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Deformable elastic bodies in viscous and viscoelastic media constitute a large portion of synthetic and
biological complex fluids. We present a parallelized three-dimensional simulation methodology which fully
resolves the momentum balance in the solid and fluid domains. An immersed boundary algorithm is exploited
known as the immersed-finite-element method (IFEM) which accurately determines the internal forces in the
solid domain. The scheme utilized has the advantages of requiring no costly remeshing, handling finite Reynolds
number, as well as incorporating nonlinear viscoelasticity in the fluid domain. Our algorithm is designed for
computationally efficient simulation of multiparticle suspensions with mixed structure types. The internal force
calculation in the solid domain in the IFEM is coupled with a finite volume based incompressible fluid solver,
both of which are massively parallelized for distributed memory architectures. We performed extensive case
studies to ensure the fidelity of our algorithm. Namely, a series of single particle simulations for capsules, red
blood cells, and elastic solid deformable particles were conducted in viscous and viscoelastic media. All of
our results are in excellent quantitative agreement with the corresponding reported data in the literature which
are based on different simulation platforms. Furthermore, we assess the accuracy of multiparticle simulation of
blood suspensions (red blood cells in plasma) with and without platelets. Finally, we present the results of a
simulation of multiple solid deformable objects in a viscoelastic medium.
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I. INTRODUCTION

A diverse range of complex fluids both naturally occurring
in biological environments and produced commercially are
well represented by the simple model of deformable bod-
ies suspended in a fluid media [1–3]. We can divide these
suspended bodies into two main classes: the first type is a
membrane-enclosed structure which is composed of a thin
layer that encompasses the interior fluid, and the second type
is a solid deformable object (referred to as solid deformable
particles in the remainder of the text) where the behavior
of the particle interior follows a hyperelastic formulation.
Vesicles, capsules, and red blood cells (RBCs) are all among
the former type which are defined based on their membrane
structure [4,5]. For instance, RBCs possess a phospholipid
bilayer which is supported by a network of proteins [6].
Many other deformable particles, including platelets in blood,
belong to the deformable particle class with an elastic interior
[7]. These deformable structures are often suspended in vis-
coelastic fluids which can provide even further complication
to the behavior of such suspensions [8–11].

Experimentally relevant examples of suspensions of soft
particles range from bodily fluids like blood and mucus linings
to microfluidic networks. Notably, blood is composed of
three main cellular components: RBCs, white blood cells,
and platelets that are suspended in a nearly Newtonian fluid
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plasma. Many important biological functions of the vascular
system are a consequence of the deformability and shape
changes of RBCs. For example, red blood cell migration away
from the blood vessel walls (the Fahraeus-Lindqvist effect)
reduces the effective viscosity and is essential in blood perfu-
sion through arterioles and capillaries [12]. As a result of the
RBC dynamics, platelets marginate towards the vessel walls
and this is a critical initial step in the process of thrombosis
[13]. In addition, particulates and infectious microorganisms
are often transported in biological fluids such as the mucus
lining of the lungs which displays a rich viscoelastic behavior
[14]. In practical use in the laboratory, microfluidic devices
are broadly useful in the study of soft particles and they have
been used to elucidate the properties of vesicles [15], or as
an assay in medical applications such as cell sorting [16] or
platelet counting [13,17,18].

It is clear that a first-principles understanding of these
systems will lead to better design of commercial products
and devices, improved health diagnostics, and a deeper un-
derstanding of fundamental physics. However, many of these
systems are difficult to completely analyze in experiments
due to the small length and timescales involved or due to
the expense in manufacturing multiple devices. These facts
motivate our study of a numerical tool to probe these systems.
Ideally, we seek a computationally efficient method which
can accurately capture the physics of the fluid, particles, and
their interactions. A number of approaches for this problem
have been considered including dissipative particle dynamics
(DPD) [19–21] and the boundary element method (BEM)

2470-0045/2018/98(6)/063316(17) 063316-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.063316&domain=pdf&date_stamp=2018-12-28
https://doi.org/10.1103/PhysRevE.98.063316


SAADAT, GUIDO, IACCARINO, AND SHAQFEH PHYSICAL REVIEW E 98, 063316 (2018)

FIG. 1. A schematic of the grids in the immersed boundary
method. The Eulerian grid is the grid that spans the entire domain.
Since we utilize the finite volume method to solve equations on this
grid, we can utilize disordered grids of nearly any geometry for the
Eulerian domain. The solid (Lagrangian grid) is represented as a
cloud of points in this figure and is either triangulated surface mesh or
a tetrahedral volume mesh depending on if we simulate a membrane
or a solid. These finite-element structures are utilized to calculate the
immersed boundary force densities. This Lagrangian mesh is free to
translate independent of the Eulerian frame. Illustrated here are both
the initial �s

0 and the current configuration of the solid �s, which are
required to calculate the stress in the solid.

[22,23]. DPD demonstrates great scalability but does not
rigorously treat the suspending fluid using the Navier-Stokes
equations. BEM, on the other hand, solves the fluid motion
in the limit of zero inertia precisely (Stokes equations) but
is unable to simulate finite inertial effects. In BEM, the
velocity in the suspending fluid is determined using the in-
tegral representation of the Stokes equation, and therefore
one only needs to mesh the boundaries, i.e., the surface of
the membrane and the bounding walls [24]. Hence, BEM is
a common choice to study capsules, vesicles, and red blood
cells when the flow is sufficiently weak [2,25]. Notably, BEM
computational time scales poorly in particle number due to
the dense matrix inversion required. Neither the BEM nor the
DPD approaches can easily incorporate viscoelastic behavior
in the fluid matrix.

Arbitrary Lagrangian-Eulerian (ALE) techniques have also
been utilized to study suspended deformable bodies and are
an example of a method that simulates the correct physics but
suffers from costly remeshing when handling translating par-
ticles, i.e., a “body-fitted” mesh is utilized every time step to
properly conform the mesh to the boundaries of the particles
in order to satisfy the no-slip condition on the surface of the
particles [26,27]. This costly remeshing limits the ability to
handle a dense suspension of particles. Peskin and co-workers
[28–30] introduced the immersed boundary (IB) technique as
a powerful alternative approach to avoid mesh regeneration
in the fluid domain. In IB, the particles are embedded as
freely moving Lagrangian points inside a stationary Eulerian
fluid grid (see Fig. 1). In IB based algorithms, fluid-structure
interaction (FSI) is the key additional component which

enforces the correct physics of the suspended solid. A few
extensions to the IB algorithm have been proposed, such as the
extended immersed boundary method [31] and the immersed
interface method [32,33]. Additionally, Eulerian based level
set advection methods have been developed to solve similar
problems and show promising scaling for dense suspensions
of particles [10,33–36]. In the context of deformable particles,
Zhang and colleagues introduced an immersed-finite-element
method (IFEM) to calculate the internal forces based on a
finite-element scheme for the solid domain but limited them-
selves to considering Newtonian suspending fluids [37–40].
It should be noted that the IB method or its extensions can
be coupled with different numerical schemes for solving the
momentum balance in the fluid domain, e.g., the lattice Boltz-
mann (LB) [41–43], finite volume [44,45], or finite difference
algorithms [8,9].

Flows where the suspending medium is viscoelastic (for
example, due to solvated polymers) are of interest in many
industrial applications such as the use of hydraulic fractur-
ing fluids. Eulerian based solvers have been developed to
study many of these systems with deformable particles with
elastic suspending fluids but to date they cannot simulate
thin membranes [46]. Other immersed boundary methods
have also been developed for capsules, but cannot simulate
solid deformable particles nor a mixture of particle types
while the suspending fluid is viscoelastic [8,9]. Our proposed
method seeks accurate calculation of trajectories for both
solid deformable particle and membrane flow problems in
viscoelastic fluids under one unifying framework. To simulate
these viscoelastic suspending fluids, we will implement a
Giesekus model which is commonly utilized to model fluid
containing solvated polymers. Difficulties can often arise
when attempting to solve the equations for the conformation
tensor, present in the Giesekus model, such as maintaining
positive definiteness of the conformation tensor so we utilize
a finite volume, log-conformation solver developed previously
in our research group [47–49].

In this work we discuss the development of an immersed-
finite-element approach that treats suspended deformable bod-
ies in Newtonian or viscoelastic flows. Our IFEM approach
is coupled with a finite volume method (FVM), the details
of which are given in Sec. II. We strive to create a method
that scales well in particle number that can handle flows with
mixed particle types so that complex flows such as blood
can be simulated. To this end, our IFEM-FVM algorithm is
massively parallelized using distributed memory architecture.
An extensive number of verification experiments will be
demonstrated for single particle and multiparticle simulations
to ensure the fidelity of our algorithm.

II. METHODOLOGY

A. Governing equations

We consider the dynamic problem of an incompressible
suspended elastic body in an incompressible Newtonian or
complex polymeric liquid media. The total domain under
consideration is defined to be � which will be broken into
two subdomains �f and �s which represent the volume of
the liquid and the solid, respectively. The governing equations
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are conservation of momentum in both the liquid and solid
subdomains as well as continuity (which can be expressed
similarly in both subdomains):

ρf

Dv

Dt
= ρf g + ∇ · σ f , x ∈ �f , (1)

ρp

Dv

Dt
= ρp g + ∇ · σ s, x ∈ �s, (2)

∇ · v = 0, x ∈ �s,�f . (3)

Due to our selected methodology for solving conservation of
momentum, we are restricted to incompressible solid objects.
However, in the case of an infinitely thin membrane which
will be considered later in the text, we can solve the above
equations for compressible membranes since we do not solve
explicitly for the thickness of the membrane when approxi-
mating the membrane as two dimensional. We have defined
the stress in the solid and liquid to be σ s and σ f , respectively.
At the boundary of contact between the solid and the liquid
we also require a stress balance to be satisfied. We denote this
boundary as ∂�s with an outwardly pointing unit normal n.
We write this condition as

(σ s − σ f ) · n = 0, x ∈ ∂�s. (4)

To model a viscoelastic, polymeric suspending medium,
we represent the suspending liquid stress as a sum of a
Newtonian stress with an additional polymeric stress

σ f = σ N + σ P = −pI + η

(
∂v

∂x
+ ∂v

∂x

T)
+ σ P. (5)

Above, we have defined p to be the hydrodynamic pressure
and η to be the Newtonian fluid viscosity. We describe the
extra polymer stress, σ P, using the Giesekus model [50,51]
which describes the evolution of the extra stress through a
conformation tensor C and a relaxation time λ:

σ P = ηp

λ
(C − I), (6)

λ
�
C +(C − I) + α(C − I)2 = 0. (7)

In Eq. (7),
�
C is the upper-convected time derivative and we

have defined ηp to be the polymeric viscosity. The parameter
α is the mobility parameter in the Giesekus model and when
it is set to zero, the Oldroyd-B model [51,52] is recovered. In
either case, the zero shear viscosity of the suspending fluid is

η0 = η + ηp. (8)

We also must determine the stress in the solid phase σ s,
which can be either a two-dimensional (2D) membrane or
a three-dimensional (3D) solid. There are multiple stress
definitions which can be used to obtain the required quantities
in the remainder of this paper and relations between them
are presented below. The first Piola-Kirchhoff stress P can
be obtained from the Cauchy stress tensor σ , the deformation
gradient F, and J = det(F) using the identity P = Jσ · F−T.
The Cauchy stress σ is related to the second Piola-Kirchhoff
stress S using σ = 1

J
F · S · FT. We also can construct the

right Cauchy-Green tensor C = FTF which has three spatial
invariants IC

1 , IC
2 , and IC

3 .

S is calculated using the principle of virtual work as

S=2
∂W

∂C
=2

{(
∂W

∂IC
1

+ IC
1

∂W

∂IC
2

)
I − C

∂W

∂IC
2

+ IC
3 C−1 ∂W

∂IC
3

}
.

(9)

For the deformable solid implementation, we utilize a slightly
compressible neo-Hookean model with bulk modulus λp and
shear modulus μp so the strain energy density W becomes

W = λp

4

(
IC

3 − 1
) −

(
λp

2
+ μp

)
ln

(
IC

3

)1/2 + μp

2

(
IC

1 − 3
)
.

(10)

Any membrane in our simulations is assumed to be infinitely
thin and, therefore, we consider a two-dimensional incom-
pressible hyperelastic material model. In this reduced system,
we now solve for tensions and have an energy areal density
(these tensions obey the same relationships as their stress
counterparts but are now denoted with a hat). I Ĉ

1 and I Ĉ
2

are the only two independent invariants of Ĉ in this reduced
system, and the following relationship now holds:

Ŝ = 2
∂Ŵ

∂Ĉ
= 2

{
∂Ŵ

∂I Ĉ
1

I + J 2Ĉ−1 ∂Ŵ

∂I Ĉ
2

}
. (11)

For capsule simulations, the dimensionless strain energy areal
density Ŵ follows a neo-Hookean form [53,54]

Ŵ = μ̂p

2

(
I Ĉ

1 + 1

I Ĉ
2

− 3

)
. (12)

For red blood cell membranes, the well-known Skalak
model is used:

Ŵ = μ̂p

2

(
1

2
I 2

1 + I1 − I2

)
+ μ̂D

8
I 2

2 , (13)

where I1 = I Ĉ
1 − 2 and I2 = I Ĉ

2 − 1 are the two invariants
of the Skalak model. The Skalak model is generally used to
enforce local area incompressibility in a membrane so the
dilatational modulus μ̂D is set to be larger than the shear
modulus μ̂p.

Since we have neglected the out of plane forces in the
membrane approximation, we also include the bending energy
in our model. This provides an additional energy density
function for bending:

ŴB = kB

2
(2κH + c0)2. (14)

In the above expression, we have defined kb as the bending
modulus, c0 as the spontaneous curvature of the membrane at
rest, and κH as the mean curvature of the membrane.

B. Numerical implementation

To solve the coupled fluid-solid problem, we utilize an
immersed-finite-element method (IFEM). To arrive at the
governing equations for this method, we rewrite Eqs. (1) and
(2) as a single equation over the total domain as follows:

ρf

Dv

Dt
= ρf g + ∇ · σ f + f IB, x ∈ �, (15)
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where f IB is the immersed boundary force density. It is clear
that for conservation of momentum to be satisfied everywhere,
the immersed boundary force density must take the following
form:

f IB = ∇ · (σ s − σ f ) + (ρp − ρf )g − (ρp − ρf )
Dv

Dt
,

x ∈ �s. (16)

For the remainder of this paper, we will only consider a
neutrally buoyant particle that has negligible inertia allowing
us to neglect two terms in the above expression. For the
remainder of the text, we will utilize ρf = ρp = ρ so we can
approximate the force as

f IB = ∇ · (σ s − σ f ), x ∈ �s. (17)

The discretized IFEM method utilizes two separate grids.
The Lagrangian grid tracks the particles (�s) while a sec-
ond fixed Eulerian grid is utilized for the entire domain
(�s + �f = �). An illustration of these two grids can be
found in Fig. 1. we utilize a finite volume method to solve
for all quantities on the Eulerian grid and finite elements
(either tetrahedral or triangular) to solve for the forces on the
Lagrangian grid. Since forces, velocities, and conformation
tensor components will need to be shared between these two
grids for any of these calculations, interpolation and spreading
operators are required. We will define an operator Sh to be the
interpolation operator from Eulerian to Lagrangian and S∗h to
be the inverse operator.

It is worth noting that mesh resolution for the Lagrangian
grid drawn in Fig. 1 needs to be carefully selected to ensure
that “leaking” is avoided. In the context of the IFEM, leaking
refers to when the Lagrangian grid is too sparse (especially
when heavily deformed) which leads to the spreading of
forces that are not continuous in nature near the boundary
of the solid object. This almost always inevitably leads to an
unstable solution. To ensure that this does not occur, we en-
sure that all of our initial meshes are sufficiently meshed such
that the final deformed mesh does not exhibit this undesirable
leaking behavior.

We distinguish between the immersed boundary force
on the Lagrangian grid and the immersed boundary force
in the Eulerian domain which are defined to be FIB,s and
FIB,f , respectively. (Note that force densities are given by a
lowercase f and forces are given by uppercase F.) Given
the above defined operators for the interpolation, we can
write the following relationships (the numerical method for
interpolation is discussed further in Sec. II C):

FIB,f = S∗[FIB,s], (18)

vs = S [vf ]. (19)

On the Eulerian domain we therefore solve the following
expression with a third order accurate finite volume scheme
developed at Stanford’s Center for Turbulence research [55]:

ρ
Dv

Dt
= ∇ · σ f + f IB,f = ∇ · σ f + S∗[ f IB,s], x ∈ �.

(20)
If we desire to include viscoelasticity in our simulation, we
solve for the conformation tensor C as six scalar equations

(since C is symmetric) using a log-conformation method.
Details about this method can be found in previous papers by
members of our group [47–49].

We are left to determine the values of FIB,s for which
we utilize finite elements. If we multiply Eq. (17) by a test
function w and integrate over the solid body, then we retrieve∫

�s
f

IB,s
i wid� =

∫
�s

∇j

(
σ s

ij − σ f
ij

)
wid�, x ∈ �s. (21)

If we then integrate by parts and use the divergence theorem
we write∫

�s
f

IB,s
i wid� = −

∫
�s

(
σ s

ij − σ f
ij

)∇jwid�

+
∫

∂�s
wi

(
σ s

ij − σ f
ij

)
njdS,

x ∈ �s. (22)

We can see clearly that the last term is zero due to our
boundary condition expressed in Eq. (4). The integrals can be
converted to a form over the initial configuration (changing
Cauchy stress to the first Piola-Kirchoff stress). We define the
solid domains reference configuration, also called the initial
configuration or zero stress configuration, to be �s

0:∫
�s

0

f
IB,s
i wid� = −

∫
�s

0

(
P s

ij − P f
ij

)∇jwid�, x ∈ �s
0.

(23)
Since we utilize finite elements, the test function can be
written as a sum of global shape functions at each node
multiplied by the test function values at the discrete node k:
wi = ∑

k Nkwki ,∫
�s

0

∑
k

Nkf
IB,s
i wkid� = −

∫
�s

0

(
P s

ij − P f
ij

)∇j

∑
k

Nkwkid�,

(24)∫
�s

0

Nkf
IB,s
i d� = −

∫
�s

0

(
P s

ij − P f
ij

)∇jNkd�. (25)

Discretely, this makes the force at each node k:

F
IB,s
k,i = −

∫
�s

0

(
P s

ij − P f
ij

)∇jNkd�. (26)

Note that in the above expression we have a total of three
contributions to the force if we divide the fluid contribution
into Newtonian and polymer contributions [using Eq. (5)]:

F
IB,s
k,i = −

∫
�s

0

(
P s

ij − P
f,N
ij − P

f,P
ij

)∇jNkd�. (27)

To calculate the values of P
f,N
ij and P

f,P
ij on the Lagrangian

grid, the values of v and C must be known at each Lagrangian
point. These values are therefore required to be interpolated
from the Eulerian grid. Thus, the total immersed boundary
force can be broken into elastic, Newtonian, and polymer
components:

FIB
k = Fel

k + FN
k + Fp

k. (28)

The discrete calculation of P s
ij , P f,N

ij , and P
f,P
ij is conducted

on the Lagrangian mesh on the reference configuration. For
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solid particles we utilize a four-node tetrahedral mesh which
allows us to discretely write the deformation gradient (F�e

ij )
and velocity gradient on each element of this mesh. The
values of the deformation gradient and the velocity gradient
are constant over each element volume �e on the reference
configuration and can be written as

F
�e

ij =
4∑

k=1

xi,k∇jNk, (29)

(
∂ui

∂xj

)�e

=
4∑

k=1

ui,k∇lNkF
−1,�e

lj . (30)

In the above expressions xi,k and ui,k are the position and
velocity at each node k on the current configuration (on �s).
These quantities can then be used to construct the stresses over
each element discretely as

P
�e

ij = F
�e

ik S
�e

kj = F
�e

ik

[
λp

2
(J 2 − 1)F−1,�e

kl F
−T ,�e

lj

+μp

(
δkj − F

−1,�e

kl F
−T ,�e

lj

)]
, (31)

P
f,N,�e

ij = ηJ

[(
∂ui

∂xk

)�e

+
(

∂uk

∂xi

)�e

]
F

�e,−T
kj . (32)

Since the conformation tensor has been directly interpo-
lated to the grid, P

f,P,�e

ij can be calculated as

P
f,P,�e

ij =
4∑

k=1

J
η(1 − β )

λ

(Cil,k − δil )

4
F

�e,−T
lj . (33)

These quantities can then be utilized to evaluate the integral
expressed in Eq. (26). Following the completion of a time
step, the Lagrangian mesh is updated using the interpolated
velocities via an Adams-Bashforth scheme:

xs,n+1
k = xs,n

k + �t

(
3

2
v

s,n
k − 1

2
v

s,n−1
k

)
.

In the case of a membrane with vanishingly small thick-
ness, we can rewrite the volume integral as an integral over
an area. The fluid stresses integrated over a vanishingly small
volume go to zero simplifying our expression. Our discretized
local surface (the reference configuration surface) now has a
coordinate system with two tangent basis vectors el , shape
functions N̂k parametrized in the surface coordinate, and a
tension P̂. The two tangent vectors el need to be calculated
for each face element and are orthogonal. This gives us a force
contribution at each node as

F IB
k,i = −

∫
∂�s

0

(
P̂ s

lj

)∇j N̂kel,idS. (34)

Note that in the above expression, the gradient of the shape
function N̂k is with respect to the local surface coordinate
in the direction of el and P̂ is the tension so l and j in the
above expression range from 1 to 2 instead of 1 to 3 as in
the previous expressions. This formulation is equivalent to
calculating the 2D force in the plane of each face element and
then appropriately rotating that force to the 3D frame.

For membranes we utilize a three-node triangular mesh
which allows us to discretely write the deformation gradient
(F̂ ∂�e

ij ) on each element of this mesh in the coordinate frame
that is tangent to that surface element plane. The values of the
deformation gradient are still constant over each element area
∂�e similar to solids and can be written as

F̂
∂�e

ij =
3∑

k=1

xl,kei,l∇j N̂k. (35)

Stress can be computed from this deformation gradient using
either the Skalak model or the neo-Hookean model presented
in Eqs. (13) and (12), respectively. The same update scheme as
presented for solids is utilized to update the Lagrangian mesh
at the end of a time step.

Since we have neglected out-of-plane forces by assuming
an infinitely thin membrane allowing us to use a 2D mesh, we
need to add an extra bending resistance. Bending force is then
obtained from the response of Canham-Helfrich Hamiltonian
[the integration of Eq. (14) over the membrane area] to an
infinitesimal deformation using the principle of virtual work:

Fbe
k = 2kb

[
�s (κH − κH,0) + 2(κH − κH,0)

× (
κ2

H − κG + κH,0κH

)]
nkAk. (36)

In the above expression, we have utilized the Gaussian and
the mean curvatures at nodal point k (κG and κH ), the Voronoi
area of the node Ak , as well as the discrete surface Laplacian
(�s). We utilize the methods outlined by Sinha and Graham
[23] to calculate these quantities on our triangulated surfaces.
In this case for the membrane, the total IB force can be written
as a sum of elastic and bending forces:

FIB
k = Fel

k + Fbe
k . (37)

C. Interpolation scheme

We utilize a linear moving least squares (MLS) as our
interpolation algorithm similar to the one proposed by Vanella
et al. [56,57]. For a Lagrangian point xs

k at Lagrangian node k

and a stencil of Eulerian nodes xJ that are in a neighborhood
of that point we can calculate a set of MLS weights. To
determine which points are included in the stencil, we first
determine which node in the Eulerian mesh is nearest to the
given Lagrangian node. The stencil is then constructed as all
neighboring nodes to the nearest node. A neighboring node in
this context is defined as any node that is part of a control
volume that includes the nearest node; this, for example,
produces a stencil with 27 points for a standard Cartesian
mesh. We seek to interpolate a variable qJ which is known
on the Eulerian grid at nodes J to find Qk on the Lagrangian
grid (we specifically interpolate velocity and the conformation
tensor in our implementation as described later in Sec. III A).
We also need to perform the inverse procedure when we
spread forces to the Eulerian grid from the Lagrangain.

The linear basis function p(X ) is defined as

p(X ) =
(

1
X

)
. (38)

Using the MLS method we can write an approximate relation-
ship between Qk , the interpolated value of a quantity Q at
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Lagrangian node k, and a vector of unknown weights Z:

Qk = pT
(
xs

k

)
Z. (39)

We seek to minimize the following weighted L2 norm to find
the unknown vector Z:

� =
∑

J∈stencil

W
(
xs

k − xJ

)
[ pT(xJ )Z − qJ ], (40)

where we utilize a simple cubic spline weighting function
W (X ):

W (X ) =

⎧⎪⎨
⎪⎩

0, r > 1
2
3 − 4r + 4r3, r � 0.5
4
3 − 4r + 4r2 − 4

3 r3, 0.5 < r � 1.

Above we have utilized r = ||X||/h where h is the maxi-
mum distance of a node to its neighbors for any local Eulerian
point. We now minimize the norm with respect to Z. The
resulting minimized solution of Eq. (40) can be written as the
following matrix equations:

AZ = BY , (41)

A =
∑

J∈stencil

W
(
xJ − xs

k

)
p(xJ ) ⊗ p(xJ ), (42)

B = W
(
xJ1 − xs

k

)
p(xJ1)W

(
xJ2 − xs

k

)
p(xJ2)

. . . W
(
xJnst − xs

k

)
p(xJnst ), (43)

Y T = (qJ1qJ2 . . . qJnst ). (44)

Note that the size of A is 4×4 and that the size of B is 4 × nst
where nst is the number of nodes in the Eulerian stencil.

This allows us to write

Qk = pT(
xs

k

)
A−1BY , (45)

Qk =
∑

J∈stencil

φJ

(
xJ − xs

k

)
qJ . (46)

Above we have defined our vector of weights φ (number of
stencil nodes in length):

φ
(
xJ − xs

k

) = pT(
xs

k

)
A−1B. (47)

We can then interpolate velocities or the conformation tensor
from the fluid to the solid as (where we have introduced
the discrete interpolation and spreading operators Sh and S∗h

which are implicitly a function of size of the stencil h):

vs
k =

∑
J∈stencil

φJ

(
xJ − xs

k

)
vJ = Sh[vJ ], (48)

Cs
k =

∑
J∈stencil

φJ

(
xJ − xs

k

)
CJ = Sh[CJ ]. (49)

We can also spread forces

FIB,f
J =

∑
k

φJ

(
xJ − xs

k

)
FIB,s

k = S∗h
[
FIB,s

k

]
. (50)

These operations are required so that the Lagrangian grid
can utilize interpolated values of C and u from the Eulerian
domain to calculate immersed boundary forces (the details
of this calculation are found in the previous section). Once

this force is calculated, the force needs to be spread back to
the Eulerian domain so that the equations for conservation of
momentum can be solved.

D. Variable viscosity implementation

For simulation of deformable membranes, we solve the
following Poisson equation to determine which nodes of the
fluid domain are inside the membrane boundaries:

∇2I = ∇ · G, (51)

where discretely at node J

GJ =
∑

k

nkAkφk

(
xJ − xs

k

)
.

We can subsequently set the viscosity in the fluid domain
to be

η0 = ηout + (ηin − ηout )I.

For details of this implementation, see Bagchi’s paper [58].

E. Conservation of volume for membranes

Since the divergence free character of the flow is not
preserved exactly during the interpolation step, the particles
based on a thin membrane model may undergo a gradual
volume change during the simulation (note that even though
the relative volume change is typically on the order of 10−4

and smaller in a single time step, the associated numerical
error will propagate and will cause a few percent error by
the end of the simulation). Solids are penalized via the bulk
modulus to maintain their initial volume (within 0.5%), but
a more elaborate fix is required for membranes. In order
to avoid this, we exploit the volume conservation algorithm
proposed by Mendez [59] where we use a Lagrangian mul-
tiplier �V to strictly enforce volume conservation. The main
idea is to minimize a cost function that is defined based on
Lagrangian nodal displacements δxs

I = xs,corr
I − xs

I and xs,corr
I

is the corrected nodal point:

J�V
(δxs) =

∑
I

[
δxs

I · δxs
I

] + �V

[
V

(
xs

I + δxs
I

) − V0
]
,

(52)

where V0 and V are the target and the corrected volume of
Lagrangian that are calculated using

V (xs) = 1

18

∑
α

[
xs

α,I1 · (
xs

α,I2 × xs
α,I3

)
+ xs

α,I2 · (
xs

α,I3 × xs
α,I1

)
+ xs

α,I3 · (
xs

α,I1 × xs
α,I2

)]
, (53)

where α loops over all of the faces of Lagrangian and I1, I2,
and I3 the three nodes of a face. We only outline the final
result of the derivation and refer the reader to the Appendix A
of Ref. [59] for the details. In order to calculate �V and use it
in δxs,corr

I = �V vI , a cubic equation A�3
V + B�2

V + C�V +
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D = 0 is solved where all constants and the coefficient vector
v are functions of Lagrangian nodal positions:

A = 1

18

∑
α

[vα,I1 · (vα,I2 × vα,I3) + vα,I2 · (vα,I3 × vα,I1)

+ vα,I3 · (vα,I1 × vα,I2)], (54)

B = 1

6

∑
α

[
xs

α,I1 · (vα,I2 × vα,I3) + xs
α,I2 · (vα,I3 × vα,I1)

+ xs
α,I3 · (vα,I1 × vα,I2)

]
, (55)

C = 1

6

∑
α

[
vα,I1 · (

xs
α,I2 × xs

α,I3

) + vα,I2 · (
xs

α,I3 × xs
α,I1

)
+ vs

α,I3 · (
xs

α,I1 × xs
α,I2

)]
, (56)

D = V (xs) − V 0, (57)

and

αI = − 1

12

⎧⎪⎨
⎪⎩

∑
α xI2 × xI3, I = I1∑
α xI3 × xI1, I = I2∑
α xI1 × xI2, I = I3.

(58)

F. Nondimensional equations

We can write all of the governing equations in a stan-
dard nondimensional form. The exact choice of characteristic
scales depends on the specific flow problem but without loss
of generality we can choose our characteristic length to be
that of the particle Rp, the characteristic velocity to be U ,
the characteristic stress in the fluid to be the η0U/Rp, the
characteristic stress in the particle to be μp or μ̂p/Rp (for
a solid or a membrane, respectively), and the timescale to be
Rp/U . This gives us the following nondimensional equations
to solve (where nondimensional variables and operators are
given a bar)

Re
Dv̄

Dt̄
= ∇̄ · σ̄ f = −p̄ + β∇̄2v̄ + 1 − β

De
(C − I), x ∈ �f ,

(59)

Re
Dv̄

Dt̄
= 1

Ca
∇̄ · σ̄ s, x ∈ �s, (60)

∇̄ · v̄ = 0, x ∈ �, (61)

De
�̄
C +(C − I) + α(C − I)2 = 0. (62)

We note that the viscosity may not be constant everywhere
in the simulation. If we simulate a capsule, we may desire
for there to be two different zero shear viscosities inside and
outside the membrane which we will call ηin and ηout = η0.
We also have the following nondimensional energy density
relationship in the solid:

ˆ̄W = λp

4μp

(
IC

3 − 1
) −

(
λp

2μp

+ 1

)
ln

(
IC

3

)1/2 + 1

2

(
IC

1 − 3
)
.

(63)

Additionally, nondimensional relationships for the energy
areal density are as follows for the Skalak model, neo-
Hookean model, and the bending energy:

ˆ̄W = 1

2

(
1

2
I 2

1 + I1 − I2

)
+ μ̂D

8μ̂p

I 2
2 , (64)

ˆ̄W = 1

2

(
I C̄

1 + 1

I C̄
2

− 3

)
, (65)

ˆ̄WB = κ̂b

2
(2κ̄H + c̄0)2. (66)

This leaves us with a grand total of nine dimensionless
parameters: the Reynolds number (Re = ρURp

η0
), the Debo-

rah number (De = λU
Rp

), the viscoelastic viscosity ratio (β =
η

η+ηp
), the capsule viscosity ratio (� = ηin

ηout
= ηin

η0
), the mo-

bility parameter (α), and the capillary number (Ca = η0U

Rpμp

or η0U

μ̂p
) appear in the evolution equations. Additionally, three

ratios appear in the constitutive equations for the solids: μ̂D

μ̂p
,

λp

μp
, and κ̂b = kb

Rpμ̂p
. For the studies presented in this paper, the

Reynold’s number will be smaller than 10−2, but the capillary
number and the Deborah number will be free to vary. The
capillary number quantifies the deformability of the particle
and the Deborah number quantifies the elasticity of the fluid.
Since we desire a simulation of RBCs using the Skalak model
and these systems are largely surface incompressible, we
will set the dimensionless ratio μ̂D

μ̂p
= 100. We also set the

dimensionless parameter λp

μp
= 50 for all of our simulations

presented in this study for solid deformable particles to ensure
that the volume of the particle is conserved. The bending
parameter κ̂b is generally much smaller than 1, but it will
be systematically varied in simulations presented later in
this study.

III. NUMERICAL ALGORITHMS

A. Algorithm

The following are the steps in our modified version of the
IFEM:

(1) Calculate the internal forces on the particle (La-
grangian grid) based on the particle current configuration at
time step n, xs,n

k , and the reference configuration X s
k , as well

as the particles velocity v
s,n
k , and the value of the conformation

tensor Cs,n
k . For solids the total force is decomposed as

FIB,s
k = Fel

k + FN
k + FP

k , (67)

or for membranes it can be written as

FIB,s
k = Fel

k + Fbe
k . (68)

Equations (26) and (34) can be utilized to evaluate these forces
for a deformable solid or a membrane, respectively.

(2) Spread the force to the fluid domain (Eulerian grid) at
node J :

FIB,f
J =

∑
k

FIB,s
k φJ

(
xJ − xs,n

k

)
. (69)
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FIG. 2. Snapshots of simulation in a 12×12×9Rp channel at Ca = 1. The two tagged cells will “stick” if a minimum separation is not
enforced between the cells. This procedure is shown at different dimensionless times t∗ = 20, 25, and 30. As the two tagged RBCs approach
each other, the cell in the faster flow regime (closer to the center line) smoothly slides passed the slower moving cell.

(3) Next, the Navier-Stokes and continuity equations are
solved to calculate fluid velocities v and pressure p using a
finite volume algorithm. The components of the conformation
tensor are also updated if we desire to include viscoelasticity
in our simulation. As discussed in Sec. II B, we utilize a
finite volume solver utilizing a fractional step method to
solve Navier-Stokes. The solver is based on a solver utilized
at Stanford’s Center for Turbulence Research. More details
concerning the numerical implementation of this solver can
be found in Ham [55]. The viscoleasticity is updated as six
scalar equations utilizing a log-conformation method. More
details of this algorithm can be found in papers by Richter
[48] and Yang [47]:

ρ
Dv

Dt
= ∇ · σ f + ρg + f IB,f , (70a)

∇ · v = 0, (70b)

λ
�
C +(C − I) + α(C − I)2 = 0. (70c)

(4) Next, the velocities from the Eulerian grid are inter-
polated back to the Lagrangian grid (no-slip BC). If we are
solving a viscoelastic problem, we also need to know the
conformation tensor at each Lagrangian node as well:

v
s,n+1
k =

∑
J∈stencil

vJ φJ

(
xJ − xs

k

)
, (71)

Cs,n+1
k =

∑
J∈stencil

CJ φJ

(
xJ − xs

k

)
. (72)

(5) Finally, the Lagrangian grid is updated based on the
interpolated velocities using Adams-Bashforth second-order
scheme:

xs,n+1
k = xs,n

k + �t

(
3

2
v

s,n
k − 1

2
v

s,n−1
k

)
.

In this final step, volume conservation of capsules is strictly
enforced as in Sec. II E and we resolve interparticle “sticking”

through a collision detection module which is outlined in the
next section.

B. Resolving interparticle and wall-particle
“numerical sticking”

Due to interpolation of the fluid velocity on the particle
and enforcing volume conservation in every time step, the

8
6

0

2

2

4 4

4

6 8

FIG. 3. We exploit a node-face algorithm to determine the min-
imum distance between the nodes of one deformable particle with
triangular face elements of any potentially colliding particles. The
node-face algorithm is more robust than the node-node counterpart,
as the enforced displacement of any given node is ensured to be set
distance away from the colliding surface of the other particle instead
of a subset of points on that surface. (The node-node distance check
can lead to some very degenerate behavior if the meshed triangles are
very distorted.) Illustrated above is the minimum distance between
three different nodes and a subset of one of our RBC meshes. Note
how any given node can be closest to a point, edge, or node of a given
face. If the minimum distance between the illustrated points and any
of the faces is below the minimum threshold, the points are moved
in the normal direction until they are at a distance greater than the
minimum threshold set (one Eulerian grid size).
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Proc. 1

Proc. 2

Proc. 3

RBC 3

PLT 3

RBC 1

Proc. 4
RBC 2

PLT 2

PLT 1RBC 4
(a) (b)

FIG. 4. (a) A schematic representation of the parallelization in our IFEM algorithm. The domain decomposition of the finite volume scheme
is shown with dashed lines. The particles’ ID is colored according the process to which they belong. Here, two particle types with arbitrary
shapes are considered, RBCs and PLTs (a solid deformable platelet). The communication pattern is a function of instantaneous configuration,
e.g., when spreading forces Proc. 3 needs to communicate with Proc. 1, 2, 3, and 4. Forces on RBC 3 need to be communicated to Proc. 1,
2, and 3 while forces from PLT 3 need to be communicated with Proc. 3 and 4. (b) A sample initial configuration of a simulation setup with
many particles, 256 RBCs and 128 PLTs, were considered which corresponds to 12% Ht.

minimum distance between deformable particles can become
smaller than the size of a single Eulerian mesh (this should
not occur if the particle nodes exactly follow the stream-
line of the fluid, due to zero divergence of velocity). This
has been observed previously [32,60] and here is referred
to as “numerical sticking.” In our IFEM implementation,
we make sure that pairwise minimum separation between
all particles and particles and walls are above a threshold
(see Fig. 2).

Our implementation ensures the separation between nodes
of one particle and the faces of the other particles remain at a
fixed distance from one another (denoted by node-face algo-
rithm). This is illustrated in Fig. 3. At each time step, a series
of potential collisions are determined through a bounding box

check. These potential collisions go through a dense search
where the minimum distance between any node of one particle
and the faces of all potentially colliding particles is found. If
this distance is less than the desired set distance, the node of
the particle is moved in the normal direction to ensure that it
is within compliance.

This method is superior to a node-node separation
algorithm (where all nodes of a particle have their distance
from all other potentially colliding nodes checked), as
the node-node distance check does not guarantee adequate
separation if the meshed surface triangles are highly stretched.
Since the maximum resolution of the fluid solver is one
Eulerian mesh, a minimum separation equal to a Eulerian
mesh size is chosen in our simulations.

0 50 100 150
0

2

4
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10

0 50 100 150
0

2000

4000

6000

8000

10000
(a () b)

FIG. 5. The execution time and the speedup for a cylinder with 17.73 Rp diameter and 35 Rp length. (a) The speedup as a function of the
number of processes. (b) The execution time as a function of the number of processes. The execution time for 15% and 20% Ht (307 and 409
RBCs) both with 64 PLTs are shown using “�” and “∗” symbols, respectively. Increasing the volume fraction by 5% is followed by about 5%
increase in the execution time.
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Z X

Y

Xθ
a

b

FIG. 6. Deformation of a deformable membrane or solid de-
formable particle in a shear flow. The particle is started with a
spherical shape but is evolved to a spheroidlike object where the radii
in major and minor axes are a and b, respectively. The inclination
angle θ is the angle between the major axis and the flow direction
x. The capsules and solid deformable objects undergo tank-treading
motion under the conditions studies in Secs. IV A 1 and IV A 2.

C. Parallelization

Our IFEM implementation is based on a massively paral-
lelized finite volume scheme. The fluid domain is decomposed
efficiently between several processes, as shown schematically
in Fig. 4(a).

In our IFEM implementation, the particles are assigned to
different processes according to their ID, and this distributes
the calculation of internal forces amongst the processors.
The calculated IB forces are required to be communicated
from the processor that contains the information about that
particle to the processes where the particles are physically
located in the Eulerian domain. Likewise, the velocity on the

Eulerian domain is required to be communicated back to the
processor that contains the particle which is physically in that
volume. The core part of particle parallelization is to effi-
ciently handle these communications. The optimized pattern
consists of simultaneous pairwise communications and we
minimize the number of communication levels. A sample of
an initial configuration for a multiparticle simulation is given
in Fig. 4(b).

In Fig. 5(a), the scaling with respect to the number of
processes is evaluated. A cylindrical channel with diameter
17.73 Rp and length 35 Rp is chosen to conduct this study
with 256 RBCs and 128 PLTs, which is illustrated in Fig. 4(b)
(12% volume fraction). The starting configuration is obtained
by random generation of the particle position Cartesian coor-
dinates and Euler angles. In addition, the execution time for
hematocrits of 12%, 15%, and 20%, is shown in Fig. 5(b).

The speedup of the overall execution time is ideal up to at
least 64 processes and remains close to ideal for the number of
processes tested. Adding 102 more RBCs increases the execu-
tion time only by 5% since the particle force calculation and
force spreading are not the major bottleneck of the simulation
time after proper parallelization.

IV. VERIFICATION RESULTS

To benchmark the fidelity of the code in the case of
capsule and solid deformable particles in both Newtonian
and viscoelastic fluids, the Taylor deformation D and the
inclination angle θ are calculated and compared with known
results from the literature (see Fig. 6) for simple shear flows.
For an ellipsoidal particle with major axis a and minor axis b

in the xy plane, the Taylor deformation number is defined as

D = a − b

a + b
. (73)

The major and minor axes a and b are determined in two
steps: first, the moment of inertia of the capsule is calculated

0 1 2 3 4 5
0

0.1
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0.3

0.4

0.5

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

(a) (b)

FIG. 7. The transient Taylor deformation of neo-Hookean capsules in a simple shear flow compared against the work of Le and Wong
[63] for two viscosity ratios � = 1 and 5 in (a) and (b), respectively. We compare two capillary numbers Ca = 0.15 and 0.3 at � = 1 and
Ca = 0.15 and 1.5 at � = 5. In this flow problem, the capillary number is defined as Ca = ηγ̇Rp

μ̂p
where γ̇ is the imposed shear rate.
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FIG. 8. The steady-state values of (a) Taylor deformation and (b) inclination angle with respect to the flow direction of neo-Hookean
capsules in a simple shear flow. The results are shown for three different values of the bending parameter in a simple shear flow compared
against the work of Le and Wong [63] as dashed lines. In this flow problem, the capillary number is defined as Ca = ηγ̇Rp

μ̂p
where γ̇ is the

imposed shear rate.

using the relation [61,62]

Ip = 1

5

∑
I

[(
xs

I · xs
I

)(
xs

I · nI

)
I − xs

I xs
I

(
xs

I · nI

)]
, (74)

and then an ellipsoidal body is found with the equivalent
moment of inertia which requires finding the eigenvalues of
Ip. Specifically, a and b are found as the knowns of three
analytical equations which relate the eigenvalues of Ip to
the three components of the moment of inertia for a perfect
ellipsoid.

A. Single particle tests

1. Capsule deformation in simple shear flow

Our first benchmark is the deformation of a capsule in a
shear flow, where a “capsule” is a sack of fluid enclosed by
a neo-Hookean membrane. Below in Fig. 7 we see excellent
agreement for the Taylor deformation parameter as a function
of time when compared to results from Le and Wong [63].
In the left panel of Fig. 7, capsules at two different capillary
numbers with a viscosity ratio of one have their Taylor defor-
mation compared to known results. Similarly, the right side of
Fig. 7 demonstrates good agreement for the two capsules that
have a much higher viscosity ratio of 5. The results show that
increasing capillary number increases the amount of steady
total deformation as expected, but increasing viscosity ratio
has two key effects: oscillations in D which were not present
in the lower viscosity ratio case are now present, and the final
amount of deformation is reduced at a fixed capillary number.

We can also compare the steady deformation parameter
against results from Le and Wong [63] for a variety of bending
parameters. The bending parameter here is defined to be
κ̂b = kb

Rpμp
. In Fig. 8 we see excellent agreement across a

wide range of capillary numbers. Our data are presented as
open symbols which are plotted alongside dashed lines that
represent the results from Le and Wong. We note from this
set of studies that particles tend to deform in a near linear

relationship with capillary number for small capillary number
and then a sublinear behavior is observed after capillary
numbers greater than 0.2. As the bending parameter increases
and the membrane stiffens, a notable reduction in Taylor
deformation is observed.

2. Solid deformable particle deformation
in viscoelastic shear flows

The deformation of single capsules has been shown to be
different in non-Newtonian [64] or viscoelastic [8] liquids. We
thus compare the deformation of solid neo-Hookean particles
suspended in viscoelastic shear flows with previous studies
by Villone et al. [26]. Our IFEM results are superimposed
over their ALE-FEM results for two capillary numbers of 0.1
and 0.2 and for Deborah numbers (γ̇ λ) ranging from 0 to 5
utilizing the Giesekus model with α = 0.2 in Fig. 9. We see
good agreement with the work by Villone for the entire range
of Deborah numbers. The results demonstrate that adding
viscoelasticity to the fluid has the effect of reducing the overall
deformation. Additionally, the particle tends to align more in
the flow direction as the Deborah number increases. Both of
these effects plateau at sufficiently high Deborah number.

3. Migration of a single RBC

Blood is a complex fluid which is composed of three main
cellular components: red blood cells (RBCs), platelets, and
white blood cells. RBCs occupy around 45% of the volume
of the whole blood and their shape evolution is of central
importance in the microcirculation [3].

As RBCs are exposed to the blood stream, they deform
and consequently migrate away from the blood vessel wall.
This migration is partly due to a wall-induced lift force,
where the corresponding lift velocity has been shown to scale
with Sij

Y 2
com

[22]. Here, Sij is the isotropic part of the second
moment of particle surface traction which is known as the
stresslet and Ycom is the vertical distance with respect to the
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FIG. 9. Results for deformation D and inclination angle θ as a function of Deborah number for two capillary numbers (0.1 and 0.2). The
dashed lines are results from Villone [26] utilizing an ALE-FEM method. Our results are shown as open symbols. The fluid considered here is
a Giesekus fluid with α = 0.2. In this flow problem, the capillary number is defined as Ca = ηγ̇

μp
where γ̇ is the imposed shear rate.

walls. There is another lift mechanism in pressure driven flows
which has its origin in the nonzero curvature of the flow field.
This mechanism tends to push the particle towards the region
with lower shear rates, namely, closer to the center line, in
order to minimize particle deformation [66,67]. It has been
shown that the lift velocity as a result of the combination
of these two effects follows a form ulift = ξ γ̇

Y α
com

, where ξ and
α are constants that generally depend on Ca, �, and the
height of the channel which we denote as H [65]. There is
an important correspondence between the mode of particle
rotation (tumbling vs tank treading) and the lift velocity. We
expect reduction of the lift velocity in the tumbling regime,
which can be explained by the resulting symmetry of the
average configuration [65]. At Ca = 0.25, the particle is in the
tumbling regime [23] and therefore the migration is slower.
However, if Ca is large enough, i.e., Ca � 1, the particle is
in the tank-threading regime and the lift velocity becomes a
weak function of Ca. This is consistent with our results shown
in Fig. 10. The agreement between our simulations using
IFEM approach and BEM simulations of Qi and Shaqfeh [65]
is remarkable.

B. Multiparticle simulations

1. RBC suspension

Since the suspension of RBCs in plasma is nondilute,
the hydrodynamic interaction between individual RBCs is
nontrivial and affect their shape evolution and dynamics
[65,68,69]. As a result, their trajectories are a strong function
of the initial position, flow history, Ca, and the total volume
fraction of RBCs (denoted by hematocrit, Ht).

In Fig. 11, the temporal evolution of RBC configuration
in suspension with 10% Ht is shown at five different dimen-
sionless times, t∗ = 0.25, 25, 100, 375, and 800. We clearly
observe the formation of a cell-free layer close to the channel
walls at Y = ±6 which remains unchanged after about 300
dimensionless times. This layer is of biological importance: it
is known to contribute to the reduction of the blood viscosity
as blood perfuses through the smaller vessels [3,12]. Notably,

the cells closer to the walls are more elongated and undergo
tank-threading motion due to a larger effective Ca (since the
shear rate is zero at the center of a pressure driven channel
flow and is the highest closer to the walls).

In general, the steady-state distribution of RBCs across the
channel height (normal to the flow direction) is a function of
the channel dimensions Ca, and Ht. In order to get the steady-
state configuration, first we calculate the temporal evolution

0 50 100 150 200 250
-6

-5

-4

-3

-2

-1

FIG. 10. Migration (or hydrodynamic lift) of a single red blood
cell in a pressure driven channel flow. The domain is periodic in
X and Z directions. The dimensionless channel dimensions are
12×12×9 where the length is nondimensionalized with the effective
radius of RBCs which is 2.82 μm. Plotted above are the transient
lift trajectories: the vertical distance of RBC center of mass Ycom

as a function of dimensionless time t∗ = γ̇ t at three different Ca =
0.25, 1, and 2. The lines are from a boundary element simulation
performed in our group from Ref. [65]. The symbols are the results
of immersed finite-element simulations. In this flow problem the
capillary number is defined as Ca = ηγ̇Rp

μ̂p
where γ̇ is the imposed

shear rate at the wall if no cell is present and Rp is the effective
radius of the RBC.
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FIG. 11. The transient evolution of RBC configuration in a 10% Ht blood suspension and at Ca = 1. The snapshots are given for five
dimensionless times, t∗ = 0.25, 25, 100, 375, and 800. The channel size is 12×12×9 (nondimensionalized with the effective radius of an
RBC). The trajectories of individual cells are also given. We clearly see a cellular individualism, i.e., the temporal evolution of the cell shape
strongly depends on its initial position and the history of the flow.

of the second moment of the concentration profile

M2 =
∑
Y

[N̄cell − Ncell(Y )]Y 2
com, (75)

where Ncell(Y ) is the number of RBCs at a particular height
normal to the flow and N̄cell is its average (the total number
of cells normalized by the number of bins which is 15 in
Fig. 12). Based on M2, it takes about 500 dimensionless times
to achieve steady-state behavior. The concentration profile is
then averaged between t∗ = 500 and 1000 and is shown in
Fig. 12. As expected, we see a strong peak at the center which
signifies the accumulation of RBCs closer to the center [65].
There are two smaller peaks closer to the walls which are
presumably the locations where RBC migration is balanced
by the hydrodynamic interaction with the rest of the cells in
the particle-laden region of the channel.

2. Hyperelastic solids in a viscoelastic medium

Before investigating suspensions with a viscoelastic sus-
pending medium, a series of Newtonian suspensions in shear
flow were investigated to ensure the multiparticle aspect of
our method was functioning correctly. A series of Ca numbers
between 0.02 and 2 were examined for two finite volume
fractions (φ = 0.11, 0.22). In Fig. 13 we see that our average

Taylor deformation parameter is in good agreement with
the results published by Rosti [10]. As seen previously, the
average deformation increases strongly with Ca but relatively
weakly in φ.

Finally, to demonstrate the ability of our platform to handle
suspensions of many particles, we simulated a series of multi-
particle flows with solid deformable particles in a viscoelastic
medium under shear. A series of Deborah numbers ranging
from 0 to 2 were examined with volume fractions φ, ranging
from 0.05 to 0.2 at a fixed capillary number of 0.1. The
suspending medium is a Giesekus fluid with β = 0.5 and
α = 0.1. Below, snapshots of the flow are captured at time
equal to five dimensionless times (with respect to the inverse
shear rate) in Fig. 14. Additionally, the average behavior of
the Taylor deformation number is presented over a range of
Deborah numbers (while holding φ = 0.10) and over a range
of volume fractions (while holding De=1) in Figs. 14(c) and
14(f), respectively. The averages presented in this case are
over all particles and over the last three dimensionless times.
The trends displayed in this plot show that as volume fraction
increases, the particles are forced to interact both with each
other and with the walls which tends to increase the amount
of deformation present. The deformation tends to decrease
as Deborah number increases at a constant volume fraction
(a very similar result to the single particle case in Fig. 9).
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FIG. 12. (a) The second moment of the concentration distribution determined based on Eq. (75). The channel size is 12×12×9
(nondimensionalized with the effective radius of an RBC). The results of our IFEM algorithm are shown with red open square symbols
and are compared to the BEM simulations of Qi and Shaqfeh [65] with blue filled square symbols. (b) The steady-state distribution as a
function of location in the gradient location. The final result is obtained by averaging the concentration profile in the range t∗ = 500–1000.
Both M2 and steady-state profile using IFEM are in agreement with the BEM results.

3. Suspension of RBCs and PLTs

In this section, a whole blood simulation was performed
at 10% Ht and 350×109 per liter platelet concentration (31
RBCs and 10 PLTs). While the membrane model is used for
RBCs, a solid deformable model is used for PLTs, thereby
introducing a mixed particle type simulation. The platelet
capillary number is set based on the modulus data from Haga
et al. [70] introducing finite deformability to the platelets. This

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

FIG. 13. We compare results of the average Taylor deforma-
tion over a range of Ca numbers (0.02–0.2) and volume frac-
tions for a Newtonian suspension against the results published
by Rosti [10]. The box size is 6×6×6 (nondimensionalized with
the diameter of a particle). The blue circles and red squares are
our results for shear flows at concentrated volume fractions (φ =
0.11, 0.22, respectively). The green diamonds are data from a dilute
case (φ = 0.0025) which is compared against the analytic results
in Gao [1]. Good agreement is seen across the entire range of
parameters. In this flow problem, the capillary number is defined as
Ca = ηγ̇

μp
where γ̇ is the imposed shear rate.

immersed boundary simulation introduces mixed membranes
and solid deformable objects in viscous flows and introduces
the key feature of platelet deformability. In Fig. 15 we show
the results for this whole blood simulation.

We see margination for the PLTs located between the
channel center and the walls in Fig. 15. The red trajectories (�
symbols) highlighted in the center panel show two trajectories
where platelets clearly migrate toward the upper and lower
walls. In addition, the PLTs that start very close to the wall
slowly lift due to the finite Ca of the simulated platelets as
highlighted by the green trajectories with circle symbols (a
feature not seen when simulating rigid platelets). The PLTs
near the center of the channel can persist longer in the center
as illustrated by the blue trace with diamond symbols in the
center panel. Overall, the margination behavior is consistent
with simulations previously performed by our group [18] and
other groups [71].

Note that it is commonly assumed that PLTs are sufficiently
stiff such that they undergo Jeffrey orbits in a simple shear
flow [45,72]. However, PLTs in our simulation undergo con-
siderable deformation (see, for instance, the PLT colored in
green which makes a crescent shape while interacting with
a cell in the left panel of Fig. 15). The introduced platelet
deformability additionally leads to platelets lifting slightly
away from the wall which may lead to reduced platelet
interaction with the wall at lower hematocrit. The right panel
in Fig. 15 shows the PLT distribution evaluated from 200 to
800 dimensionless times and demonstrates that despite this
extra lift that the platelets sufficiently marginate, producing
similar results from previous whole blood studies with rigid
platelets.

V. CONCLUSIONS

A full 3D numerical algorithm was developed to simulate
mixed type multiparticle suspensions in a Newtonian or vis-
coelastic fluid. An immersed-finite-element method (IFEM)
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FIG. 14. In (a)–(c) the volume fraction is varied at De=1 and Ca = 0.1. In (a) the volume fraction is 5% while in (b) it is set to 20% The
results for the trend in the average Taylor deformation number are presented as a function of volume fraction in (c). The average is calculated
over all particles over the last three dimensionless times. In (d)–(f) Deborah number is varied at a constant volume fraction of 10% and Ca =
0.1. In (c) the Deborah number is 0 (Newtonian) while in (d) it is 2. The average Taylor deformation is plotted vs Deborah number in (f). In all
panels the fluid considered is a Giesekus fluid with α = 0.1 and β = 0.5. The box size is 6×6×6 (nondimensionalized with the diameter of a
particle) with the X and Z directions are periodic. In this flow problem, the capillary number is defined as Ca = ηγ̇

μp
where γ̇ is the imposed

shear rate.

was combined with a finite volume scheme (FVM) to fully
resolve the deformation of Lagrangian solid boundaries on
top of a fixed Eulerian grid. A moving least square (MLS)
approach was utilized to exchange force and velocity infor-
mation between Lagrangian and Eulerian frames. Different
types of membrane and solid models, namely, neo-Hookean
capsules, red blood cells, and hyperelastic deformable solids,
were implemented. While the volume of the solid structure

is implicitly conserved through a penalty to within 0.5%, a
volume conservation protocol was enforced for membrane
models. In addition, an indicator function was determined to
impose viscosity contrast between inner and outer membrane
regions. An efficient node-face collision algorithm was devel-
oped to avoid numerical sticking.

Several single particle and multiparticle simulations were
performed to evaluate the fidelity of our IFEM-FVM

0 200 400 600 800
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0
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FIG. 15. The transient evolution of RBC and PLT configuration at 10% Ht and 350×109 per liter PLT concentration. The channel
dimensions are 12×12×9 where the length is nondimensionalized with the effective radius of the RBCs. RBCs shown in red are larger
particles with biconcave shape and PLTs shown in gray are smaller ellipsoidal particles. The Ca number is 1 for RBCs and 0.0421 for
PLTs (calculated based on the shear modulus reported by Haga et al. [70]). (a) A simulation snapshot at t∗ = 20.5 in the XY plane.
(b) The trajectories of PLTs as a function of dimensionless time. (c) The platelet concentration distribution evaluated from 200 to 800
dimensionless times.
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methodology. Single capsules were simulated in a shear flow
at different Ca numbers and viscosity ratios. The steady-state
and transient Taylor deformation D and inclination angle θ

were compared with the results of a front tracking algorithm
by Le and Wong [63]. The migration of single red blood cells
was examined in a pressure driven flow which has roots in the
deformablility and shape changes of the cell membrane in the
vicinity of a solid boundary and plays a crucial rule in forming
the Fahraeus-Lindqvist layer. We confirmed the existence of
such lifting mechanism at long times [t∗ ≈ O(1000)] and
the trajectories at different Ca were in very good agreement
with the BEM simulations of Qi and Shaqfeh [65]. Next,
the effect of changing elasticity of a Giesekus fluid on the
steady-state shape of solid deformable spheres was evaluated
in shear flow. The resulting D and θ demonstrated very
good agreement with the result of Gao and Villone [1,27].
Additionally, multiparticle deformable solids in Newtonian
suspensions were benchmarked against results in work by
Rosti and co-workers [10]. Our multiparticle RBC simulations
at 10% hematocrit were compared to results from a BEM
simulation by Qi and Shaqfeh [65] and we demonstrated
excellent agreement in particle distribution. This result for
the collective motion of red blood cells gives us confidence
in our model’s ability to handle many particle suspensions.
Additionally, the transient particle distributions agree with the
ones from the BEM simulations.

Finally, a set of simulations at finite Deborah number,
capillary number, and volume fraction were performed in
simple shear flow to examine the collective effects of many
suspended elastic particles in a viscoelastic flow. The average
Taylor deformation was seen to increase in volume fraction
and decrease in Deborah number which suggests that vis-
coelasticity serves to reduce the stress on the particle while
increased volume fraction serves to increase it. Multiparticle
whole blood simulations with finitely deformable platelets
were also conducted to demonstrate the simulation plat-
forms ability to simulate mixed particle types. The expected
margination physics is resolved as well as new lifting physics
due to the finite deformation of the platelets.
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