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Improved fully implicit discrete-velocity method for efficient simulation of flows in all flow regimes
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In this work, an improved fully implicit discrete-velocity method (DVM) is developed for flows over all
Knudsen numbers. The improvements aim to overcome the drawbacks of the conventional semi-implicit DVM
which performs with low accuracy and efficiency in the continuum flow regime. These defects originate from
the explicit discretization of the equilibrium state in the collision term at the cell center and the ignorance of the
particle collision effect in the calculation of numerical flux on the cell interface. To alleviate these drawbacks,
the present method innovatively incorporates an implicit prediction step into the conventional model. In this
step, the macroscopic governing equation is resolved to estimate the equilibrium state, and the local solution of
the Boltzmann equation with the collision term is adopted to physically reconstruct the macroscopic numerical
flux. Two major merits are brought by this strategy. On one hand, by using the predicted equilibrium state, the
collision term in the discrete velocity Boltzmann equation can be discretized implicitly, which significantly
improves the computational efficiency. On the other hand, the consideration of the collision effect in the
physical reconstruction of the numerical flux on the cell interface benefits the solution accuracy, especially in the
continuum flow regime. Meanwhile, the developed scheme well keeps the inherent simplicity of the conventional
semi-implicit DVM by maintaining the basic resolving process of distribution functions. Numerical results show
that in the rarefied flow regime, the improved scheme gives a similar solution as the conventional semi-implicit
DVM with little extra computational efforts, while in the continuum flow regime, the present scheme shows
higher efficiency and accuracy.
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I. INTRODUCTION

The degree of gas rarefaction is usually characterized by
the Knudsen (Kn) number, which is defined as the ratio of
the mean free path to the characteristic length [1]. In practical
engineering problems, the local Knudsen number may vary
significantly over several orders of magnitude. As shown in
the work of Jiang [2] and Xu and Liu [3], for hypersonic
flow around a flying vehicle at Mach number Ma = 4 and
Reynolds number Re = 59 373, the minimum and maximum
local Knudsen numbers are, respectively, 7.61 × 10−5 and
19.9. Such vast variation of Knudsen number means that
various flow physics ranging from the free molecular flow
regime (Kn � 10) to the continuum flow regime (Kn < 10−2)
simultaneously exist in different parts of the vehicle. Exper-
imental investigation of such flow problems is very difficult
and expensive in the current stage. Numerical simulation is
thus a preferable solution. To do that, it is necessary to develop
an accurate and efficient numerical method for all Knudsen
number flows.

The Boltzmann equation describes the time evolution of
the gas distribution function, which is completely free from
the continuum assumption. Thus, it is theoretically possible to
develop a numerical method for the solution of the Boltzmann
equation that is valid over the full spectrum of flow regimes.

*Corresponding author: mpeshuc@nus.edu.sg

Resolving the Boltzmann equation requires numerical integra-
tion over the particle velocity space. In practice, the infinite
particle velocity space is usually truncated to a certain region
and discretized by a set of discrete-velocity points [4–8].
The resulting governing equation is commonly known as
the discrete-velocity Boltzmann equation (DVBE) and the
numerical method for solving the DVBE is generally called
the discrete-velocity method (DVM) or the discrete ordinate
method (DOM) [9–13]. In DVM, the finite volume method
(FVM) is frequently used to discretize the DVBE, while the
numerical flux at the cell interface and the collision term of
DVBE at the cell center are calculated by different ways.

In the conventional DVM, the numerical flux is usually
computed by the upwind scheme in which only the particle
transport process is considered [4,5,10,14–18]. This process
is equivalent to reconstructing the numerical flux by solving
the collisionless Boltzmann equation on the cell interface. The
motivation for this strategy is to simplify the implementa-
tion. Such simplification can provide accurate and efficient
prediction for high Knudsen number flows in which the
particle free transport mechanism dominates the solutions,
but will deteriorate the solution accuracy for the simulation
of continuum flows. The reason for the deterioration is that
the ignored particle collisions would intensively take place in
this flow regime and have a significant effect on the solution.
Too much numerical dissipation is thus introduced by the
simplification, due to which very fine mesh size (of the order
of the mean free path) is needed to ensure accuracy. For the
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purpose of improving computational efficiency, explorations
have been made to incorporate the implicit technique into the
conventional DVM [10,19–22]. The essential issue in implicit
manipulation is to approximate the equilibrium state at the
new time level gn+1, which is utilized in implicit discretization
of the collision term. By simply approximating gn+1 with gn,
an implicit DVM was developed by Yang and Huang [10] and
Aoki et al. [19]. A similar strategy was used by Titarev [20,21]
to propose an implicit DVM for rarefied flows on unstructured
meshes. In fact, these methods could be categorized into
semi-implicit DVM since only the loss term −f (because it
gives negative distribution) is treated implicitly in the collision
term and the equilibrium state g (the gain term) is still
discretized explicitly. As commented by Mieussens [22], the
decoupling of the gain and the loss terms may slow down the
convergence rate considerably in the continuum flow regime.
To overcome this drawback, Mieussens [22] approximated
gn+1 by a mapping between the equilibrium state gn and the
gas distribution functions f n and f n+1, and then developed a
linearized implicit DVM for the simulation of rarefied flows.
In his method, the mapping corresponds to a Jacobian matrix
in the scale of the number of discrete-velocity points, which
significantly complicates the algorithm.

Apart from the exploration in the implicit time-marching
scheme, special attention has been paid to improve the accu-
racy and efficiency of the conventional DVM in the continuum
flow regime. Two representative outcomes are the unified gas
kinetic scheme (UGKS) [3,6,23–26] and the discrete unified
gas kinetic scheme (DUGKS) [27–30]. These two schemes
are both developed within the framework of DVM, but utilize
the local solution of Boltzmann equation with the collision
term to reconstruct the numerical fluxes on the cell interface.
The consideration of the collision effect endows these two
schemes with higher robustness in physics. Correspondingly,
they can give reasonable prediction of flow prosperities over
all flow regimes. In addition, since the macroscopic and the
microscopic governing equations are solved simultaneously
at each time step in UGKS, gn+1 can be easily estimated from
the solution of the macroscopic governing equation. Accord-
ingly, the fully implicit discretization can be implemented
straightforwardly when solving the DVBE. By introducing
the classical lower-upper symmetric Gauss-Seidel (LU-SGS)
method to solve both the macroscopic and the microscopic
governing equations, a fully implicit UGKS was constructed
by Zhu et al. [31] recently. In their method, the drawback
of low convergence rate in the continuum flow regime of
the conventional semi-implicit DVM is overcome effectively.
However, this scheme needs to calculate the local integral
solution of the Boltzmann equation on the cell interface when
resolving the DVBE, which complicates the computation and
sacrifices the efficiency of the conventional DVM [4,5,10,14–
18] in the rarefied flow regime.

From the above discussions, we can see that the existing
DVM or DVM-based algorithms (UGKS or DUGKS) cannot
well balance the numerical accuracy and the efficiency in dif-
ferent flow regimes. The conventional DVM performs poorly
in the continuum flow regime because it ignores the particle
collision effect in reconstructing numerical fluxes. UGKS or
DUGKS could fix this flaw and give accurate predictions in
the continuum flow regime, but trade off the simplicity and

computational efficiency in rarefied flow regime [32]. The
motivation of the present work is to develop an improved
implicit DVM which ensures the accuracy and efficiency over
all flow regimes. To overcome the defect of low efficiency
of the conventional semi-implicit DVM in the continuum
flow regime, an implicit prediction step is introduced in the
improved model to estimate the equilibrium state, which
enables the implicit discretization of the collision term in
DVBE. In the prediction step, the macroscopic governing
equation recovered from the Boltzmann equation is solved
by the classical LU-SGS method. Furthermore, to overcome
the drawback of poor accuracy of the conventional semi-
implicit DVM in the continuum flow regime, the macroscopic
numerical fluxes on the cell interface are reconstructed from
the physical solution with the collision effect. Meanwhile,
since the collision effect has a negligible effect on the solution
in the highly rarefied flow regime [33,34], the conventional
approach of reconstructing microscopic numerical flux in the
DVBE is adopted to keep the inherent simplicity of con-
ventional DVM. In other words, the upwind scheme is still
adopted to evaluate numerical fluxes in the evolution of dis-
tribution functions. Further analyses performed in this paper
will show that the physically reconstructed numerical flux in
the macroscopic equation is actually a self-adaptive combina-
tion of the microscopic reconstruction from the collisionless
Boltzmann solver (conventional DVM) and the macroscopic
reconstruction from the Navier-Stokes solver [35–38]. The
derived adaptive parameter turns out to be a function of
the physical time step �tp and the collision timescale τ ,
which mathematically interprets the relative importance of
the collision effect in various flow regimes. In the rarefied
flow regime, the macroscopic part has almost no effect on
the reconstruction of numerical flux since �tp � τ , while
it plays an important role in the continuum flow regime.
As a result, the developed scheme shows great flexibility: it
converges toward the conventional DVM in the free molecular
flow regime and approaches to the Navier-Stokes solver in the
continuum flow regime. Such characteristic fulfills our initial
expectation that the improved implicit DVM can give accurate
and efficient solutions to various problems over the whole
flow regimes. The performance of the developed scheme will
be validated by its application to several flow problems from
the free molecular flow regime to the continuum flow regime.

II. GOVERNING EQUATIONS

The present work starts from the Boltzmann equation with
the Bhatnagar-Gross-Krook-Shakhov (BGK-Shakhov) model
[39], which reads

∂f

∂t
+ ξ ·∇f = f eq − f

τ
, (1)

where f (x, ξ , η, ζ , t ) is the gas distribution function that
depends on the physical space x = (x1, . . . , xD ), particle ve-
locity space (ξ , η, ζ ), and time t . Here, ξ = (ξ1, . . . , ξD ) is the
particle velocity in D-dimensional space; η = (ξD+1, . . . , ξ3)
is a vector of dimension (3 − D) consisting of the rest compo-
nents of the particle velocity (ξ1, ξ2, ξ3) in three-dimensional
space; and ζ = (ζ1, . . . , ζN ) is a vector of dimension N repre-
senting the internal degree of freedom of molecules. The heat
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specific ratio γ is determined by γ = (N + 5)/(N + 3). f eq

is the equilibrium state approached by f through particle col-
lisions within a collision timescale τ . For the BGK-Shakhov
model, the equilibrium state f eq can be written as

f eq = f
eq
M

[
1 + (1 − Pr)

c · q
5pRT

(
c2 + η2

RT
− 5

)]
. (2)

Here, f
eq
M is the Maxwellian distribution function given by

f
eq
M = ρ

(2πRT )(3+N )/2
exp

[
−c2 + η2 + ζ 2

2RT

]
, (3)

and Pr is the Prandtl number. c = ξ − u is the peculiar ve-
locity of the particle, u is the velocity of the mean flow, q
is the heat flux, R is the gas constant, ρ is the density, p is
the pressure, and T is the temperature. Note that in this work,
the vector is expressed by the bold style and its magnitude is
represented by the italic style (such as c = |c|). It can be seen
from Eq. (2) that the equilibrium state f eq is fully determined
by the macroscopic flow variables.

The relations between the conservative variables W, heat
flux q, stress tensor τ , and the distribution function f are as
follows:

W = (ρ, ρu, ρE)T =
∫

ψf dE, (4)

q = 1

2

∫
c(c2 + η2 + ζ 2)f dE, (5)

τ =
∫

ccf dE − pI, (6)

where ψ = [1, ξ , (ξ 2 + η2 + ζ 2)/2]T is the moment, dE =
dξdηdζ is the volume element in the particle velocity space,
and I is the unit tensor. In order to solve Eq. (1) numerically,
the particle velocity space should be discretized into a set of
discrete velocities ξα , (α = 1, . . . , NV ). The resultant equa-
tion is the DVBE given by

∂fα

∂t
+ ξα · ∇fα = f

eq
α − fα

τ
, (7)

where fα and f
eq
α are the discrete distribution function and

its equilibrium state along the direction of discrete particle
velocity ξα . In the practical calculation, two reduced distribu-
tion functions are often introduced to replace the distribution
function fα in order to save the virtual memory and compu-
tational effort since the evolution of fα depends only on the
D-dimensional particle velocity ξ and is irrelevant to η and ζ .
The details can be found in Refs. [9,13,28].

III. CONVENTIONAL SEMI-IMPLICIT DVM FOR
SOLVING DVBE

Before introducing the improved implicit DVM, the con-
ventional semi-implicit DVM is briefly reviewed. The term
“semi-implicit” comes from the fact that only the loss term
is discretized implicitly and the equilibrium state is still
calculated explicitly in the conventional model [10,19–21]. In
general, the semi-implicit discretization form of Eq. (7) can

be written as

f n+1
α − f n

α

�t
+ ξα ·∇f n+1

α = f
eq,n
α − f n+1

α

τ n
, (8)

where the superscript n represents the current iteration step.
�t is the time step for implicit discretization determined by

�t = σ
�x

ξmax + cs

. (9)

Here, σ is the associated Courant-Friedrichs-Lewy (CFL)
number, which can be set larger than one to achieve higher
efficiency. ξmax is the maximum discrete particle velocity,
�x is the grid spacing, and cs is the sound speed. To solve
Eq. (8), the following delta form of the distribution function
is commonly adopted:

�f n+1
α = f n+1

α − f n
α . (10)

By substituting Eq. (10) into Eq. (8), we have

�f n+1
α

�t
+ �f n+1

α

τ n
+ ξα · ∇(

�f n+1
α

)
= f

eq,n
α − f n

α

τn
− ξα ·∇f n

α . (11)

Integrating Eq. (11) over a control volume V yields(
1

�t
+ 1

τn

) ∫
V

�f n+1
α dV +

∫
∂V

n · ξα�f n+1
∂V,αdS = Resn

α,

(12)

where Resn
α is the microscopic residual given by

Resn
α = 1

τn

∫
V

(
f eq,n

α − f n
α

)
dV −

∫
∂V

n · ξαf n
∂V,αdS. (13)

Here, n denotes the outward normal vector on the surface
of the control volume, and ∂V represents the surface of the
control volume.

Since �f n+1
α eventually reduces to zero for steady flow

problems, �f n+1
∂V,α on the left-hand side of Eq. (12) can be

simply approximated by the first-order upwind scheme to
obtain a simpler iteration scheme. As a result, the discretized
form of Eq. (12) in grid cell i can be written as⎛

⎝ Vi

�ti
+ Vi

τn
i

+ 1

2

∑
j∈N (i)

|nij · ξα|Sij

⎞
⎠�f n+1

i,a

+ 1

2

∑
j∈N (i)

(nij · ξα − |nij · ξα|)Sij�f n+1
j,a = Resn

i,α (14)

and

Resn
i,α = Vi

τn
i

(
f

eq,n

i,α − f n
i,α

) −
∑

j∈N (i)

nij · ξαSijf
n
ij,a. (15)

Equation (14) can be simply written as

Aij�f n+1
j,a = Resn

i,α, (16)

where N (i) denotes the set of neighboring cells of cell i,
Sij is the area of the interface shared by cell i and cell j ,
nij is the normal vector of the cell interface directing from
cell i to cell j , and Aij is the coefficient matrix derived
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FIG. 1. Distribution function at the cell interface determined by
the local solution of the collisionless Boltzmann equation with a
piecewise constant distribution.

from Eq. (14). Equation (16) can be solved easily by using
the classical lower-upper symmetric Gauss-Seidel (LU-SGS)
method [40,41].

The second term on the right-hand side of Eq. (15) is the
numerical flux of the distribution function at the cell interface.
To calculate the numerical flux, the distribution function at
the cell interface f n

ij,a should be determined in advance. In
the conventional semi-implicit DVM, f n

ij,a is actually recon-
structed from the local solution of following the collisionless
Boltzmann equation with a piecewise constant distribution for
the distribution function at the cell interface (see Fig. 1),

∂fα

∂t
+ ξα ·∇fα = 0, (17a)

f (x, ξα, 0) =
{

f
L,n
ij,α , nij · (xij − x) � 0

f
R,n
ij,α , nij · (xij − x) < 0,

(17b)

where xij ∈ ∂V is the location of the midpoint on the cell
interface shared by cell i and cell j . f

L,n
ij,α and f

R,n
ij,α are the

piecewise constant distributions at the left and the right sides
of the cell interface, which are calculated by the second-order
scheme with slope limiter function in this work,

f
L,n
ij,α = f n

i,α + (xij − xi ) · σ n
i,α,

f
R,n
ij,α = f n

j,α + (xij − xj ) · σ n
j,α.

(18)

Here, xi and xj are the coordinates of the cell centers of cell i

and cell j , respectively. σ n
i,α and σ n

j,α are the slopes with the
slope limiter of f n

i,α and f n
j,α . In this study, the van Leer slope

limiter [42] is adopted.
The solution of Eq. (17a) gives

f n
ij,a = f (xij , ξα,�tp ) = f (xij − ξα�tp, ξα, 0), (19)

where �tp is the physical time step for calculation of the
numerical flux, which is restrained by the following CFL
condition:

�tp = σp

�x

ξmax + cs

. (20)

Here, σp is the associated CFL number, which is less than
one. Note that �tp is different from the time step for implicit
iteration �t in Eq. (9). In order to differ the distribution func-
tion computed by the local solution of the Boltzmann equation
with the collision term, we denote the distribution function
reconstructed from the collisionless Boltzmann equation by
the subscript DV M hereinafter. By substituting Eq. (17b) into

Eq. (19), we have

f n
ij,a = fDVM(xij , ξα,�tp )

= H (nij · ξα )f L,n
ij,α + [1 − H (nij · ξα )]f R,n

ij,α , (21)

where H (nij · ξα ) is the Heaviside function, H (nij · ξα ) = 1
for nij · ξα � 0 and H (nij · ξα ) = 0 for nij · ξα < 0. Once
f n

ij,α is obtained, the microscopic residual Resn
i,α can be

calculated straightforwardly by Eq. (15) and the delta form
of the distribution function is then determined by solving
Eq. (16). Finally, the distribution functions at the cell centers
are marched to a new time level n + 1 via Eq. (10), and the
macroscopic flow variables can be updated by Eqs. (4)–(6).

IV. IMPROVED FULLY IMPLICIT DVM FOR ALL
KNUDSEN NUMBER FLOWS

A. Solution of microscopic and macroscopic
governing equations

Two major defects have been recognized in the conven-
tional semi-implicit DVM [10,19]. One defect is that the
explicit discretization of the equilibrium state in the collision
term may considerably slow down the convergence rate in
the continuum flow regime [22]. The other defect is that
the effect of particle collisions is ignored in the calculation
of numerical flux on the cell interface. As commented by
Xu [43], this treatment yields a direct single scale DVM,
which requires a small cell size in comparison with the mean
free path to get reasonable solutions. For the simulation of
continuum flows at high Reynolds number, it is numerically
challenging to satisfy such constraint since the mean free path
is very small. Consequently, the conventional semi-implicit
DVM gives less accurate results than the Navier-Stokes solver
in the continuum flow regime.

In order to improve the computational efficiency and solu-
tion accuracy of the conventional semi-implicit DVM in the
continuum flow regime, a fully implicit DVM is developed
in this work. Different from the conventional semi-implicit
DVM, both the gain and the loss terms are discretized im-
plicitly in this method. As a result, Eq. (7) can be discretized
as

f n+1
α − f n

α

�t
+ ξα · ∇f n+1

α = f
eq,n+1
α − f n+1

α

τ n+1
. (22)

Similar to the solution process of Eq. (8), after introducing the
delta form of the distribution function and integrating Eq. (22)
over a control volume V , we have⎛
⎝ Vi

�ti
+ Vi

τn+1
i

+ 1

2

∑
j∈N (i)

|nij · ξα|Sij

⎞
⎠�f n+1

i,a

+ 1

2

∑
j∈N (i)

(nij · ξα − |nij · ξα|)Sij�f n+1
j,a = Res

n

i,α, (23)

with the microscopic residual of

Res
n

i,α = Vi

τn+1
i

(
f

eq,n+1
i,α − f n

i,α

)
−

∑
j∈N (i)

nij · ξαSijfDVM(xij , ξ ,�tp ). (24)
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Equation (23) can also be solved by using the classical LU-
SGS method [40,41]. As shown in Eq. (24), in the fully im-
plicit DVM, the key is to calculate the predicted equilibrium

state f
eq,n+1
α , which is equivalent to estimate conservative

variables at the cell center at the new time level W
n+1

.
To determine W

n+1
, an implicit prediction step is intro-

duced to solve the macroscopic governing equation. Taking
conservative moments of Eq. (22), we have

W
n+1 − Wn

�t
+ ∇ · Fw,n+1 = 0, (25)

where Fw,n+1 is the numerical flux of the macroscopic govern-
ing equation at time level n + 1. When the LU-SGS method
is utilized to solve Eq. (25), Fw,n+1 can be linearized by the
macroscopic numerical flux at time level n, which is given by

Fw,n = Fw(x,�tp ) = 〈ξψf n〉α. (26)

The symbol 〈f 〉α denotes the quadrature of f in the dis-
crete velocity space, i.e., the summation, 〈f 〉α = ∑NV

α=1 wαfα ,
where wα is the associated quadrature weight at the discrete-
velocity point ξα . When adopting the finite volume strategy
to solve Eq. (25), it is essential to evaluate the flux Fw,n (or
the distribution function f n

α ) on the cell interface. In UGKS
[3,6,23–26], the particle transport process and its collision ef-
fect are considered simultaneously by reconstructing f n

α from
the local integral solution of DVBE. Since the flow variables
and their derivatives at two sides of the cell interface are
treated as discontinuous, a large number of coefficients related
to the physical space and particle velocity space are necessary
when performing numerical quadrature, which complicates
the computation of UGKS as compared with the conventional
DVM [10,19].

To preserve the simplicity of the conventional DVM, we
propose an alternative strategy which only introduces the
collision effect in the calculation of numerical flux of the
macroscopic governing equation. The numerical fluxes of
the macroscopic equation are physically reconstructed by the
local solution of the Boltzmann equation with the collision
term; and the solution of DVBE follows in the similar manner
as the conventional DVM when reconstructing numerical
fluxes. By integrating along the characteristic of Eq. (1), a
local analytical solution on the cell interface can be derived
[3,6,23–26]:

f (xij , ξα,�tp )

= 1

τ

∫ �tp

0
f eq(xij − ξα (�tp − t ′), ξα, t ′)e−(�tp−t ′ )/τ dt ′

+ e−�tp/τ f (xij − ξα�tp, ξα, 0). (27)

The initial distribution function f (xij − ξα�tp, ξα, 0) con-
sists of the equilibrium and the nonequilibrium parts, i.e.,

f (xij − ξα�tp, ξα, 0) = f eq(xij − ξα�tp, ξα, 0)

+ f
neq
DVM(xij − ξα�tp, ξα, 0), (28)

where f
neq
DVM(xij − ξα�tp, ξα, 0) is the nonequilibrium dis-

tribution function in DVM. By substituting Eq. (28) into
Eq. (27), we have

f (xij , ξα,�tp ) = a + e−�tp/τ f
neq
DVM(xij − ξα�tp, ξα, 0),

(29)

with

a = 1

τ

∫ �tp

0
f eq[xij − ξα (�tp − t ′), ξα, t ′]e−(�tp−t ′ )/τ dt ′

+ e−�tp/τ f eq(xij − ξα�tp, ξα, 0).

Similarly, if the continuum flow is considered, the distribution
function on the cell interface can be expressed as

fNS(xij , ξα,�tp ) = a + e−�tp
/
τ f

neq
NS (xij − ξα�tp, ξα, 0).

(30)

Here, fNS(xij , ξα,�tp ) and f
neq
NS (xij − ξα�tp, ξα, 0) are the

distribution function and its nonequilibrium part in the con-
tinuum limit, respectively.

Furthermore, according to Eq. (1), the nonequilibrium term
f

neq
DVM(xij − ξα�tp, ξα, 0) can be expressed as

f
neq
DVM(xij − ξα�tp, ξα, 0) = −τDf (xij − ξα�tp, ξα, 0),

(31)

where the operator D is D = ∂t + ξα ·∇. By using the differ-
ence method, f

neq
DVM(xij − ξα�tp, ξα, 0) can be approximated

by

f
neq
DVM(xij − ξα�tp, ξα, 0)

= −τDf (xij , ξα,�tp ) + O
(
τ�tp, ξ 2

ατ�tp
)

= f
neq
DVM(xij , ξα,�tp ) + O

(
τ�tp, ξ 2

ατ�tp
)
. (32)

Similarly, f
neq
NS (xij − ξα�tp, ξα, 0) can be approximated by

f
neq
NS (xij − ξα�tp, ξα, 0)

= f
neq
NS (xij , ξα,�tp ) + O

(
τ�tp, ξ 2

ατ�tp
)
. (33)

By applying Eqs. (32) and (33), the difference between
Eq. (29) and Eq. (30) yields

f (xij , ξα,�tp )

= e−�tp
/
τ
[
f

neq
DVM(xij , ξα,�tp ) − f

neq
NS (xij , ξα,�tp )

]
+ fNS(xij , ξα,�tp ) + O

(
τ�tp, ξ 2

ατ�tp
)
. (34)

Besides that, the distribution function in Eq. (21) also consists
of the equilibrium and the nonequilibrium parts:

fDVM(xij , ξα,�tp )

= f eq(xij , ξα,�tp ) + f
neq
DVM(xij , ξα,�tp ). (35)

By substituting Eq. (35) into Eq. (34) and noting that fNS =
f eq + f

neq
NS , we have

f (xij , ξα,�tp ) = e−�tp
/
τ fDVM(xij , ξα,�tp )

+ (1−e−�tp
/
τ )fNS(xij , ξα,�tp )

+ O
(
τ�tp, ξ 2

ατ�tp
)
. (36)
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It can be seen from Eq. (36) that the accurate solution of the
distribution function on the cell interface can be approximated
by the weighted combination of the distribution function
computed by the collisionless Boltzmann equation [Eq. (21)]
and the solution from the Boltzmann equation which recovers
the Navier-Stokes equation in the continuum regime with the
truncation error of O(τ�tp, ξ 2

ατ�tp ).
Accordingly, by substituting Eq. (36) into Eq. (26), we

have
Fw,n

ij = β〈ξψfDVM(xij , ξ ,�tp )〉α
+ (1 − β )〈ξψfNS(xij , ξ ,�tp )〉α

= βFw,n
ij,DV M + (1 − β )Fw,n

ij,NS, (37)

with an adaptive parameter of

β = e−�tp
/
τ , (38)

where Fw,n
ij = Fw(xij ,�tp ). With Eq. (37), the numerical flux

is divided into two components. The first part is evaluated by
the collisionless solution which can be obtained by the previ-
ous strategy adopted in the conventional DVM; the other part
is essentially the macroscopic flux Fw,n

ij,NS , which is exactly the
numerical flux in Navier-Stokes equations. Specifically, in this
work, the inviscid part of Fw,n

ij,NS is evaluated by the commonly
used Roe scheme, while its viscous part is calculated by
the central difference scheme. The details can be found in
Refs. [35,41].

Some important notions can be collected from Eqs. (37)
and (38). In highly rarefied flows, τ is much larger than
�tp, which yields that Fw,n

ij,NS has very little effect on the
constructed numerical flux. Thus, this scheme is consistent
with the conventional DVM in such regime. When simulating
continuum flows, τ is far less than �tp, due to which Fw,n

ij,NS

dominates the solutions. As a result, the developed scheme
approaches to the Navier-Stokes solver in the continuum flow
regime.

Once the numerical flux at the cell interface is obtained,
implicit time-marching schemes (e.g., LU-SGS in the present
work) can be adopted in Eq. (25) to achieve higher efficiency.
For grid cell i, the implicit discretization form of Eq. (25) can
be written as [33][

Vi

�ti
I +

(
∂R
∂W

)
i

]
�Wn+1

i = Aw�Wn+1
i = −Rn

i , (39)

where �Wn+1
i = W

n+1
i − Wn

i is the solution correction and
Aw denotes the system matrix. Rn

i is the macroscopic residual
in cell i at time level of n, which is given by

Rn
i =

∑
j∈N (i)

nij · Fw,n
ij Sij . (40)

Fw,n
ij is the numerical flux at the cell interface calculated by

Eq. (37). ∂R/∂W is the flux Jacobian. In LU-SGS method, the
flux Jacobian is usually approximated by the Euler equation-
based flux splitting method to develop a matrix-free algo-
rithm. As a result, Eq. (39) can be rewritten as⎛

⎝ Vi

�ti
+ 1

2

∑
j∈N (i)

rij Sij

⎞
⎠�Wn+1

i

+ 1

2

∑
j∈N (i)

[
nij ·�Fn+1

c,j − rij�Wn+1
j

]
Sij = −Rn

i , (41)

FIG. 2. Adaptive parameter vs Knudsen number for Sod shock
tube problem.

where

�Fn+1
c,j = Fc

(
Wn

j + �Wn+1
j

) − Fc

(
Wn

j

)
,

rij = (|nij · uij | + cs ) + max

(
4

3ρij

,
γ

ρij

)
μij

Pr|dij | ,

|dij | = |xj − xi |,
and Fc = [ρu, ρuu + pI, (ρE + p)u]T is the convective flux
of the macroscopic governing equation; μ is the dynamic
viscosity. Eq. (41) can be solved by two steps: the forward
sweep and the backward sweep, i.e.,⎛

⎝ Vi

�ti
+ 1

2

∑
j∈N (i)

rij Sij

⎞
⎠�W

n+1
i

+ 1

2

∑
j∈L(i)

[
nij · �Fn+1

c,j − rij�W
n+1
j

]
Sij = −Rn

i , (42)

⎛
⎝ Vi

�ti
+ 1

2

∑
j∈N (i)

rij Sij

⎞
⎠�Wn+1

i

+ 1

2

∑
j∈U (i)

[
nij · �Fn+1

c,j − rij�Wn+1
j

]
Sij

=
⎛
⎝ Vi

�ti
+ 1

2

∑
j∈N (i)

rij Sij

⎞
⎠�W

n+1
i , (43)

where L(i) and U (i) are the subsets of N (i); L(i) denotes
the neighboring cells of cell i occupying the lower triangular
area of the matrix Aw, and U (i) represents the ones in the
upper triangular area. Once the solution correction �Wn+1

i is
obtained, the predicted conservative variables at the cell center

can be calculated by W
n+1
i = Wn

i + �Wn+1
i .

We would like to reaffirm that in the improved implicit
DVM, the particle collision effect is only considered in the
evaluation of the macroscopic numerical flux in the prediction
step. The evaluation of the microscopic numerical flux in
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FIG. 3. Velocity profile of Sod shock tube problem at different Knudsen numbers. (a) Kn = 0.00001; (b) Kn = 0.0001; (c) Kn = 0.001;
(d) Kn = 0.01; (e) Kn = 1; (f) Kn = 10.

DVBE follows the same way as the conventional DVM, which
ignores the collision effect. Such distinct treatments of the
macroscopic and the microscopic numerical fluxes have been
validated numerically in the simplified UGKS of Chen et al.
[34] and in the work of Yang et al. [33]. As shown in
their work, the simplified approximation of the microscopic
numerical flux has little influence on the overall accuracy. The
possible explanation is that the evolution of the distribution

function mainly affects the solutions of rarefied flows, while in
the continuum flow regime, the macroscopic evolution in the
prediction step dominates the solutions [33]. Correspondingly,
the compromise in the accuracy of reconstructing microscopic
numerical flux does not deteriorate the overall accuracy, but
will significantly improve the computational efficiency. It is
thus expected that the developed method can give accurate and
efficient solutions over the whole flow regimes.
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FIG. 4. Lid-driven cavity flow at Kn = 10. (a) Velocity profiles along the central lines. (b) Convergence history. (c) Temperature contours
(Original: colored background with black solid line; Present: white dashed line). (d) Streamlines of heat flux (Original: black line; Present: red
line with arrowhead).

B. Comparative analysis with simplified UGKS

In the work of Chen et al. [34], three simplified UGKS
were presented to improve computational efficiency and re-
duce the complexity of the original UGKS. Among these
simplified UGKS, the second version also computes the mi-
croscopic numerical flux by the collisionless solution of the
Boltzmann equation and evaluates the macroscopic numerical
flux by simply combining the flux attributed to the collision-
less solution of the Boltzmann equation and that of the Navier-
Stokes equations. To clearly show the differences between
the second simplified UGKS and the present method, a brief
comparison is given in this section.

As shown in the work of Chen et al. [34], the numerical
fluxes at the cell interface of the second simplified UGKS can
be written as

Fα
S2 = ξα

(
�tpfα − 1

2
�t2

pξα ·∇fα

)
, (44)

Fw
S2 = β

〈
ξψ

(
�tpf − 1

2
�t2

pξ · ∇f

)〉
α

+ (1 − β )

〈
ξψ

[
�tpf eq − �tpτ

(
ξ · ∇f eq + ∂f eq

∂t

)

+ 1

2
�t2

p

∂f eq

∂t

]〉
, (45)

where Fα
S2 and Fw

S2 are, respectively, the microscopic and
macroscopic numerical fluxes. fα = fDVM(xij , ξα,�tp ) is the
distribution function at the cell interface given by Eq. (21). f eq

is the equilibrium state at the cell interface. The symbol 〈f 〉 is
defined as 〈f 〉 = ∫ +∞

−∞ f dE. Note that the integral over time
interval �tp has been carried out in evaluating the numerical
fluxes of the second simplified UGKS.

In the present method, the microscopic and macroscopic
numerical fluxes at the cell interface integrated over time
interval �tp can be summarized as follows:

Fα
Current = ξα�tpfα, (46)

Fw
Current = β〈ξψ�tpf 〉α + (1 − β )〈ξψ�tpfNS〉. (47)

In Eq. (47), the last term is actually the numerical flux of the
Navier-Stokes equations. According to the kinetic theory [25],
we have fNS = f eq − τDf eq + O(τ 2). As a result, Eq. (47)
can be rewritten as

Fw
Current = β〈ξψ�tpf 〉α + (1 − β )

〈
ξψ

[
�tpf eq

−�tpτ

(
ξ · ∇f eq + ∂f eq

∂t

)]〉
. (48)
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FIG. 5. Lid-driven cavity flow at Kn = 1. The caption is the same as in Fig. 4.

By comparing Eq. (44) with Eq. (46), it can be seen that the
microscopic numerical flux in the second simplified UGKS
is computed by the collisionless solution of the Boltzmann
equation with a piecewise linear distribution for the distribu-
tion function at the cell interface, while a piecewise constant
distribution is utilized in the present method. A similar way
is also used in the calculation of the macroscopic numerical
flux attributed to the collisionless solution of the Boltzmann
equation, as shown in the first term on the right-hand side of
Eq. (45) and Eq. (48). The use of the collisionless solution of
the Boltzmann equation with a piecewise linear distribution
may introduce a large numerical dissipation into the solution.
This speculation will be shown in the numerical examples
presented in Sec. V.

In addition, the macroscopic numerical flux of these two
schemes in the continuum flow regime is somewhat different.
Assume that the initial distribution function at the begin-
ning of the time step satisfies the near-equilibrium state,
i.e.,

f = f eq − τ

(
ξ ·∇f eq + ∂f eq

∂t

)
. (49)

Substituting Eq. (49) into Eq. (45), the macroscopic
numerical flux of the second simplified UGKS

becomes

Fw
S2 =

〈
ξψ

[
�tpf eq−�tpτ

(
1−�tp

2τ
β

)(
ξ · ∇f eq+∂f eq

∂t

)

+ 1

2
�t2

p

∂f eq

∂t

]〉
. (50)

And substituting Eq. (49) into Eq. (48), the macroscopic
numerical flux of the present method can be written as

Fw
Current =

〈
ξψ

[
�tpf eq − �tpτ

(
ξ · ∇f eq + ∂f eq

∂t

)]〉
.

(51)

It can be seen that the viscosity of the second simplified
UGKS is enlarged by a factor of 1 − β�tp/(2τ ), while the
present scheme provides the accurate macroscopic numer-
ical flux in the continuum limit. Besides that, the present
scheme computes the macroscopic numerical flux attributed
to the Navier-Stokes equations directly by the commonly
used Roe scheme and the central difference scheme [35,41],
while the second simplified UGKS evaluates this portion of
flux by the gas kinetic scheme for continuum flows.
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FIG. 6. Lid-driven cavity flow at Kn = 0.075. The caption is the same as in Fig. 4.

C. Boundary conditions and computational sequence

Since the proposed method involves the microscopic and
the macroscopic evolutions, proper boundary conditions of
both the distribution function and the conservative variables
are needed. For the boundary condition of the distribution
function, which is related to the evaluation of the microscopic
residual Res

n

i,α and the numerical flux Fw,n
ij,DV M at the bound-

ary, it can be given in the same way as the conventional DVM
[10,33]. As for the boundary condition of the conservative
variables, it is only used for the calculation of macroscopic
numerical flux Fw,n

ij,NS . Thus, similar boundary treatments
of macroscopic variables in the conventional Navier-Stokes
solvers can be utilized [41].

The basic solution procedure of the improved implicit
DVM is summarized as follows:

(1) Reconstruct the distribution function at the cell in-
terface fDVM(xij , ξ ,�tp ) by the collisionless solution of the
Boltzmann equation [Eq. (21)].

(2) Compute Fw,n
ij,NS by the conventional Navier-Stokes

solver and Fw,n
ij,DV M by Eq. (37).

(3) Calculate the physical time step �tp by Eq. (20), the
collision time scale τ by Eq. (53), and the adaptive parameter
β by Eq. (38).

(4) Compute the total macroscopic numerical flux Fw
ij by

Eq. (37), the macroscopic residual Rn
i by Eq. (40), and the

time step for implicit iteration �t by Eq. (9).

TABLE I. Iteration step and computational time (hours) of different methods for lid-driven cavity flow at different Knudsen and Reynolds
numbers.

Original Present Speedup

Kn or Re Step (SO ) Time (TO ) Step (SI ) Time (TI ) SO/SI TO/TI

Kn = 10 233 0.366 233 0.372 1.000 0.984
Kn = 1 102 0.161 102 0.164 1.000 0.982
Kn = 0.075 201 0.033 190 0.032 1.058 1.031
Re = 100 19158 1.550 4937 0.417 3.880 3.717
Re = 1000 412358 33.680 11048 0.938 37.324 35.906
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FIG. 7. Lid-driven cavity flow at Re = 100. (a) Velocity profiles along the central lines. (b) Convergence history.

(5) Solve the macroscopic governing equation by the for-
ward sweep of Eq. (42) and the backward sweep of Eq. (43).
This step gives the predicted conservative variables at the new

time step W
n+1
i .

(6) Compute the predicted equilibrium state f
eq,n+1
α by

substituting W
n+1
i into Eqs. (2) and (3). In this step, the heat

flux is approximated by its value at last time step qn.
(7) Calculate the microscopic residual Res

n

i,α by Eq. (24)
and solve the microscopic governing equation by LU-SGS
method. This step gives the distribution function at the new
time step f n+1

i,α .
(8) Update the conservative variables, heat flux and stress

tensor by Eqs. (4)–(6).
(9) Repeat steps (1) to (8) until the convergence criterion

is satisfied.

V. NUMERICAL EXAMPLES

In this section, the Sod shock tube problem, the lid-driven
cavity flow, and the flat plate flow from the free molecular
regime to the continuum regime and the hypersonic rarefied
flow over a cylinder are simulated for the comprehensive eval-
uation of the improved fully implicit DVM. Special attention

will be paid to the comparative study with the conventional
semi-implicit DVM in terms of accuracy and efficiency. In
practical calculations, all flow variables are normalized fol-
lowing the strategy in Ref. [7]. In the simulations, the Prandtl
number is taken as Pr = 2/3, and the CFL number for cal-
culation of the physical time step is set as σp = 0.95. Unless
otherwise stated, the CFL number for implicit discretization
is chosen as σ = 100. All the computations were carried
out on a PC with a processor of Intel(R) Xeon(R) E5-2687
CPU@3.0 GHz, and no parallel technique is adopted. For
convenience, the results of the conventional semi-implicit
DVM and the present scheme are denoted as “Original” and
“Present,” respectively.

A. Case 1: Sod shock tube problem

At first, the one-dimensional Sod shock tube problem is
tested under a wide range of Knudsen numbers to validate the
performance of the improved DVM. The initial condition of
this problem is given by

(ρ1, u1, p1) =(1, 0, 1), 0 < x < 0.5,

(ρ2, u2, p2) =(0.125, 0, 0.1), 0.5 < x < 1. (52)

FIG. 8. Lid-driven cavity flow at Re = 1000. (a) Velocity profiles along the central lines. (b) Convergence history.
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FIG. 9. Simulation results of lid-driven cavity flow at Re = 1000 obtained by different methods. (a) Velocity profiles along the central
lines. (b) Convergence history.

The collision timescale and the dynamic viscosity are, respec-
tively, computed by

τ = μ/p, (53)

μ = μref (T/Tref )w, (54)

where μref , Tref , and w are the reference viscosity, the ref-
erence temperature, and the coefficient related to the inter-
molecular interaction model, respectively. In this test, the
hard-sphere (HS) model is utilized, which gives w = 0.5. The
reference viscosity is related to the Knudsen number by

Kn = μref
√

RTref

prefL
, (55)

where pref is the reference pressure and L = 1 is the char-
acteristic length. In the simulation, (ρ1, u1, p1) are taken as
the reference state. Consistent with previous study [34], in the
present work, the computational domain is divided uniformly
into 200 cells. In the particle velocity space, 150 points with

FIG. 10. Velocity profiles along the central lines for lid-driven
cavity flow at Re = 1000 computed by different methods with mesh
size of 60 × 60 cells.

uniform distribution in [−6, 6] are used and the Newton-Cotes
quadrature is utilized for integration. Since it is an unsteady
problem, the explicit temporal discretization is adopted in this
case for simplicity and the CFL number is taken as σ = 0.9.

In the simulation, the Knudsen number is varied from 10−5

to 10. The adaptive parameter β in Eq. (38) computed by the
reference state is depicted in Fig. 2. It can be seen that the
value of β changes from 0 to 1 for the Knudsen numbers
considered in our simulation, which can be used to investigate
the effect of β on the performance of the present method from
the continuum flow regime to the rarefied flow regime. Figure
3 shows the velocity profiles at different Knudsen numbers
computed by the present scheme and the original UGKS [24]
at time t = 0.15. As expected, the improved DVM provides
very good results for all cases, which validates the accuracy
of the present scheme for flows over all Knudsen numbers.
However, for the cases of Kn = 1 and 10, a discrepancy
between the result of the second simplified UGKS and that
of the original UGKS was reported by Chen et al. [34].

B. Case 2: Lid-driven cavity flow

The lid-driven cavity flow with different Knudsen numbers
or Reynolds numbers is simulated in this section. In this
test example, the monatomic gas is considered, i.e., N =
0. As a result, the specific heat ratio γ is equal to 5/3.

A B C D 

 E F

Ma=0.2 

FIG. 11. Illustration of the computational domain for flat plate
flow.
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TABLE II. Discretization in physical space for flat plate flow.
NBC is the numbers of discrete cells on edge BC. NAF is the numbers
of discrete cells on edge AF, which equal to those on edges AB and
CD, i.e., NAF = NAB = NCD. δxmin denotes the minimum width of
cells near points B and C. δymin denotes the minimum height of cells
near the bottom boundary.

Re NBC NAF Ntotal δxmin δymin

0.2 32 32 3072 1/32 0.02
0.5, 1 48 48 6912 1/48 0.01
2, 5 48 48 6912 0.01 0.005
10, 20, 50 64 48 7680 0.005 0.002
400 80 48 8448 0.001 0.001
1000, 2000 96 48 9216 0.0005 0.0005
5000 112 48 9984 0.0002 0.0002

The computational domain is a square cavity with the edge
length of L = 1. At the top boundary, the normalized wall
temperature and velocity are fixed at TW = 1 and uW = 0.15,
respectively. The other walls are stationary and are assigned
with constant temperature of TW = 1. The collision timescale
and the dynamic viscosity are also computed by Eq. (53) and
Eq. (54), while the reference temperature Tref is replaced by
TW and the variable hard-sphere (VHS) model is utilized,
which gives w = 0.81. For the rarefied case, the reference
viscosity is determined by

μref

L
= 5ρ0(2πRT0)1/2

16
Kn. (56)

Here, ρ0 = 1 and T0 = TW are, respectively, the normalized
density and temperature at the reference state. After normal-
ization, the gas constant is R = 0.5. For the continuous case,
the reference viscosity is calculated by

μref = ρ0uWL

Re
, (57)

where Re is the Reynolds number. The convergence criteria
for the rarefied and the continuous cases are set by the
condition that the maximum errors of all primitive variables
between two adjacent iteration steps do not exceed 10−6 and
10−7, respectively.

First, three cases with different Knudsen numbers of Kn =
10, 1, and 0.075 are simulated. These three cases, respectively,
correspond to the free molecular flow regime (Kn � 10), tran-
sition flow regime (10−1 � Kn < 10), and slip flow regime
(10−2 � Kn < 10−1). In the simulation, the computational
domain is divided uniformly into 40 × 40 cells. In the particle
velocity space, the Newton-Cotes quadrature with 81 × 81
mesh points uniformly distributed in [−4, 4] × [−4, 4] is
utilized in the cases of Kn = 10 and 1, and the Gauss-Hermite
quadrature with 28 × 28 mesh points is used in the case
of Kn = 0.075. Specifically, the CFL number for implicit
discretization in the case of Kn = 10 is taken as σ = 10 to
ensure convergence. Simulation results are shown in Figs. 4–
6. The present improved implicit DVM and the conventional
semi-implicit DVM give similar solutions on velocity profiles,
temperature contours, and streamlines of heat flux; and good
agreements with the results of UGKS [24] are achieved by
both methods. As shown in the plots of convergence history,
the present scheme shows a comparable convergence rate as
the conventional semi-implicit DVM at Kn = 10 and 1, and
converges faster than the conventional one in the case of Kn =
0.075. This observation can also be validated by the quantities
in Table I. Little extra computational time is consumed by the
present method in the first two cases of Kn = 10 and 1 due
to additional efforts in the prediction step, while the present
method shows higher efficiency in the case of Kn = 0.075.
The speed-up in the last case is attributed to the effectiveness
of the prediction step since the flow is approaching to the
continuum flow regime. In this case, the adaptive parameter
in Eq. (38) reads β = 0.978. As a result, the prediction step is
beginning to take effect on the solutions.

To further investigate the performance of the developed
fully implicit DVM in the continuum flow regime, two
more cases at Reynolds numbers of Re = 100 and 1000 are
simulated. The corresponding Knudsen numbers are Kn =
0.00271 and 0.000271. In the simulations, the computational
domain is discretized by 100 × 100 uniform cells, while the
integration over the particle velocity space is accomplished
by the Gauss-Hermite quadrature with 8 × 8 mesh points.
Figures 7 and 8 show the velocity distributions along the
center lines and the convergence histories of the lid-driven

TABLE III. Iteration step and computational time (hours) of different methods for flat plate flow at different Reynolds numbers.

Original Present Speedup

Re Kn Step (SO ) Time (TO ) Step (SI ) Time (TI ) SO/SI TO/TI

0.2 1.19 241 0.076 222 0.073 1.086 1.041
0.5 0.476 477 0.350 387 0.288 1.233 1.215
1 0.238 821 0.621 609 0.466 1.348 1.333
2 0.119 1258 0.936 902 0.678 1.395 1.381
5 0.0476 2655 1.957 1558 1.163 1.704 1.683
10 0.0238 4876 4.085 2164 1.842 2.253 2.218
20 0.0119 8906 7.478 3070 2.637 2.901 2.836
50 0.00476 19087 16.183 4654 3.982 4.101 4.064
400 0.000595 39776 37.403 8917 8.512 4.461 4.394
1000 0.000238 46081 48.213 11627 12.417 3.963 3.883
2000 0.000119 44593 47.064 13174 14.037 3.385 3.353
5000 0.0000476 42731 51.352 15485 18.662 2.760 2.752
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FIG. 12. Temperature contours around the flat plate in the transition and the slip flow regimes (Original: colored background with black
solid line; Present: white dashed line).

cavity flow at Re = 100 and 1000, respectively. In the case
of Re = 100, both the present method and the original model
give accurate prediction of the velocity profiles [44], which is
due to the fact that the cell size is of the order of the mean free

path (λ/�x = 0.271). In the case of Re = 1000, however, the
results of the present method are far better than the original
one. As analyzed above, this improvement comes from the
introduced prediction step with the particle collision effect,

FIG. 13. Temperature contours around the flat plate at Re = 50 (Left: UGKS [49]; Right: Present).
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FIG. 14. Distribution of the skin friction coefficient on the flat plate in the transition and the slip flow regimes. (a) Re = 0.2 ∼ 2; (b)
Re = 5 ∼ 50.

which plays an essential role in the continuum flow regime.
The ratio of the mean free path to the cell size here reads
λ/�x = 0.0271, which means that the conventional semi-
implicit DVM would require much finer mesh size to make
up its defect of ignoring collision effects in reconstructing
numerical fluxes. Specifically, the adaptive parameter β has
the values of β = 0.607 and β = 0.00683 in the cases of Re =
100 and 1000, respectively. The tendency of β approaching
zero physically represents the increased importance of the
particle collision effect, and numerically corresponds to a
larger portion from the Navier-Stokes solver when recon-
structing numerical fluxes in the improved implicit DVM.
Another notable issue is that the computational efficiency
in the continuum flow regime is significantly improved by
adopting this method. A higher convergence rate is observed
in our simulations [see Figs. 7(b) and 8(b)]. As reported in
Table I, the speed-up rates of the present method are around
3.7 and 36 in the cases of Re = 100 and 1000, respectively.

Next, we simulate the case of Re = 1000 by using the
improved scheme with a fixed value of β = 1 in Eq. (38).
With such settings, the numerical flux in the macroscopic
governing equation is reconstructed from the local solution
of collisionless Boltzmann equation, which follows a similar
strategy as the conventional semi-implicit DVM. It is shown
in the modeling [see Fig. 9(a)] that ignoring the collision
effect would deteriorate the results in the continuum flow
regime and lead to similar velocity profiles as the conven-
tional semi-implicit DVM. However, as presented in Fig. 9(b),
the speed-up of the convergence rate can still be ensured
even if the developed fully implicit DVM is assigned with
fixed parameter of β = 1. This evidence demonstrates that
introducing the prediction step could effectively increase the
convergence rate for the simulation of flows in the continuum
flow regime, while incorporating the collision effect into the
evaluation of numerical fluxes leads to higher accuracy in this
flow regime.

Finally, the case of Re = 1000 with a coarse mesh is
simulated by the conventional semi-implicit DVM and the
improved implicit DVM. Consistent with previous study [34],
in our simulation, the computational domain is discretized
by 60 × 60 uniform cells. Figure 10 compares the velocity

profiles along the central lines obtained by the conventional
semi-implicit DVM used in this work, the improved implicit
DVM, and the conventional DVM shown in the work of Chen
et al. [34]. The last method uses the collisionless solution of
the Boltzmann equation with a piecewise linear distribution
for the distribution function at the cell interface to reconstruct
the numerical flux. It can be seen from this figure that the
improved implicit DVM provides accurate velocity distribu-
tion with such coarse resolution, while the results of the
conventional DVM used in both the current work and the work
of Chen et al. [34] deviate significantly from the reference data
[44]. On the other hand, as compared with the conventional
DVM shown in the work of Chen et al. [34], the velocity
profiles computed by the conventional semi-implicit DVM
used in this work are closer to the benchmark data. It can
then be inferred that the use of the collisionless solution of
the Boltzmann equation with a piecewise linear distribution
may produce a larger numerical dissipation than the piecewise
constant distribution.

FIG. 15. Drag coefficient of the flat plate with respect to the
Reynolds number in the transition and the slip flow regimes.
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FIG. 16. Convergence history for flat plate flow in the transition and the slip flow regimes. (a) Transition flow regime at Re = 0.5. (b) Slip
flow regime at Re = 20.

C. Case 3: Flat plate flow

The third test case is the subsonic flow over a flat plate
with zero thickness at zero angle of attack [19,45–49]. In this
case, the fluid substance is air, which gives N = 2 and the
specific heat ratio is γ = 7/5. As shown in Fig. 11, the sim-
ulation mimics a flat plate with the length of LBC = 1 m and
temperature of TW = 295 K placed at the bottom boundary.

The computation domain is truncated at 20LBC away from the
leading and the trailing edges of the flat plate, i.e., LAB =
LCD = LAF = 20LBC. The far field boundary condition is
utilized for the left, the right, and the upper boundaries, while
the symmetric boundary condition is implemented on the
bottom boundary, except the flat plate which is treated as
the isothermal wall boundary. The free stream temperature
is taken as T∞ = 295 K and the Mach number is set to be

FIG. 17. Distribution of the skin friction coefficient on the flat plate in the continuum flow regime. (a) Re = 400; (b) Re = 1000; (c) Re =
2000; (d) Re = 5000.
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FIG. 18. Drag coefficient of the flat plate with respect to the
Reynolds number in the continuum flow regime.

Ma = 0.2. In the simulation, the dynamic viscosity μ is
computed by Eq. (54) with Tref = T∞ and w = 0.77. After
normalization, the reference viscosity can be determined by

μref = Ma

Re

√
γ

2
, (58)

where Re is the Reynolds number defined with respect to the
length of the plate. The global Knudsen number, Reynolds
number, and Mach number have a relation of

Kn = 2(5 − 2w)(7 − 2w)

15

Ma

Re

√
γ

2π
. (59)

The discretization in the physical space is listed in Table II
for different Reynolds numbers. Note that the computational
mesh is distributed nonuniformly and the local time step is
utilized to speed up the convergence rate. In the particle
velocity space, the Gauss-Hermite quadrature with 28 × 28
mesh points is adopted. The convergence criteria for this test
case fulfills the condition that the maximum errors of all
primitive variables between two adjacent iteration steps do not
exceed 10−6.

In the simulation, the Reynolds number varies from Re =
0.2 to 5000. The corresponding Knudsen numbers computed
from Eq. (59) are listed in Table III. As shown in this table,
the cases of Re = 0.2, 0.5, 1, and 2 lie in the transition
flow regime; the cases of Re = 5, 10, 20, and 50 belong
to the slip flow regime; and the remaining ones of Re =
400, 1000, 2000, and 5000 pertain to the continuum flow
regime. For quantitative comparisons, two nondimensional
parameters, i.e. the skin friction coefficient Cf and the drag
coefficient Cd , are defined as

Cf = τW

ρ∞u2∞/2
= τW

γ Ma2/4
, (60)

Cd = 1

LBC

∫ LBC

0

(
C

upper
f + C lower

f

)
dl, (61)

where ρ∞ and u∞ are the free stream density and velocity, re-
spectively. τW is the shear stress along the flat plate calculated
by Eq. (6). C

upper
f and C lower

f are the skin friction coefficients
in the upper and the lower sides of the plate, respectively.
In this test example, C

upper
f = C lower

f due to the symmetric
distribution of the flow field to the flat plate.

Figure 12 shows the comparison of temperature contours
around the flat plate in the transition and slip flow regimes
obtained by the original and the present schemes. It can be
seen that the results of the two schemes match very well
with each other in the transition flow regime. However, in
the slip flow regime, the temperature contours obtained by
the conventional semi-implicit DVM start to deviate from the
results of the present scheme, and the discrepancy becomes
more evident as the Reynolds number is increased. To verify
these results, a comparison between the present scheme and
the UGKS [49] for flat plate flow at Re = 50 is presented
in Fig. 13. As shown in this figure, the temperature contours
obtained by the present scheme basically agree with those of
the UGKS, which demonstrates that the present results are
more reasonable than the conventional semi-implicit DVM for
this test example.

Quantitative comparisons are carried out in Fig. 14, which
depicts the distribution of the skin friction coefficient on the
flat plate and, in Fig. 15, which displays the drag coefficient of
the flat plate with respect to the Reynolds number. In Fig. 15,

FIG. 19. Convergence history for flat plate flow in the continuum flow regime. (a) Re = 400; (b) Re = 2000.
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FIG. 20. Simulation results for hypersonic rarefied flow around a cylinder at Ma = 5 and Kn = 0.1. (a) Density contours. (b) u-velocity
contours. (c) Temperature contours.

the fitting formula is given by [48,49]

ln (Cd · Ma) = 0.225 − 0.333 × ln2(
√

Re/Ma0.8)

+ 0.031 × ln3(
√

Re/Ma0.8). (62)

It can be observed that both the original and the present
schemes give accurate prediction of the skin friction coeffi-
cient and the drag coefficient in the transition and the slip flow
regimes [48,49].

Comparative study on the numerical efficiency is presented
in Fig. 16 and Table III. In general, the present scheme shows
higher convergence rate and consumes less computational
time than the conventional semi-implicit DVM; and a higher
speedup ratio can be expected when increasing the Reynolds
number. The reason may be that the prediction step and the
collision effect cast essential influence on the solutions of
the test case with relatively high Reynolds number in which
the particle collisions take place more intensively. It can then
be inferred that in the transition and the slip flow regimes, the
present scheme gives comparably accurate results as the orig-
inal scheme, but is more competitive than the latter in terms
of revealing physical details and computational efficiency.

Further investigations are performed in the continuum flow
regime in which four cases of Re = 400, 1000, 2000, and 5000
are considered. Physical recognition hints that the particle col-
lision effect plays an essential role in shaping the simulation
results in this flow regime; therefore, the present improved

implicit DVM should be more accurate than the conventional
semi-implicit DVM. The numerical results well support such
expectation. In Figs. 17 and 18, the skin friction coeffi-
cient and the drag coefficient computed by the conventional
semi-implicit DVM significantly deviate from the reference
data given by the Navier-Stokes solver [38] as the Reynolds
number grows, while an appealing agreement is achieved by
the present scheme in all cases. Moreover, in Fig. 19, we
can see that the present scheme converges faster than the orig-
inal one. As reported in Table III, a speed-up rate of 2.7 to 4.4
can be achieved in this flow regime. This evidence indicates
that the present scheme is more accurate and efficient than the
original one in the continuum flow regime.

D. Case 4: Hypersonic rarefied flow around a cylinder

In this section, the flow around a cylinder with the radius
of R0 = 0.01 m at Mach number of Ma = 5 and Knudsen
number of Kn = 0.1 is solved to validate the present scheme
for simulation of hypersonic rarefied flows. Consistent with
previous study [30], in the present work, the reference density
and temperature are, respectively, given by ρ0 = 8.582 ×
10−5 kg/m3 and T0 = 273 K, the temperature of the cylinder
is fixed at T0, and the reference viscosity is determined by

μref

R0
= 15ρ0(2πRT0)1/2

2(5 − 2w)(7 − 2w)
Kn. (63)
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FIG. 21. Profiles along the stagnation line for hypersonic rarefied flow around a cylinder at Ma = 5 and Kn = 0.1. (a) Density. (b)
u-velocity. (c) Temperature.

The collision timescale and the dynamic viscosity are, respec-
tively, computed by Eq. (53) and Eq. (54), while the reference
temperature Tref is replaced by T0 and the VHS model with
w = 0.81 is utilized.

In the simulation, the CFL number for implicit discretiza-
tion is set as σ = 1 for better numerical stability. For dis-
cretization of the particle velocity space, the Newton-Cotes
quadrature with 101 × 101 mesh points uniformly distributed
in [−12, 12] × [−12, 12] is utilized. In addition, a C-type
mesh with 100 cells in the circumferential direction and 80
cells in the surface normal direction is used to discretize the
physical space. The simulation results, including the contours,
the profiles along the stagnation line in front of the cylinder,
and the surface quantities, are shown in Figs. 20–22. Also
displayed in Figs. 21 and 22 are the results of Zhu et al.
[30] obtained by the direct simulation Monte Carlo (DSMC)
method. Overall, the results of the improved implicit DVM
agree well with the reference data [30], which demonstrates
the capability of the present scheme for the simulation of
hypersonic rarefied flows.

VI. CONCLUSIONS

An improved fully implicit discrete-velocity method
(DVM) with an implicit prediction step is proposed in this
paper. This method overcomes drawbacks of the conventional

semi-implicit DVM and could give accurate and efficient
solutions over the whole flow regimes. In this method, the
equilibrium state is estimated by the prediction step, and
both the distribution function and conservative variables at the
cell center are simultaneously evolved in time. Such strategy
facilitates the fully implicit discretization of the collision term
in DVBE which can speed up the convergence rate. Another
merit brought by the prediction step is the consideration of the
particle collision effect. Solution accuracy in the continuum
flow regime is thus enhanced in the present method while
maintaining the inherent simplicity of the conventional semi-
implicit DVM.

Four numerical examples, including the Sod shock tube
problem, the lid-driven cavity flow, the flat plate flow, and
hypersonic rarefied flow around a cylinder, are simulated for
comprehensive evaluation of the proposed method in all flow
regimes. Numerical results show that in the free molecular
and the transition flow regimes, the prediction step has very
little effect on the solutions. Thus, similar results are obtained
by the original and the present schemes. But in the slip flow
regime, the prediction step starts to take effect on the conver-
gence rate of the calculation. Accordingly, the present scheme
is more efficient than the original one. In the continuum flow
regime, the prediction step dominates the solutions and the
collision effect plays an important role in the calculation of
numerical flux of the macroscopic governing equation. By
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FIG. 22. Distribution of the surface quantities along the cylinder wall from the stagnation point to the trailing edge. (a) Pressure. (b) Shear
stress. (c) Heat flux.

using the local solution of the Boltzmann equation with the
collision term to reconstruct the macroscopic numerical flux,
the present scheme automatically approaches to the Navier-
Stokes solver in such regime. On the contrary, due to lack of
the collision effect in the calculation of numerical flux, the
conventional semi-implicit DVM cannot provide appealing
solutions in the continuum flow regime.
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