been identified.
For these the temperature dependence of the TMD lines appears inverted in that increasing θ0 shifts the lines to lower temperatures and higher
pressures. The thick solid black lines show the respective envelopes of the maximum temperatures of each TMD line and so highlight the
differing evolution of these lines with increasing λ and θ0. (d) Summary of the key density anomaly behavior observed for varying λ (upper
panel) and θ0 (lower panel). The lower text indicates the local structures observed in the amorphous phase and the upper text the stable crystal
phase at T = 0 K and at the TMD pressure. The lines on the axis follow the shading scheme from (c) denoting different behavior of the TMD
progression. For the crystal phases the single shaded regions identify single crystal phases whilst the graduated shades denote regions where
coexistence between two crystal phases is important. The shading follows the scheme of Fig. 1.

intersect at λ = 21, θ0 = θTd
(as highlighted by dashed ver-

tical lines) and appear to map onto each other at low �θ

(=θ0 − θTd
) of ∼10◦. At first impression this mapping may

appear obvious as, in a Stillinger-Weber potential, the total
energy is expressed as a sum of explicit two- and three-body
terms and the magnitude of the latter is controlled both by
λ and θ0. However, the dependence of the energy on the
deviation from θ0 is approximately quadratic (compared to the
linear dependence on λ). However, although the dependence
of the three-body energy term is even about θ0, reducing θ0

will tend to favor the two-body energy term (as the system
can adopt a relatively high coordination number). As a result,
lowering θ0 is equivalent in some sense to lowering λ. At high
�θ (>10◦) clear differences in the phase diagrams emerge,
for example in the greater range of the stability field for the
BC8 structure.

Figure 2 shows the loci of the temperatures at which the
system density reaches a maximum, shown in the PT plane
for (a) varying λ (θ0 = θTd

) and (b) varying θ0 (λ = 21). A
point is generated by performing simulations at fixed vol-
umes, varying the temperature, and locating the pressure and
temperature at which (∂P/∂T )V = 0. At fixed θ0 [Fig. 2(a)]
TMD lines are observed for 18 � λ � 27 and shift to higher
pressure and temperature as the strength of the three-body
interaction increases (reflecting the behavior of the under-
lying liquid-gas spinodals [47]). For fixed λ [Fig. 2(b)] a
slightly different behavior emerges with TMD lines observed
for 104◦ � θ0 � 128◦. For 104◦ � θ0 � 120◦ the TMD lines
show analogous behavior to those for increasing λ, with
successive curves shifting to higher temperature and pressure.
For θ0 � 120◦ the TMD curves retrace to lower temperature
whilst increasing in pressure. To highlight the differences
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associated with changing both λ and θ0, Fig. 2(c) shows the
respective TMD lines combined. The low λ and θ0 curves
effectively map onto each other. However, as both parameters
increase the TMD lines diverge with those associated with
changes in θ0 showing a reentrant behavior, shifting to lower
temperature as the pressure increases. The TMD progression
is consistent in both λ and θ0 at low λ (<22) and θ0 (<112◦).
The onset of divergent behavior begins at intermediate λ

(21 < λ < 28) and θ0 (110◦ < θ0 < 124◦) and is highlighted
in the colored graduation in Figs. 2(c) and 2(d). At high λ the
density anomaly vanishes but is retained for high θ0. Reducing
λ favors more close-packed structures, which will also be the
case for reducing θ0 below θTd

. Increasing λ further stabilizes
the four-coordinate (tetrahedral) sites. However, increasing θ0

“pushes” the favored structures away from both the close-
packed and tetrahedral environments. These observations are
summarized in Fig. 2(d).

The TMDs shown in Fig. 2 are extrapolated to T = 0 K
by identifying the near-linear regimes and fitting a line using
a least-squares procedure. Ideally, we would study the TMD-
crystal coexistence relations at finite temperatures. However,
assessing a vast range of possible crystal phases at finite
temperatures for a wide range of λ and θ0 is potentially highly
complex. For example, avoiding thermally driven phase tran-
sitions between competing crystal structures (and so obtaining
metastable extensions to crystal-liquid coexistence curves)
may be problematic. The solution proposed here is to consider
the TMD extrapolation to T = 0 K at which we can determine
the phase diagram exactly for a wide range of possible crystal
structures. The extrapolation of the TMD to low temperature
is not without concerns, however. The limit of the high-
pressure TMD locus can terminate in three ways. In the first
the line may collide with the T = 0 K line (the singularity-
free scenario [16]). The gradient of the TMD locus in the

PT projection should start to increase as the temperature is
lowered. In the second case the TMD may merge with the
temperature of minimum density anomaly locus [57]. By con-
struction this must occur at zero gradient in the PT projection
which means that the TMD has to increase in gradient. In the
third scenario the TMD locus may collide with the spinodal
line emanating from the liquid-liquid critical point [15] or
the second liquid-gas critical point [13]. In this scenario an
increase in gradient for the TMD locus is also observed. All
three possibilities predict an increase in gradient for the TMD
locus. However, as we do not know the exact functional form
of the TMD line we opt to perform a linear extrapolation in
order to obtain an upper pressure limit. Figure 1 shows these
extrapolations projected onto the phase diagrams in terms of
λ [Fig. 1(a)] or θ0 [Fig. 1(b)]. TMD lines are not observed
for λ < 18 and θ0 < 104◦, respectively, corresponding to the
onset of the bcc crystal stability fields. Furthermore, TMD
lines are not observed for λ > 27, in excess of the BC8
crystal stability field [Fig. 1(a)]. TMD lines are observed for
high θ0 in line with the increased BC8 crystal stability field
[Fig. 1(b)]. In both cases the extrapolated pressures lie close to
the respective diamond–o-X and diamond-SC16 coexistence
curves for low and intermediate {λ, θ0}, respectively. For λ �
22 and θ0 � 112◦ the extrapolated TMD points approximately
follow the SC16-diamond coexistence curves extended into
the regions for which SC16 is metastable with respect to
the BC8. For λ � 24 or θ0 � 114◦ these points no longer
follow a clear coexistence curve but traverse the BC8 stability
field. TMD lines are only observed across parameter space for
which a nondiamond crystal structure shows a stability field.
At high λ (λ � 27) the diamond crystal structure becomes
favored across the whole (positive) pressure range studied. At
high θ0 the relative destabilization of both the close-packed
and tetrahedral local coordination environments results in a
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FIG. 3. (a) Radial distribution functions calculated at temperatures around the TMD at fixed density (ρ = 0.0494 Å
−3

) for θ0 = 108◦

(top left), 110◦ (top right), 112◦ (bottom left), and 114◦ (bottom right), respectively. Functions are shown at temperatures around the TMD
temperature of �T = −200, −100, 0, 100, and 200 K (equivalent to −0.008, −0.004, 0, 0.004, and 0.008 in reduced units, respectively)
(moving along the directions of the arrow as indicated). The figures also show the running coordination numbers, n = 4πρ

∫ r

0 r2g(r )dr . Each
set shows an isosbestic point, highlighted with the dashed lines in each panel. (b) Coordination number at the TMD with cutoff corresponding
to the isosbestic point, shown as a function of both ρ and θ0. The light horizontal lines highlight the coordination number range of 4–5.
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BC8 crystal structure thermodynamic stability field which
traverses the whole parameter range studied and, as a result,
TMD lines are observed across this range.

A common probe employed to evaluate evolution in
structure is the radial distribution function (RDF). Figure 3
shows the RDFs and running coordination numbers [n(rc ) =
4πρ

∫ rc

0 r2g(r )dr] for four values of θ0 (at fixed λ = 21). For
each value of θ0 five functions are shown which cover a range
of �T = ±200 K (equivalent to ±0.008 in reduced units)
around the temperatures of maximum densities. At each value
of θ0 the functions show an isosbestic point (a separation at
which the coordination number curves approximately inter-
sect) [4,58]. The presence of these points indicates that, at
fixed density, there appears an “optimum” number of atoms
within a given cutoff which is approximately temperature
independent. Models which show extensive TMD lines have
isosbestic coordination numbers in the range 4 < niso < 5
supporting the view that the key to these anomalies is the
relationship between the fourth and fifth nearest neighbors [5].
The divergent behavior of the TMD lines at high λ and θ0 can
now be further rationalized. The high temperatures and pres-
sures associated with the TMD lines for these high parameter
values support more close-packed structures. However, higher
θ0 stabilizes lower coordination environments than high λ and
so the overall coordination number remains closer to four
at high θ0 compared with high λ. The coordination number
remains in the critical 4–5 range over a wider θ0 parameter
range than for λ.

To develop a more finely tuned view of the changes in
local coordination environment we evaluate the difference in
the mean separations of the fourth and fifth nearest neighbors,
�r45 = r5 − r4, normalized by r5. Figures 4(a) and 4(b) show
the evolution of �r45 as a function of pressure for the TMD
lines calculated at different values of λ and θ0, respectively.
The values of �r45 increase as both λ and θ0 increase. The
figures also show the corresponding ambient pressure �r45

values for the key crystal structures (which show stability
fields in Fig. 1). The o-X, BC8, and SC16 crystals show values
of �r45 consistent with those observed for the TMD lines.
The clear implication of Figs. 3 and 4, therefore, is that the
existence of the TMD relies upon a fine balance between open
(networklike) structures (here dominated by four-coordinate
sites) and close-packed structures (here identified by the move
toward the inclusion of the fifth nearest neighbor into the first
coordination shell).

In this work we have demonstrated a correlation between
the existence and location of the TMD anomalies in a rel-
atively simple potential model which presents a potentially
novel way of rationalizing the origin of the anomalous behav-
ior in liquids. There is a relationship between the TMD lines
and the crystal-crystal coexistence curves with the relative
distances between the fourth and fifth nearest-neighbor atoms
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FIG. 4. The distance between the fourth and fifth nearest-
neighbor atoms, �r45[=(r5 − r4)/r5], determined at the respective
TMDs as a function of reduced pressure, p∗, and “normalized”
by the fifth nearest-neighbor separation, r5. The upper and lower
panels show �r45 as a function of θ and λ0, respectively. The
respective (T = 0 K) values for the SC16, BC8, SII, diamond, and
o-X crystals, determined at p∗ = 0, are shown for comparison. The
SC16 crystal shows two such distances and their respective values
and the weighted average are shown here.

emerging as the key metric. In addition we have reported the
limiting values of the potential parameters λ and θ0 for which
the density anomaly emerges.
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