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Macroscopic properties of heterogeneous materials, including thermal and electrical conductivity, elastic
moduli, and fluid permeability, depend crucially on their microstructure. Optimal design of such materials with
desired properties, as well as characterization of their microstructure, are fundamental problems that have been
studied for a long time. Accurate characterization of the microstructure is possible if several n-point correlation
functions that describe their statistical properties can be computed. While the limits n = 1, corresponding
to phase fractions, and n = 2, that represents such two-point correlation functions as the radial distribution
function, have yielded useful information and insights and have been utilized for reconstruction of models
of heterogeneous materials, in many cases higher-order correlation functions are required in order to develop
deeper understanding of materials’ properties, as well as obtaining accurate estimates for them. We describe an
algorithm for computing third-order correlation functions. We test the accuracy of the algorithm for a model of
fully penetrable disks, i.e., the so-called cherry-pit model in the limit of the penetrability parameter λ = 0, for
which an exact expression for the three-point probability function S3(x1, x2, x3) is known. Excellent agreement
between the computed results and the theoretical predictions is demonstrated. We then report on the results
of extensive computations for several types of heterogeneous materials and the analysis of their three-point
correlation functions. They include the probability and cluster functions S3 and C3, as well as the three-point
surface and surface-surface-void correlation functions Fsss and Fssv , for a variety of two- and three-dimensional
disordered materials and media.
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I. INTRODUCTION

Multiphase heterogeneous materials, both natural and man-
made, are ubiquitous [1,2]. They are either composed of
several constituents, such as composite solids, or of com-
ponents in different states, such as polycrystals. Examples
include concrete [3], sandstone and other types of porous
formations [4,5], block copolymers [6], biological tissues [7],
membranes [8–10], and many more. Thus, characterization
and modeling of heterogeneous materials and media have
been problems of great interest, and have been studied for
decades. Advances in instrumentation, development of highly
efficient computational algorithms, coupled with the dramatic
rise in computational speed and memory, and the application
of powerful analytical methods to such problems have all
contributed to significant progress in characterization and
modeling of heterogeneous materials.

While characterization of microstructure of heterogeneous
materials has its own high importance, the link between the
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microstructure and macroscopic effective properties of such
materials, such as diffusivity, electrical, thermal, and magnetic
conductivity, permeability, the reaction rate, elastic moduli,
and fracture propagation [11] has also motivated much re-
search in this active area. Development of accurate models
of heterogeneous materials based on the information and
insights obtained from their microstructure will not only lead
to precise estimation and/or computation of their macroscopic
properties, but also help designing a new class of materials
with desired optimal physical properties [12–15].

Systematic characterization of the microstructure of het-
erogeneous materials relies on the details of their morphology,
including the volume fractions of their constituents, surface
areas at the interface between their phases or constituents, and
the orientations, shapes, sizes, connectivity, and the spatial
distributions of their various components. Due to the complex-
ity and seemingly random microstructure of heterogeneous
materials, use of statistical methods for their characterization
is not only natural, but also necessary. Thus, many n-point
correlation functions have been proposed and developed in
order to carry out statistical characterization of disordered
materials. Such correlation functions arise naturally when one
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attempts to obtain estimates of the macroscopic properties
by averaging over the materials’ microstructure. The type
and complexity of the correlation functions depend on the
particular properties that one wishes to study. In some cases,
second-order correlation functions, such as the radial distribu-
tion function, yield useful information and help constructing
accurate models [15,16]. In other cases, two-point correlation
functions do not suffice, and the accuracy of the characteri-
zation and that of the models that are constructed based on
them must be significantly improved through higher-order
correlation functions that provide statistical information on
the correlations between three and more reference points in
the materials. This is particularly true about the problem of
reconstruction [16–45] in which one attempts to construct
a model of a heterogeneous material or medium based on
limited data that not only honors the data, but also provides
accurate predictions for its macroscopic properties.

Theoretically, higher-order correlation functions are de-
fined as the expected value of more than two stochastic
variables. Although two-point correlation functions are not
difficult to compute and many of them are amenable to
direct experimental measurements, the same is not true about
higher-order correlations. They are rather difficult to compute,
measure, and analyze, but if they are available, they can
provide very useful information and estimates for various
properties. A good example is approximation of the effective
diffusion coefficient D [46], which is a function of a three-
point microstructural parameter ζ2 [1,2] that itself is expressed
in terms of integrals over the three-point probability function
S3 and its associated lower-order correlations S2 and S1 (see
below).

There are some analytical approaches for computing the
n-point probability function Sn (see below) in heterogeneous
materials. Lu and Torquato [47] introduced a series rep-
resentation of Sn for a lattice model of disordered media.
Baniassadi et al. [48] proposed an approximate solution
for the n-point correlation functions based on a connection
between subsets of the (n − 1)-point correlation functions.
Generally speaking, however, a computational framework for
computing various higher-order (n > 2) correlation functions
in heterogeneous media is crucial, but also not well developed.

In this paper we describe an algorithm for computing
higher-order correlations that may be used for accurate char-
acterization of various two- and three-dimensional (2D and
3D) microstructures, including the three-point probability and
cluster functions S3 and C3, respectively, as well as the three-
point surface correlations Fsss and Fssv . We then use the
algorithms to compute the functions for a variety of 2D and
3D materials, including packings of overlapping and nonover-
lapping disks, ceramics, and Pb-Sn alloy. In the special case
of packings of fully penetrable spheres, we benchmark our
simulation algorithm and results against the existing analytical
solutions. In addition, all the lower-order correlation functions
are also computed for the same materials, and compared with
the higher-order ones.

The rest of the paper is organized as follows. In Sec. II the
theoretical foundation for the higher-order correlation func-
tions is described. Furthermore, computational algorithms
are presented for the calculation of the three-point correla-
tion functions in 2D and 3D heterogeneous materials. The

computed results are then presented and discussed in Sec. III.
In Sec. IV the computational efficiency of the algorithms is
described. Section V presents a discussion of the significance
of the higher-order correlation functions, and in particular
their link with the transport properties of heterogeneous me-
dia. The paper is summarized in Sec. VI.

II. HIGHER-ORDER CORRELATION FUNCTIONS

The higher-order correlation functions that we study in this
paper include the three-point probability and cluster functions,
as well as the three-point surface correlation functions. In
what follows, we describe the theoretical bases for the cor-
relation functions.

A. n-point correlation functions

The n-point probability function S (i)
n for a phase i of a

multiphase material is defined as the probability of finding
n reference points at spatial positions x1, x2, . . . , xn, all in
phase i of a heterogeneous multiphase material. The equa-
tion for S (i)

n , which is of great importance to microstructural
characterization and properties of heterogeneous media, is
given by

S (i)
n (xn) =

〈
n∏

j=1

I (i)(xj )

〉
, (1)

where xn ≡ {x1, x2, . . . , xn}, and I (i) is an indicator function
for phase i, defined by

I (i)(x) =
{

1 if x ∈ Vi ,

0 otherwise,
(2)

in which Vi is the region of phase i with volume fraction of φi .
The limits n = 1 and 2 yield one- and two-point probability
functions S

(i)
1 (x) and S

(i)
2 (x1, x2), which have been computed

and measured for many materials, while S
(i)
3 (x1, x2, x3) rep-

resents the probability of finding three reference points at
x1, x2, and x3 in the same phase i. For statistically homoge-
neous and isotropic materials, i.e., when the correlation func-
tions are independent of the coordinate system of translation
and rotation, the three-point correlation functions depend only
on the distances between the vertices of the triangle (r1 ≡
|x1 − x2|, r2 ≡ |x1 − x3|, and r3 ≡ |x2 − x3|) and, thus,

S
(i)
3 (x1, x2, x3) = S

(i)
3 (r1, r2, r3) = S

(i)
3 (r1, r2, θ ), (3)

where θ = cos−1[(r2
1 + r2

2 − r2
3 )/2r1r2]. S

(i)
3 satisfies the fol-

lowing limiting properties:

S
(i)
3 (r, 0, θ ) = S

(i)
3 (r, r, 0) = S

(i)
2 (r ). (4)

One also has limr→0 S
(i)
2 (r ) = S

(i)
1 = φi and limr→∞

S
(i)
2 (r ) = φ2

i , with φi being the volume fraction of
phase i. Hence, limr1,r2→0 S

(i)
3 (r1, r2, θ ) = φi and

limr1,r2→∞,θ �=0 S
(i)
3 (r1, r2, θ ) = φ3

i are the additional limits
for the three-point probability function.
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The following relation holds for the n-point probability
function of phase 2 of a two-phase material:

S (2)
n (xn) =

〈
n∏

j=1

[
1 − I (1)(xj )

]〉
, (5)

where for a porous medium, for example, superscripts 1 and
2 refer to the pore and solid phases, respectively. Therefore,
the three-point probability function in phase 2 (the solid
matrix of a porous medium, for example) is obtained from
the corresponding function in phase 1 (the pores of the porous
medium, for example) via the following equation:

S
(2)
3 (r1, r2, r3) = 1 − 3φ1 + S

(1)
2 (r1) + S

(1)
2 (r2) + S

(1)
2 (r3)

− S
(1)
3 (r1, r2, r3). (6)

The n-point cluster function C (i)
n is the connectedness

analog of the n-point probability function S (i)
n . In other words,

C (i)
n (x1, x2, . . . , xn) is the probability of finding n reference

points at spatial locations x1, x2, . . . , xn, all in the same
cluster of phase i of a heterogeneous material. For statisti-
cally homogeneous and isotropic media, C

(i)
3 (r1, r2, r3) is the

probability of finding three reference points separated by the
distances r1, r2, and r3 in the same cluster of phase i. In
fact, C3 represents a part of S3 that quantifies the connect-
edness of phase i of a material and, thus, is a very important
microstructural descriptor for the characterization of hetero-
geneous materials. Similar to S

(i)
3 , C

(i)
3 is also related to the

corresponding two-point connectedness cluster function C2:

C
(i)
3 (r, 0, θ ) = C

(i)
3 (r, r, 0) = C

(i)
2 (r ), (7)

with the conditions that C
(i)
2 (r ) → φi as r → 0. C

(i)
2 (r ) → 0

if r → ∞ and phase i is not sample spanning. More
generally, the cluster functions are not necessarily decreasing
functions of positions for percolating phases, especially if
the percolating phase is fully connected. Instead, they will
plateau to a constant value at sufficiently large distances.

The surface correlation functions contain important interfa-
cial information that determines some of the crucial transport
properties of disordered media, including the mean survival
time of a diffusant moving among traps distributed in such
media, and the fluid permeability [1,2]. Moreover, the surface
correlation functions may be used in the reconstruction of
heterogeneous media. By far, the only lower-order surface
correlation functions that have been computed are Fss and Fsv

[1,49], but there exists critical need for developing efficient
algorithms for computing higher-order surface correlation
functions of complex multiphase materials. The general form
of the n-point surface correlation functions is expressed by

Fss...svv...v (xm; xn−m) =
〈[ m∏

i=1

M(xi )

][ n∏
j=m+1

I (1)(xj )

]〉
,

(8)

with xn−m ≡ xm+1, xm+2, . . . , xn, and M(x) = |∇I (1)(x)| =
|∇I (2)(x)| refers to the two-phase interface indicator function.
The three-point surface correlation functions Fsss and Fssv are
then defined by

Fsss (r1, r2, θ ) = 〈M(x1)M(x2)M(x3)〉 (9)

and

Fssv (r1, r2, θ ) = 〈M(x1)M(x2)I (1)(x3)〉 (10)

with the following limiting behavior:⎧⎪⎨
⎪⎩

lim
r2 → 0

Fsss (r1, r2, θ ) = Fss (r1),

lim
r2 → r1
θ → 0

Fsss (r1, r2, θ ) = Fss (r1). (11)

The specific surface s, defined as the interfacial area per unit
volume, of a two-phase (or porous) material is given by s =
〈M(x)〉, with limr→∞ Fss (r ) = s2. As r1, r2 → ∞, when θ �=
0, Fsss (r1, r2, θ ) → s3. In addition, based on the definition of
Fssv , one has the following relations for the surface-surface-
void correlation function:

Fssv (r1, r2, θ ) =

⎧⎪⎨
⎪⎩

Fsv (r1), r2 → 0

0, r1 → 0

0, r2 → r1, θ → 0.

(12)

Hence, limr1→∞,r2→0 Fssv (r1, r2, θ ) = sφ1 and limr1,r2→∞,θ �=0

Fssv (r1, r2, θ ) = s2φ1 are the other limiting properties of
the surface-surface-void correlation function. For a porous
medium, the volume fraction φ1 is usually its porosity φ,
which means that if either s or φ1 = φ is known, then from
the limiting values of Fsv (r ) as r → ∞, the other one can be
determined.

Most of the aforementioned correlation functions are ex-
pressed in terms of a canonical function Hn, defined based
on the space and surface available to a test particle inserted
in the material [1,2]. For example, adding p test particles of
radius bi to a system of N identical spherical inclusions of
radius R with the condition that p 	 N , the available space
Di to the ith test particle would be the space outside N spheres
of radius ai = bi + R centered at rN . Moreover, the available
surface Si would be the surface between the available space
Di and its complementary unavailable space D∗

i , with V =
Di ∪ D∗

i being the space in Red occupied by a d-dimensional
heterogeneous medium. If m of the p test particles are placed
on the available surfaces S1,S2, . . . ,Sm, and the rest of the
particles lie inside the available spaces Dm+1,Dm+2, . . . ,Dp,
then, for any q inclusions one defines the canonical function
Hn(xm; xp−m; rq ), in which xm = {x1, x2, . . . , xm} refers to
the centers of the test particles on the available surfaces,
xp−m = {xm+1, xm+2, . . . , xp} denotes the test particles’ cen-
ters in the available spaces, and n = p + q. As a result, the
n-point probability function Sn is expressed in terms of the
canonical function Hn, when all the reference points, i.e., all
the test particles with radii bi → 0, lie inside the available
space of the medium:

Sn(xn) = lim
ai→R, ∀ i

Hn(∅; xn; ∅). (13)

Furthermore, the general form of the surface correlation func-
tions is expressed by

Fss...svv...v (xm; xp−m) = lim
ai→R, ∀ i

Hn(xm; xp−m; ∅), (14)

where m and p − m refer, respectively, to the number of the
reference points on the surface and in the void region. The
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FIG. 1. (a) Schematic representation of the three-point correlation functions. For statistically homogeneous and isotropic media, the
functions depend only on the relative distances between the vertices of the triangle r1, r2, and r3. (b) Sampling template for the three-point
correlation functions in 2D statistically homogeneous and isotropic media [50].

three-point probability function and surface correlation func-
tions are then expressed in terms of the three-point canonical
function H3 in the limit aj → R (j = 1, 2, and 3):

S3(x1, x2, x3) = H3(∅; {x1, x2, x3}; ∅), (15)

Fsss (x1, x2, x3) = H3({x1, x2, x3}; ∅; ∅), (16)

Fssv (x1, x2, x3) = H3({x1, x2}; {x3}; ∅). (17)

Thus, calculation of the three-point correlation functions will
immediately lead to information on the three-point canonical
function H3, and vice versa.

B. Computational algorithms

The computation of the three-point correlation functions
is based on constructing random triangles with vertices at
x1, x2, and x3, or with the two sides of lengths r1 and r2 along
with the angle θ between them; see Fig. 1. We describe two al-
gorithms for computing the three-point correlation functions.
One is proposed here, while the second one was developed by
Smith and Torquato [50]. In the first approach, one generates
a triangle with the side lengths of r1 and r2 meeting at vertex
x1 in the medium, and the angle θ between them. Since for
statistically homogeneous and isotropic media the three-point

correlation functions depend only on the relative distances
r1, r2, and r3 between the triangles’ vertices, the position of
x1 is selected randomly.

In general, for 3D materials, (i) we generate at random
the three coordinates x1 ∈ [0, xmax], y1 ∈ [0, ymax], and z1 ∈
[0, zmax] of the main vertex of the triangle at x1. (ii) The other
two vertices of the triangle are placed at x2 = (x1 + r1, y1, z1)
and x3 = (x1 + r2 cos θ, y1 + r2 sin θ, z1). (iii) The triangle
is rotated using a quaternion q, generated by the randomly
selected rotating angle α ∈ [0, 2π ) around a random unit
vector u = (ux, uy, uz), where (ux, uy, uz) ∈ [0, 1]. Quater-
nions [51] represent a convenient mathematical notation for
representing orientations and rotations of 3D objects. They
are simpler to compose than the Euler angles that are used
to describe the orientation of a rigid body; avoid losing one
degree of freedom (the so-called gimbal lock problem [52]);
are more compact than the rotation matrices and more stable
numerically, and their use is more efficient. The quaternion
for the present problem is given by

q = cos(α/2) + (ux i + uyj + uzk) sin(α/2), (18)

with i, j, and k being the unit vectors along the Cartesian
coordinates. The quaternion-derived rotation matrix R is then
used to rotate the random triangles in 3D space, with R
given by

R =

⎡
⎢⎣

a2 + b2 − c2 − d2 2(bc − ad ) 2(bd + ac)

2(bc + ad ) a2 − b2 + c2 − d2 2(cd − ab)

2(bd − ac) 2(cd + ab) a2 − b2 − c2 + d2

⎤
⎥⎦, (19)

where a = cos(α/2), b = ux sin(α/2), c = uy sin(α/2), and
d = uz sin(α/2). Note that the unit vector u passes through the
main vertex of the triangle at x1, and that the initial randomly
selected position for x1 remains unchanged. (iv) The rotated
triangle will be accepted if its other two vertices are also in the
medium. Otherwise, we return to step (i) to generate another

triangle to rotate, until all of its vertices are in the medium.
(v) We continue all the previous steps for N different sample
triangles. The algorithm for 2D media is a specific case for the
method that we described in which all the steps are the same,
except that in steps (i) and (ii) z1 = 0, and in step (iii) the unit
vector u is equal to k = (0, 0, 1).
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In the second approach [50], a sampling template consist-
ing of many points, similar to a spider web shown in Fig. 1(b),
is randomly tossed throughout the medium. This allows one
to have many line segments of variable lengths with one end
at the template origin x1. In addition, the orientation is also
included in the template. Thus, random selection of a triangle
with side lengths of r1 and r2 and the angle θ can be done
on regular grids in 2D polar or 3D spherical coordinates.
Figure 1(b) illustrates a 2D template. Sampling templates at N

random locations in the medium leads to N different triangles.
Similar to the first approach, there needs to be a test of whether
the second and third vertices lie in the medium in order to
accept the triangles.

In both approaches N � 1 of the triangles must be gen-
erated and tested whether (i) their vertices are in phase i

of the medium, in order to compute the probability function
S

(i)
3 ; (ii) the vertices are all at the interface between the

different phases of the medium in the case of calculation of
the three-point surface correlation function Fsss ; and (iii) if
two vertices are at the interface between two different phases,
while the third vertex is in the void region (pore space) to
compute the surface-surface-void correlation function Fssv .
The percentage of the triangles that satisfy the constraints
represents the three-point functions.

The cluster function C
(i)
3 is the connectedness analog of

the probability function S
(i)
3 and its computation follows the

procedure for S
(i)
3 , except that only those triangles whose

vertices are all in the same cluster of phase i are counted.
Thus, one needs to use a cluster-identification algorithm, for
which we used the method by Sevick et al. [53]. Since all
the correlation functions are statistical measures, they must
be averaged over M independent calculations for the same
configuration (image) or over M different realizations. To
compute the results described in the next sections, we used
N = 5000 sample triangles and averaged over M = 40 dif-
ferent calculations.

III. RESULTS

We carried out extensive simulations to compute the three-
point correlation functions for several 2D and 3D examples
of heterogeneous media, all of which represent two-phase
materials that are statistically homogeneous and isotropic. In
what follows, we present and discuss the results.

A. Packing of overlapping disks

The first example that we examine is a packing of over-
lapping spheres, a realization of the well-known cherry-pit
model [54] in which each d-dimensional sphere of diameter
D = 2R is composed of a hard impenetrable core of diam-
eter 2λR, encompassed by a perfectly penetrable shell of
thickness (1 − λ)R. The reason we calculated the three-point
correlation functions for this model of disordered materials
is that we can benchmark our numerical results for S3 and
the surface correlation functions, obtained via the computa-
tional algorithms described in the previous section, against
analytical expressions for a fully penetrable spheres model
that represents the limit λ = 0. The three-point probability

function S3 for this case is given by

S
(1)
3 (r1, r2, θ ) = exp

[
−η

v3(r1, r2, θ ; R)

v1(R)

]
, (20)

where v1(R) is the volume of a d-dimensional sphere (πr2

and 4/3πr3 in 2D and 3D, respectively), and η = ρv1(R)
denotes the dimensionless and reduced density, with ρ being
the number density of the particles. Here, v3(r1, r2, θ ; R) is re-
ferred to as the union volume of three identical d-dimensional
spheres of radius R with their centers at the vertices of a
triangle with the side lengths of r1, r2 and the angle θ between
them. Furthermore, the two-point surface correlation function
Fss for fully penetrable spheres is given by

Fss (r ) =
{

9η2

R2

[
1 −

(
1

2
− r

4R

)
�(2R − r )

]2

+ 3η

2rR
�(2R − r )

}
S

(1)
2 (r ), (21)

where �(x) is the Heaviside step function, and S
(1)
2 (r ) is

given by

S
(1)
2 (r ) = exp

[
−η

v2(r; R)

v1(R)

]
, (22)

in which v2(r; R) is the union volume of two spheres of radius
R at a center-to-center distance r .

We benchmarked the simulation results against Eqs. (20)
and (21) for packings of fully penetrable disks, the limit
λ = 0. Figure 2(a) shows the three-point probability function
S3 versus the angle θ for phase 1 (void region) of a packing of
fully penetrable disks with the packing fractions of φ2 = 0.5
and 0.2 (porosities, φ1 = 0.5 and 0.8, respectively). In this
example, the side lengths r1 and r2 were set to be 1 pixel. As
illustrated, the simulation results for the two packing fractions
are in excellent agreement with the analytical expression. In
addition, Fig. 2(b) shows the comparison between our simu-
lation results for the three-point surface correlation function
Fsss (r1, r1, 0), which is equal to Fss (r1), against the analyt-
ical solution for the two-point surface correlation function
Fss [Eq. (21)]. Two void fractions, φ1 = 0.5 and 0.8, were
considered, as for S3 in Fig. 2(a). As shown, the simulation
results for both cases are in excellent agreement with the
theoretical expression. As before, at r1 = D = 14 pixels there
is a kink in the analytical solution for Fss (r1) [Eq. (21)], which
is completely reproduced by the simulations.

Figure 3(a) presents a 2D 1502-pixel realization of a pack-
ing of overlapping disks, the cherry-pit model, with λ = 0.5,
which is a model porous medium with porosity φ = φ1 ≈
0.52, or a packing fraction φ2 of 0.48. The diameter D of the
disks is equivalent to 14 pixels. Hence, the pixel sizes are as
small as 1

14 of the diameter of one disk.
The computed probability function S3 for phase 1, the pore

phase, is presented in Figs. 3(b), 3(c), and 3(d), with Fig. 3(b)
showing the top view of the surface plot of the function for
θ = 0. As Eq. (4) indicates, on the axis r2 = 0, as well as
on the principal diagonal of the square matrix of Fig. 3(b),
S

(1)
3 (r1, r2, 0) = S

(1)
2 . Furthermore, the lowest value of the

color map of S
(1)
3 (r1, r2, 0) in Fig. 3(b) refers to φ3

1 ≈ 0.14,
satisfying the theoretical expectations.
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FIG. 2. (a) The probability function S
(1)
3 for r1 = r2 = 1, computed by the proposed algorithm, and its comparison with the analytical

expression for packings of fully penetrable disks with void fraction of φ1 (packing fraction of φ2 = 1 − φ1). The error bars represent 10 standard
deviations. (b) The surface correlation function Fsss (r, r, 0) = Fss (r ) (for r1 = r2 = r), computed by the algorithm, and its comparison with
the analytical solutions for Fss [Eq. (21)] for packings of fully penetrable disks with void fraction φ1. At r = D = 14 pixels there is a kink in
the exact analytical expression for Fss (r ), which is accurately reproduced by the simulations.

Figures 3(c) and 3(d) indicate that there is no evidence
for oscillatory behavior of the correlation function, hence
manifesting some sort of disorder in the packing. The min-
imum value of the curves occurs at r1 = D, where D is
the diameter of the disks, equivalent to 14 pixels in this
example. In Fig. 3(c) we present S

(1)
3 (r1, r2, π/2) for several

values of r2, while Fig. 3(d) presents the angle dependence of
S

(1)
3 (r1, r2, θ ) with r2 = r1, i.e., on the principal diagonal of

S
(1)
3 . As Eq. (4) indicates, S

(1)
3 (r1, 0, π/2) = S

(1)
3 (r1, r1, 0) =

S
(1)
2 (r1) ≡ S

(1)
2 (r ). The computed values for limr→0 S

(1)
2 (r ) =

φ1 ≈ 0.52 and for limr→∞ S
(1)
2 (r ) = φ2

1 ≈ 0.27 also satisfy
the theoretical expectations and, thus, indicate the accuracy
of the computations.

Figure 3(e) presents the cluster function C
(2)
3 for the solid

phase in the limit θ = π/2, including the limit r2 = 0 in
which C

(2)
3 (r1, 0, π/2) = C

(2)
2 , while C

(2)
3 (r1, r2, θ ) has the

same limiting behavior when r1 = r2 and θ = 0; see Fig. 3(f).
As expected, with increasing r2 or decreasing θ, C

(2)
3 de-

creases. However, the dependence of the cluster function
C

(2)
3 on the distance or angle θ provides no clue to the

type of the disorder that the packing contains. The computed
values limr→0 C

(2)
2 (r ) = φ2 ≈ 0.52 and limr→∞ C

(2)
2 (r ) = 0

also satisfy the analytical predictions for the two-point cluster
function, and also acting as a check of the accuracy of the
computations.

The calculated surface correlation function Fsss (r ) and
surface-surface-void correlation function Fssv (r ) are plotted
in Figs. 3(g) and 3(h), respectively. The former produces
correctly the two-point surface correlation function Fss (r )
in the limits r1 = r2 and θ = 0, which is equivalent to the
specific surface s at r1 = 0 and s2 as r1 → ∞, while the latter
yields Fsv (r ) in the limits r2 = 0 and θ = π/2. For θ > 0, the
surface-surface-surface correlation function quickly vanishes
with the distance because it is very difficult to find three points
at the interface between the two phases to form a triangle,
whereas in the limit θ = 0, i.e., when the three points are
all on a straight line, Fsss quickly approaches its nonzero
asymptotic value. On the other hand, it is always possible to
find such three points with one being in the void region, which
explains why Fssv (r1, r2, θ ) quickly approaches its nonzero

asymptotic values, as Fig. 3(h) indicates. Furthermore, the
limits limr→∞ Fss (r ) = s2 in Fig. 3(g) and limr→∞ Fsv (r ) =
sφ1 in Fig. 3(h) yield consistently an estimate for the specific
surface s ≈ 0.08. We point out again that there exists a kink
at r1 = D = 14 for Fsss in Fig. 3(g), which is also expected
analytically. Note also that the points at the interface between
the two phases in the digitized image are the pixels (voxels in
3D) on the boundary between them.

B. Packing of impenetrable disks

The second 2D example whose three-point correlation
functions were computed is a 1502-pixel realization of a pack-
ing of nonoverlapping disks, shown in Fig. 4(a). The packing
was generated by the random sequential-adsorption algorithm
with periodic boundary conditions, and represents a porous
medium with porosity φ = φ1 ≈ 0.48, or a packing fraction of
φ2 ≈ 0.52. Similar to the previous example of the overlapping
disks, the pixel sizes are as small as 1

14 of the diameter of one
disk. Figures 4(b), 4(c), and 4(d) present the computed prob-
ability function S

(1)
3 in various limits, with Fig. 4(b) showing

the top view of the surface plot of the probability function for
θ = 0. Similar to the previous example, on the axis r2 = 0, or
on the principal diagonal of the square matrix S

(1)
3 (r1, r2, 0) =

S
(1)
2 (r ), which satisfies the conditions in Eq. (4).

The most striking feature of the results for S
(1)
3 , shown in

Figs. 4(c) and 4(d), is their oscillatory behavior. A comparison
with the corresponding results, in the previous example for
the packing of the same disks but with overlapping particles,
indicates that such a behavior is due to some degree of order
in the material, which the penetrable disks lack. In fact, the
oscillating behavior exists for all values of r2 and θ , and
is already indicated by Fig. 4(b), as the distribution of the
off-diagonal values of the function is not uniform (in col-
ors). As Eq. (4) indicates, S

(1)
3 (r1, 0, π/2) = S

(1)
3 (r1, r1, 0) =

S
(1)
2 (r1) ≡ S

(1)
2 (r ). Once again, the computations yield

correctly limr→0 S
(1)
2 (r ) = φ1 ≈ 0.48 and limr→∞ S

(1)
2 (r ) =

φ2
1 ≈ 0.23, which are theoretically rigorous.

Figures 4(e) and 4(f) present the computed cluster func-
tion C

(2)
3 in various limits. Note that the qualitative trends
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FIG. 3. (a) A (150×150)-pixel realization of a packing of overlapping disks, the 2D cherry-pit model with the penetrability parameter
λ = 0.5 and periodic boundary condition. The pore phase (phase 1) and solid phase (phase 2) are shown by gray and red, respectively. The
packing fraction φ2 is ≈0.48. The diameter of the disks D is equivalent to 14 pixels. (b) Top view of the surface plot of the probability
function for phase 1 and θ = 0. (c) The probability function S

(1)
3 versus r1 for θ = π/2. (d) The probability function S

(1)
3 for r2 = r1 = r . (e)

The cluster function C
(1)
3 for θ = π/2. (f) The cluster function C

(1)
3 with r2 = r1 = r . (g) The surface correlation function Fsss with r2 = r1 = r

and various values of θ . (h) The surface-surface-void correlation function Fssv .
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FIG. 4. (a) A (150×150)-pixel realization of a packing of nonoverlapping hard disks with periodic boundary condition. The pore phase
(phase 1) and solid phase (phase 2) are shown by gray and red, respectively. The packing fraction φ2 is 0.52. The diameter of the disks D is
equivalent to 14 pixels. (b) Top view of the surface plot of the probability function for phase 1 for θ = 0. (c) The probability function S

(1)
3

versus r1 with θ = π/2, and (d) for r2 = r1 = r . (e) The cluster function C
(1)
3 with θ = π/2, and (f) for r2 = r1 = r . (g) The surface correlation

function Fsss with r2 = r1 = r and various values of θ . (h) The surface-surface-void correlation function Fssv .
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and shape of the correlation function C3 for the packing of
overlapping and nonoverlapping disks are completely sim-
ilar. Thus, although C

(i)
3 provides insight into the connec-

tivity of the phases of a multiphase material, it does not
provide sufficient information about the spatial structure of
the phase and the type of disorder or order that a mate-
rial may contain. As Eqs. (7) indicate, C

(2)
3 (r1, 0, π/2) =

C
(2)
3 (r1, r1, 0) = C

(2)
2 (r1) ≡ C

(2)
2 (r ). Moreover, the computed

values for limr→0 C
(2)
2 (r ) = φ2 ≈ 0.52 and limr→∞ C

(2)
2 (r ) =

0 agree with the theoretical expectations.
The calculated surface correlation function Fsss (r ) and

surface-surface-void correlation function Fssv (r ) are depicted
in Figs. 4(g) and 4(h), with the former showing the principal
diagonal of the square matrix Fsss (r1, r2, θ ) for several values
of θ . Similar to the previous example, the theoretical expec-
tations that Fsss (r1, r1, 0) = Fss (r1) and Fssv (r1, 0, π/2) =
Fsv (r1) are satisfied, and from the two theoretical limits,
limr→∞ Fss (r ) = s2 and limr→∞ = Fsv (r ) = sφ1, we esti-
mate the specific surface area s to be 0.11. Similar to the
previous examples, there exists a kink at r1 = D = 14 for
Fsss in Fig. 4(g) for overlapping disks, which is expected
analytically.

C. Ceramics

As the third 2D example, a 1802-pixel image of a boron-
carbide/aluminum (B4C/Al) interpenetrating composite [16],
obtained via x-ray microtomography and shown in Fig. 5(a),
was considered. It is a two-phase material with the fraction of
phase 1 [i.e., the boron-carbide phase represented by gray in
Fig. 5(a)] being φ1 = 0.64. The computed probability func-
tion S

(1)
3 is presented in Figs. 5(b), 5(c), and 5(d). In Fig. 5(b)

the top view of the surface plot of the correlation function for
θ = 0 is shown. As in the case of previous examples, on the
axis r2 = 0, as well as on the principal diagonal of the square
matrix, S

(1)
3 (r1, r2, 0) = S

(1)
2 , which are shown in Figs. 5(c)

and 5(d). Furthermore, S (1)
3 (r1, r2, 0) for other values of r1 and

r2 is uniformly equal to φ3
1 ≈ 0.26, indicating strong disorder

in the medium.
In Fig. 5(c), S

(1)
3 (r1, r2, π/2) is plotted for several r2.

Similar to the previous examples, S
(1)
3 (r1, r2, π/2) = S

(1)
2 (r1)

for r2 = 0. Figure 5(d) presents a comparison between S
(1)
3

for three values of the angle θ , when r2 = r1. For θ = 0,
which corresponds to the case when the two sides of the
triangles are along the same line and in the same direction,
S

(1)
3 (r1, r1, 0) = S

(1)
2 (r1). In addition, as the angle θ increases,

S
(1)
3 (r1, r1, θ ) decreases with the same asymptotic value for all

θ > 0, indicating that for θ > 0 there is no longer any differ-
ence between the values of the diagonal of S

(1)
3 (r1, r2, θ ) with

its surrounding values (φ3
1). Note also that the correct limit-

ing values limr→0 S
(1)
2 (r ) = φ1 ≈ 0.65 and limr→∞ S

(1)
2 (r ) =

φ2
1 ≈ 0.44 are recovered.

Figure 5(e) shows the cluster function C
(2)
3 for the right tri-

angles (θ = π/2) with sides r1 and r2 and several values of r2.
As one expects from Eqs. (7), for r2 = 0, C

(2)
3 (r1, 0, π/2) =

C
(2)
2 (r1). Moreover, as r2 increases, C

(2)
3 decreases with a

pattern similar to that of S
(1)
3 in Fig. 5(c). Figure 5(f) presents

the cluster function C
(2)
3 (r1, r1, θ ) versus r1 for various angles

θ . As illustrated, C
(2)
3 (r1, r1, 0) = C

(2)
2 (r1). Since the cluster

function C
(i)
3 represents a measure of the connectivity of phase

i, it is clear that it should decay with increasing distances,
except for fully connected phases. Moreover, the computed
functions satisfy the rigorous limits limr→0 C

(2)
2 (r ) = φ1 ≈

0.36 and limr→∞ C
(2)
2 (r ) → 0. The cluster function C

(i)
2 (r )

has been used in the reconstruction of models of disordered
materials and media [17,35], and has been shown to yield
accurate models.

The calculated three-point surface correlation function
Fsss (r ) and surface-surface-void correlation function Fssv (r )
are depicted, respectively, in Figs. 5(g) and 5(h). The former
decays with r1, as Fig. 5(g) indicates, which shows the prin-
cipal diagonal of the square matrix Fsss (r1, r2, θ ) versus r1,
which is expected. Note that one has Fsss (r1, r1, 0) = Fss (r1),
which is what Eqs. (11) predict. In contrast with Fig. 5(g),
however, Fig. 5(h) that presents Fssv (r1, r2, θ ) indicates that
the surface-surface-void correlation function increases with
the distance since the likelihood that one of the three points
is found in the void, or in the second phase of the material,
increases with increasing distance. As Eqs. (12) indicate, one
has Fssv (r1, 0, θ ) = Fsv (r1). Since limr→∞ Fss (r ) = s2 and
limr→∞ Fsv (r ) = sφ1, the specific surface s obtained from
Figs. 5(g) and 5(h) must be equal. Indeed, they both yield
s ≈ 0.12.

D. Pb-Sn Alloy

The fourth example that we analyze is a 3D two-phase
heterogeneous material, a Pb63Sn37 alloy with a Eutectic
microstructure [40], whose image is shown in Fig. 6(a). It
represents a 1283-voxel image, obtained via x-ray microto-
mography. The volume fraction of phase 1, represented as
achromatic in Fig. 6(a), is 0.65. The computed probability
function S

(1)
3 (r1, r2, θ ) is presented in in Figs. 6(b), 6(c),

and 6(d). Similar to the 2D ceramic, the nearly uniform
distribution of the off-diagonal values of S

(1)
3 (r1, r2, 0), which

is equal to φ3
1 ≈ 0.27 and shown in Fig. 6(b), indicates the

existence of strong disorder in the material. As expected based
on Eqs. (4), S

(1)
3 (r1, r2, π/2) shown in Fig. 6(c) reduces to

S
(1)
2 (r ) for r2 = 0, just as S

(1)
3 (r1, r1, 0) = S

(1)
2 , which is what

Fig. 6(d) shows. In addition, as θ increases, S
(1)
3 (r1, r1, θ )

decays rapidly, approaching the same asymptotic value for
all θ > 0, which is equal to φ3

1 ≈ 0.27. In addition, the
computed limiting values limr→0 S

(1)
2 (r ) = φ1 ≈ 0.65 and

limr→∞ S
(1)
2 (r ) = φ2

1 ≈ 0.42 are in perfect agreement with
the theoretical expectations.

In Fig. 6(e) the cluster function C
(2)
3 is plotted for the

right triangles (θ = π/2) versus r1 for several values of r2.
As one expects from Eqs. (7), for r2 = 0, C

(2)
3 (r1, r2, π/2) =

C
(2)
2 (r1). Moreover, C

(2)
3 decays with increasing r1 and r2,

with trends similar to the results for S
(1)
3 , but unlike S

(1)
3

it vanishes as r1 → ∞. In addition, Fig. 6(f) presents the
cluster function C

(2)
3 versus r1 for r2 = r1 and various angles

θ . C
(2)
3 (r1, r1, θ ) is equivalent to C

(2)
2 (r ) for θ = 0. Moreover,
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FIG. 5. A (180×180)-pixel image of a ceramic-matrix composite, obtained by x-ray microtomography. The resolution of the system is 1
pixel ∼1.5 μm. Phases 1 (boron-carbide) and 2 (aluminum) are shown by gray and red, respectively. The phase fraction for boron-carbide is
φ1 = 0.64. (b) Top view of the surface plot of the probability function for phase 1 and θ = 0. (c) The probability function S

(1)
3 versus r1 for

θ = π/2. (d) S
(1)
3 for r2 = r1 = r . (e) The cluster function C

(1)
3 with θ = π/2, and (f) for r2 = r1 = r . (g) The surface correlation function Fsss

for r2 = r1 = r and various values of θ . (h) The surface-surface-void correlation function Fssv .
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FIG. 6. (a) A (128×128×128)-
voxel image of a Pb-Sn alloy. The
resolution of the image is 1 pixel
∼ 2.5 μm. Phase 1 is shown by
orange with its volume fraction
being φ1 = 0.65, while phase 2 is
achromatic. (b) Top view of the surface
plot of the three-point probability
function for phase 1 with θ = 0. (c)
The probability function S

(1)
3 versus r1

for θ = π/2, and (d) for r2 = r1 = r .
(e) The cluster function C

(1)
3 for

θ = π/2, and for (f) r2 = r1 = r . (g)
The surface correlation function Fsss

for r2 = r1 = r and various values
of θ . (h) The surface-surface-void
correlation function Fssv .

the computed values do reproduce the theoretical expecta-
tions that limr→0 C

(2)
2 (r ) = φ2 ≈ 0.35 and C

(2)
2 (r ) → 0 as

r → ∞.
Finally, the computed surface correlation function Fsss (r )

and surface-surface-void correlation function Fssv (r ) are de-
picted in Figs. 6(g) and 6(h), respectively, with the former
reducing to Fss (r ) in the limits r1 = r2 and θ = 0, and
the latter to the two-point surface-void correlation function

Fsv (r ) in the limit r2 = 0 and θ = π/2. As in the case
of the previous examples, Fsss decays rapidly and vanishes
for all θ > 0, whereas, for fixed values of r2 and θ, Fssv

increases rapidly with r1 and approaches a nonzero asymptotic
value that depends on r2 and θ , with limr→∞ Fss (r ) = s2

and limr→∞ Fsv (r ) = sφ1. The two limits together yield an
accurate estimate of the specific surface area of the alloy
s ≈ 0.11.
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IV. COMPUTATIONAL EFFICIENCY

It is important to discuss and compare the efficiency of
the two approaches for computing the three-point correla-
tion functions. For this aim, the CPU times for computing
S3, Fsss , and C3 for the 1802-pixel image of the ceramic as
a 2D example and for the 1283-voxel image of the Pb-Sn
alloy as a 3D example are compared. In both approaches
with N = 5000 sample triangles and M = 40 independent
realizations (calculations), the computation of S3, Fsss , and
Fssv on an Intel® CoreTM i7-6500U (2.5 GHz) processor took
about 1–2 CPU minutes for the 2D example and about 4–5
CPU minutes for the 3D alloy. Computing C3 is, however,
highly dependent on the cluster identification algorithm. If
we use the connectivity matrix algorithm, computation of C3

would take about 2–3 CPU hours for the 2D example and
about 7–8 CPU hours for the 3D alloy. Most of the CPU time
is, however, devoted to the construction of the connectivity
matrix (the cluster-identification part of the computations)
and, hence, there is no significant difference between the
computation times of C2 and C3 in this regard. Consequently,
if one uses a more efficient cluster-identification algorithm
and hardware with much higher speeds, computing C3 could
take much less time. In that case, C3 could be incorporated in
the reconstruction of models of heterogeneous materials.

V. DISCUSSION

We should first point out that the pixel size of each re-
alization can have measurable effects on the computation of
microstructure functions. Thus, the effect of the pixel’s size
deserves some discussions. We point out that pixelization,
i.e., the resolution of the microstructural image, would have
significant effect on the correlation functions associated with
small values of the distance r , i.e., the small-scale structural
features, but that large-scale correlations corresponding to
large r should not be very sensitive to the resolution. That our
algorithm does capture the kink in the intermediate r values
as seen in, for example, Fig. 2(b), supports our claim, but
also indicates that the computational algorithm is accurate
sensitive to such details.

We also computed the absolute values of the error between
the computed correlation function Fss (r ) = Fsss (r, r, 0) and
the predictions of the analytical prediction [Eq. (21)] for each
r , for the overlapping disk system with N = 150 pixels and
diameter D = 14 (pixels). Figure 7 presents the plot of the
absolute values of the relative error,

Relative error =
∣∣∣∣computed value - theoretical prediction

theoretical prediction

∣∣∣∣
× 100

as a function of the distance r . It is clear that the most
significant discrepancies between values of the computed
function and the theoretical predictions are associated with
small values of r , and even at such distances the error is a
few percentage. This indicates that even for a very moderate
resolution, e.g., 1 pixel ≈ 1

14 particle diameter, the proposed
algorithm is sufficiently accurate to capture the true behavior
of the correlation functions. Most microstructural images pos-
sess very high resolutions. Therefore, we expect the computed

FIG. 7. The absolute values of relative errors in the computed
values of the surface correlation function Fss (r ) = Fsss (r, r, 0) rela-
tive to their exact values predicted by Eq. (21).

correlation functions for such images not to be significantly
affected by the pixelization.

Having established the accuracy and sensitivity of the pro-
posed algorithm for computing three-point correlation func-
tions, we point out that higher-order probability and correla-
tion functions enable one to characterize more accurately the
microstructure of heterogeneous materials, and develop mod-
els for them. For example, Tahmasebi and Sahimi [36–39,45]
showed that a highly accurate reconstructed model of a het-
erogeneous material is obtained if one defines a more general
cross-correlation function between a region of the model to be
reconstructed and the entire data set that is available for use
in the reconstruction. Higher-order correlation functions may
also provide accurate estimates of some of transport properties
of disordered materials. Consider, for example, the effective
conductivity σe and diffusivity De of a two-phase disordered
material, such as a porous composite solid. Torquato [55]
derived an infinite “strong-contrast” series expansion in terms
of the contrast between the conductivities or diffusivities of
the individual phases. He demonstrated that an approximate
but accurate resummation of the series that incorporates up
to four-point probability functions involving S2, S3, and S4

provide accurate estimates of σe and De under a variety of
conditions. In particular [55],

De

D1
= 2

1 − φ2

(2 + γ2/ζ2 − ζ2) + (ζ2 − γ2/ζ2 − 2)φ2

(4 + 2γ2/ζ2 − 2ζ2) + (2 + ζ2 + γ2/ζ2)φ2
,

(23)

where D1 is the diffusivity of phase 1. For 2D materials ζ2 is
given by

ζ2 = 4

πφ1φ2

∫ ∞

0

dr1

r1

∫ ∞

0

dr2

r2

∫ π

0
θ cos(2θ )A(r1, r2, θ ),

(24)

while for 3D materials,

ζ2 = 9

2φ1φ2

∫ ∞

0

dr1

r1

∫ ∞

0

dr2

r2

∫ +1

−1
d(cos θ )P2(cos θ )

×A(r1, r2, θ ) (25)
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with

A(r1, r2, θ ) = S
(2)
3 (r1, r2, θ ) − S

(2)
2 (r1)S (2)

2 (r2)

S
(2)
1

. (26)

Here, P2 is the Legendre function of order 2, and θ is the
angle opposite the side of the triangle of length |r1 − r2|. The
parameter γ2 for a d-dimensional material is given by

γ2 = A
(2)
4

(d − 1)φ1φ2
, (27)

where A4 is a four-point microstructural parameter given
by Torquato [55]. Jiao and Torquato [46] used the above
expressions to obtain estimates of the diffusivity of biopoly-
mer networks. Furthermore, Torquato [56] used analogous
expansion for the effective elastic moduli, describing a similar
three-point parameter η2 that uses the two- and three-point
probability functions.

Thus, the three-point correlation functions of the type com-
puted in this paper provide us with a wide variety of options
to characterize the microstructure of heterogeneous materials
and even obtain accurate estimates of some of their transport
and other physical properties. In addition, multiple combina-
tions of such higher-order correlation functions can be used
as target functions for reconstructing models of disordered
materials based on simulated annealing [17–35,40–44], which
should provide more accurate models than those produced by
the two-point correlation functions.

VI. SUMMARY

Accurate characterization of microstructure of heteroge-
neous materials is obtained if the n-point correlation functions
that describe their statistical properties can be computed.
While such correlations in the limits n = 1 and 2 can be and

have been computed efficiently, and even measured experi-
mentally, the same is not true for n > 2. In many cases, such
higher-order correlation functions are required in order to
develop deeper understanding of materials’ properties. In this
paper, we described an algorithm for computing third-order
correlation functions, compared its efficiency with another
algorithm proposed previously by Smith and Torquato [52],
and reported on the results of extensive computation of the
correlation functions for several types of heterogeneous ma-
terials, and the analysis of their correlation functions. They
include the probability and cluster functions S3 and C3, as
well as the three-point surface and surface-surface-void cor-
relation functions Fsss and Fssv , which we computed for a
variety of two- and three-dimensional disordered materials
and media. All the lower-order correlation functions (n �
2) were also obtained as special cases for the higher-order
ones. Furthermore, the three-point correlation functions were
benchmarked against the analytical expressions for a special
case of packings of fully penetrable spheres. Not only is the
proposed algorithm efficient, it can also be further improved,
particularly for the calculation of the connectivity or cluster
function C (i)

n , in which case one would have a powerful set
of microstructural descriptors for analyzing various properties
of disordered materials. In the case of surface correlation
functions, the accuracy of the algorithm could be further im-
proved by exploring a recently introduced idea for converting
a digitized image to a scalar field for precise identification of
the two-phase interface [49].
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