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The three-dimensional Couette flow between parallel plates is addressed using mixed lattice Boltzmann
models which implement the half-range and the full-range Gauss-Hermite quadratures on the Cartesian axes
perpendicular and parallel to the walls, respectively. The ability of our models to simulate rarefied flows are
validated through comparison against previously reported results obtained using the linearized Boltzmann–
Bhatnagar-Gross-Krook equation for values of the Knudsen number (Kn) up to 100. We find that recovering the
nonlinear part of the velocity profile (i.e., its deviation from a linear function) at Kn � 1 requires high quadrature
orders. We then employ the Shakhov model for the collision term to obtain macroscopic profiles for Maxwell
molecules using the standard μ ∼ T ω law, as well as for monatomic helium and argon gases, modeled through
ab initio potentials, where the viscosity is recovered using the Sutherland model. We validate our implementation
by comparison with DSMC results and find an excellent match for all macroscopic quantities for Kn � 0.1. At
Kn � 0.1, small deviations can be seen in the profiles of the diagonal components of the pressure tensor, the heat
flux parallel to the plates, and the velocity profile, as well as in the values of the velocity gradient at the channel
center. We attribute these deviations to the limited applicability of the Shakhov collision model for highly out of
equilibrium flows.
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I. INTRODUCTION

It is generally recognized that the Navier-Stokes-Fourier
equations are not appropriate to investigate the flow phenom-
ena in highly rarefied gases where the continuum hypothesis is
no longer valid. To investigate such far from equilibrium flu-
ids, the Boltzman equation, which governs the evolution of the
one-particle distribution function f ≡ f (x, p, t ) in a seven-
dimensional space, can be employed instead [1–13]. Finding
solutions of the Boltzmann equation is a challenging task due
to the complexity of the collision term, which requires the
evaluation of five-dimensional integrals over the momentum
space. Effective approaches to solve the Boltzmann equation
include the celebrated direct simulation Monte Carlo (DSMC)
method [6,13], where the collision integral is sampled by
considering a sufficiently large ensemble of representative
particles which are evolved individually; the discrete velocity
method (DVM) [7,11,13–15]; and more recently, the fast
spectral method, which relies on the projection of the collision
term on orthogonal functions [16–19]. In all approaches men-
tioned above, the evaluation of the collision term still remains
the most time-consuming part of the numerical algorithm,
placing severe constraints on the size and complexity of the
systems which can be analyzed numerically.

In the early ’50s, Bhatnagar, Gross, and Krook introduced
their single relaxation time approximation of the collision

*victor.ambrus@e-uvt.ro
†sofonea@gmail.com, sofonea@acad-tim.tm.edu.ro

term of the Boltzmann equation describing the ideal gas.
This approximation, known as the BGK model, was derived
under the assumption that the deviation of the gas from the
local (Maxwellian) equilibrium is small [20]. The severe
drawback of the BGK model is that the transport coefficients
are governed by the single relaxation time τ and, in par-
ticular, the Prandtl number Pr is fixed at 1. This limitation
was overcome through the collision term model proposed by
Shakhov [21–24], who extended the single relaxation time
(BGK) model to allow Pr to be controlled independently from
the relaxation time τ . Other extensions of the BGK model,
which allow Pr to be controlled, include the ellipsoidal BGK
(EBGK) model [25–27] and the multirelaxation time (MRT)
models widely employed in lattice Boltzmann simulations
[28,29]. The Shakhov model (also known as the S-model)
was subsequently extended by Rykov et al. to account for
rotational degrees of freedom [30]. In the linearized regime,
the Gross-Jackson [31] and the McCormack [32] models
extended the relaxation time paradigm to account for realistic
interaction cross sections for single gases and for gaseous
mixtures, respectively.

The simplicity of the relaxation time formulation moti-
vated researchers to implement and develop such models
and a surprising range of effects turned out to be correctly
recovered. It is now generally accepted that the relaxation
time approach can be used to simulate flows which are not
far from equilibrium, provided the transport coefficients are
correctly recovered [13,33,34]. Solutions of these so-called
Boltzmann model equations can be obtained using a variety
of numerical methods, amongst which we recall the DVM
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[13,35], the discrete unified gas-kinetic scheme (DUGKS)
[36–40], the lattice Boltzmann (LB) models [41–48], the off-
lattice Boltzmann models (OLBM) [49–54], and the discrete
Boltzmann models (DBM) [55–60].

In this paper, we reassess the capabilities of the Shakhov
collision model in the context of the three-dimensional
(3D) Couette flow between parallel plates by employing
lattice Boltzmann (LB) models based on the Gauss quadra-
ture method. From a historical perspective, the LB models
emerged as successors of the lattice gas automata [45,46]
introduced more than three decades ago and were originally
designed to recover the Navier-Stokes equations using a fast
and simple algorithm. The efficiency of this algorithm relies
on the implementation of the advection and time stepping
according to the collide-and-stream paradigm involving the
discretization of the momentum space using a relatively small
number of momentum vectors which exactly connect neigh-
boring lattice sites [41,42,45,61,62]. Besides their numerical
efficiency, the key to the success of these early LB models is
the implementation of the collision term using a polynomial
series which allows its moments to be exactly recovered up
to a certain order N [44]. While astonishingly successful at
the Navier-Stokes level [41–48], the LB models based on the
collide-and-stream paradigm obtained only limited success
when applied to flows of rarefied gases [63–65]. In particular,
it was noted that in order to achieve accurate results at non-
negligible values of the Knudsen number Kn, the velocity
set must be enriched to account for higher order moments
of the distribution function. This brings about a series of
complications, since during a single time step, the particles
must hop over an increasing number of lattice sites [66–69].
This also renders the implementation of boundary conditions
cumbersome [64,70].

A straightforward alternative to the collide-and-stream
paradigm comes from the DVM implementations of the Boltz-
mann equation, where the advection and time stepping are
implemented using finite differences. Retaining the simplified
polynomial truncation of the collision term, these implemen-
tations can be referred to as finite difference lattice Boltz-
mann (FDLB) models [71–80], or discrete Boltzmann models
[55–60]. Amongst the first high-order FDLB models are the
2D shell-based models introduced by Watari and Tsutahara
[81–84] and their 3D generalizations [33,85–87], the models
based on the tensor Hermite polynomials [44,79,80], and,
more recently, the models based on the Cartesian split of the
velocity space discussed in Refs. [88–92].

The Couette flow between parallel plates has become a
benchmark problem for fluid dynamics simulations. In the
context of rarefied gases, the linearized Boltzmann-BGK
equation has been solved in a semianalytic manner to high
numerical precision in Ref. [93] (see also Refs. [11,94,95] for
previous results). The LB results obtained within the collide-
and-stream paradigm reported excellent agreement with DVM
or DSMC results for small values of Kn, but their performance
quickly deteriorated as Kn was increased towards the transi-
tion regime [63–65,96–98]. There has been significant effort
devoted to deriving macroscopic equations which account for
the nonequilibrium features appearing at non-negligible Kn,
from which we only mention the regularized 13 moments
system of equations (R13) [99–103]. The limited success of

the R13 system in the transition regime suggests that even
more moments should be taken into account. From a lattice
Boltzmann perspective, this is equivalent to extending the
quadrature order of the model. Indeed, this was confirmed in
Ref. [33], when it was shown that FDLB models based on the
spherical factorization of the momentum space exhibit a slow
but steady convergence with respect to the quadrature order at
Kn = 0.5.

Recent FDLB studies of the Couette flow showed that
accurate solutions of the S-model equation can be obtained
by enriching the velocity set [33,88,90,91]. The crucial piece
which makes the simulations much more efficient is to take
into account the discontinuity in the distribution function,
which is induced by the boundary conditions prescribed
at the solid walls [104,105]. For this reason, appropriate
half-range quadratures should be employed on the direction
perpendicular to the walls [23,36,37,65,88–92,106–114]. In
this paper, we will employ the mixed quadrature LB models
introduced in Ref. [91] for the study of the 2D Couette
flow.

Since we are interested in obtaining accurate results for the
temperature field, as well as for the heat flux, the number of
degrees of freedom in the momentum space must be equal
to 3. In the context of flows which are effectively two-
dimensional (e.g., in the xy plane), this can be achieved by
working with reduced distributions [107,115]. These distribu-
tions are obtained by analytically integrating the momentum
space degree of freedom along the direction which is perpen-
dicular to the normal to the walls and to the direction of the
flow. The ensuing LB models employ the half-range Gauss-
Hermite quadrature on the axis perpendicular to the walls (the
x axis) and the full-range Gauss-Hermite quadrature for the
axis parallel to the wall (the y axis). The advantage of these
LB models with mixed quadratures is described as follows.
The discontinuity induced by the diffuse reflection boundary
conditions imposed on the walls perpendicular to the x axis
warrants the use of the half-range Gauss-Hermite quadrature,
which requires Q = N + 1 points on each Cartesian semiaxis
to ensure the accurate recovery of the moments of the distri-
bution function f up to N th order. The 2Q quadrature points
on the whole axis are twice the number of points required
by the full-range Gauss-Hermite quadrature to achieve the
same degree of accuracy when considering the full-space
moments of f [91]. Thus, it is more convenient to employ the
full-range Gauss-Hermite quadratures on the y direction (i.e.,
the direction parallel to the walls), where no discontinuities in
the distribution function arise, resulting in an overall smaller
velocity set.

The aim of this paper is to demonstrate that the Shakhov
collision term model can be successfully employed in LB
simulations to match direct simulation Monte Carlo (DSMC)
results. In particular, we consider comparisons with the data
obtained for the Couette flow of Maxwell molecules [99–
101,116,117], as well as for the flow of helium and argon
modeled using ab initio potentials [118].

For the spatial advection, we employed the fifth or-
der weighted essentially nonoscillatory (WENO-5) scheme
described in Refs. [78,119–122], while the time stepping
was performed using a third order Runge-Kutta algorithm
[120,122–126]. The implementation of the diffuse reflection
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boundary conditions on the channel walls is identical to that
presented in Ref. [122].

The outline of this paper is as follows. In Sec. II, the
Shakhov collision term is briefly described. Section III is
dedicated to discussing the Boltzmann equation for the 3D
Couette flow between parallel plates, in the context of reduced
distributions. Section IV validates our models in the incom-
pressible (low Mach) regime, by comparison with the semi-
analytic benchmark data reported in Ref. [93]. In Sec. V, our
models are validated against the DSMC results for Maxwell
molecules reported in Refs. [99–101,116,117], at various val-
ues of Kn and of the wall velocity uw. In Sec. VI, we consider
a comparison with the DSMC simulation results based on
ab initio potentials for helium and argon [118]. Section VII
concludes this paper. The details regarding our numerical
scheme are presented in the Appendix. We warn our readers
that, in order to facilitate the comparison of our LB results
with various data in the literature, the notation used to refer
to the degree of rarefaction varies between the sections where
these results are reported, as follows: in Sec. IV, the notation
k is employed to refer to the Knudsen number; in Sec. V, the
Knudsen number is denoted using the familiar notation Kn
and is linked to k through Kn = k/

√
2; in Sec. VI, the degree

of rarefaction is characterized using the rarefaction parameter
δ, which is linked to k (from Sec. IV) and Kn (from Sec. V)
through δ = 1/k and δ = 1/Kn

√
2, respectively.

II. BOLTZMANN EQUATION WITH THE SHAKHOV
COLLISION TERM

In this section, we establish our notation by introducing the
Shakhov collision term model, as well as our nondimension-
alization convention.

A. Shakhov model

The Boltzmann equation for a force-free flow with the
Shakhov collision term is given by [21,22,33,37,127,128]

∂̃t f̃ + p̃
m̃

· ∇̃f̃ = − 1

τ̃
[f̃ − f̃ (eq)(1 + S)], (2.1)

where the overhead tilde ˜ denotes dimensionful quantities.
In the above, f̃ is the Boltzmann distribution function, m̃ and
p̃ are the particle mass and momentum vector, respectively,
while τ̃ is the relaxation time. The Maxwell-Boltzmann equi-
librium distribution function is given by

f̃ (eq) = ñ

(2πm̃k̃BT̃ )3/2
exp

[
− ( p̃ − m̃ũ)2

2m̃k̃BT̃

]
, (2.2)

where ñ, T̃ , and ũ are the macroscopic density, temperature,
and velocity of the fluid. The Shakhov term S is given by

S = 1 − Pr

ñK̃2
BT̃ 2

(
ξ̃

2

5m̃K̃BT̃
− 1

)
q̃ · ξ̃ , (2.3)

where Pr gives the Prandtl number (see below), ξ̃ = p̃ − m̃ũ
is the peculiar momentum, and q̃ is the heat flux.

The macroscopic quantities ñ, ũ, pressure tensor T̃ij , and q̃
can be obtained as moments of f̃ :

ñ =
∫

d3p̃ f̃ ,

ũ = 1

ρ̃

∫
d3p̃ f̃ p̃,

(2.4)

T̃ij =
∫

d3p̃ f̃
ξ̃i ξ̃j

m̃
,

q̃ =
∫

d3p̃ f̃
ξ̃

2

2m̃

ξ̃

m̃
,

while the pressure is obtained as P̃ = 1
3 (T̃xx + T̃yy + T̃zz) =

ñK̃BT̃ .
By employing the Chapman-Enskog expansion, it can be

seen that, for three-dimensional flows, the Shakhov collision
term gives rise to the following expressions for the transport
coefficients, namely the dynamic (shear) viscosity μ̃ and the
heat conductivity κ̃T [33]:

μ̃ = τ̃ ñK̃BT̃ , κ̃T = 1

Pr

5K̃B

2m̃
τ̃ ñK̃BT̃ , (2.5)

where the Prandtl number Pr, calculated as

Pr = c̃pμ̃

κ̃T

, c̃p = 5K̃B

2m̃
, (2.6)

is adjustable according to Eq. (2.3).

B. Nondimensionalization convention

Our nondimensionalization convention follows the one em-
ployed in Ref. [129], being based on the following reference
quantities: the reference length l̃ref = L̃, the reference temper-
ature T̃ref , the reference mass m̃ref , and the reference density
ñref . In the context of the Couette flow, the reference length is
taken as the distance between the parallel plates, l̃ref = L̃, and
the reference temperature is the wall temperature, T̃ref = T̃w.
The reference mass is taken equal to the particle mass m̃ref ,
while the reference speed is

c̃ref =
√

K̃BT̃ref

m̃ref
= 1√

γ
c̃s;ref , (2.7)

where c̃s;ref is the sound speed at the reference tempera-
ture and γ is the adiabatic index. Since we only consider
monatomic ideal gases (γ = 5/3), the Mach number corre-
sponding to the nondimensionalized velocity u is

Ma = u

√
3

5
� 0.775u. (2.8)

The nondimensionalized distribution function f is defined
as

f = f̃

ñref
(m̃ref k̃B T̃ref )3/2, (2.9)

such that the nondimensional form of the Maxwell-Boltzmann
distribution (2.2) is

f (eq) = n

(2πmT )3/2
exp

[
− ( p − mu)2

2mT

]
, (2.10)
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where p ≡ p̃/m̃ref c̃ref and the nondimensional mass m =
m̃/m̃ref = 1 is kept explicitly for the sake of clarity of the
mathematical relations presented in what follows. Finally, the
Boltzmann equation (2.1) can be nondimensionalized after
multiplying both sides by t̃ref (m̃ref k̃B T̃ref )3/2/̃nref , yielding

∂tf + p
m

· ∇f = − 1

τ
[f − f (eq)(1 + S)]. (2.11)

The exact expression for the nondimensionalized relaxation
time τ depends on the collision term model and will be
discussed separately in Secs. IV–VI.

III. LATTICE BOLTZMANN MODELS
FOR THE COUETTE FLOW

In the remainder of this paper, we focus on the Couette
flow between parallel plates. The coordinate system is chosen
such that the x axis is perpendicular to the plates, which are
located at xleft = −L/2 and xright = L/2, where the nondi-
mensionalized channel length L = 1 is kept explicitly in order
to facilitate the physical interpretation of the mathematical
expressions appearing below. The plates are set in motion
along the y direction with constant velocities uleft = −uw and
uright = uw, while their temperature is kept constant (Tleft =
Tright = Tw).

In order to simulate the Couette flow, we employ the LB
models presented in Ref. [91]. While these models were used
in Ref. [91] for the simulation of the 2D Couette flow in
the Boltzmann-BGK model, their applicability to the present
problem is immediate since the extra momentum space degree
of freedom pz, which is perpendicular to the flow direction
and to the normal to the walls, can be eliminated by in-
troducing the reduced distributions φ and χ , as discussed
below. It was shown in Ref. [91] that, for the simulation of
flows at non-negligible values of Kn, the half-range Gauss-
Hermite quadrature should be used on the axis perpendicular
to the walls (the x axis), while a relatively low-order full-
range Gauss-Hermite quadrature is adequate for the direction
parallel to the walls. The resulting models are denoted by
HHLB(Nx ; Qx ) × HLB(Ny ; Qy ), where Nx and Ny are the
orders of the polynomial expansions of the equilibrium distri-
bution along the x and y axes, respectively. Qx and Qy denote
the quadrature orders employed on the x semiaxes and on the
full y axis of the momentum space. The resulting velocity set
comprises 2Qx × Qy vectors.

In Ref. [91] it was shown, for a two-dimensional mixed
quadrature LB model, that the value of Qx required to obtain
accurate simulation results depends on Kn and on the wall
velocity uw. Furthermore, it was also shown that, in the
particular case of the BGK implementation of the collision
term, the simulations employing Qy � 4 at fixed Qx produced
identical results. In this section, a similar inequality will be
derived in the case of the Shakhov model.

Since the Couette flow is completely homogeneous along
the directions which are parallel to the walls (i.e., the y and z

directions), Eq. (2.11) reduces to

∂tf + px

m
∂xf = − 1

τ
[f − f (eq)(1 + S)]. (3.1)

The pz degree of freedom of the momentum space can
be eliminated by integrating Eq. (3.1) with respect to pz.
Defining the reduced distributions φ ≡ φ(x, px, py, t ) and
χ ≡ χ (x, px, py, t ) via

φ =
∫ ∞

−∞
dpz f, χ =

∫ ∞

−∞
dpz f

p2
z

m
, (3.2)

the following two equations are obtained:

∂t

(
φ

χ

)
+ px

m
∂x

(
φ

χ

)
= − 1

τ

(
φ − φ(eq)(1 + Sφ )
χ − χ (eq)(1 + Sχ )

)
, (3.3)

where χ (eq) = T φ(eq) and φ(eq) is just the 2D Maxwell-
Boltzmann distribution (α ∈ {x, y}):

φ(eq) = ngxgy, gα = 1√
2πmT

exp

[
− (pα − muα )2

2mT

]
.

(3.4)

The terms Sφ and Sχ are given by

Sφ =
∫ ∞

−∞

dpz√
2πmT

e−p2
z /2mT S

=1 − Pr

nT 2

(
ξ 2
x + ξ 2

y

5mT
− 4

5

)
(ξxqx + ξyqy ),

(3.5)

Sχ =
∫ ∞

−∞

dpz√
2πmT

e−p2
z /2mT

p2
z

mT
S

=1 − Pr

nT 2

(
ξ 2
x + ξ 2

y

5mT
− 2

5

)
(ξxqx + ξyqy ).

Let us now expand φ and φ(eq)(1 + Sφ ) with respect to
the full-range Hermite polynomials on the y axis, as follows
[130]:

φ =ω(py )

p0,y

∞∑
�=0

1

�!
F�(x, px, t )H�(py ),

φ(eq)(1 + Sφ ) =ω(py )

p0,y

∞∑
�=0

1

�!
FSφ

� (x, px, t )H�(py ), (3.6)

where py ≡ py/p0,y represents the particle momentum along
the y axis in units of an arbitrary momentum scale p0,y

(we only consider p0,y = 1 in this paper), while the weight
function ω(py ) for the full-range Hermite polynomials is

ω(py ) = 1√
2π

e−p2
y/2. (3.7)

Furthermore, the coefficients F� and FSφ

� can be computed as

F� =
∫ ∞

−∞
dpy φ H�(py ),

FSφ

� =
∫ ∞

−∞
dpy φ(eq)(1 + Sφ ) H�(py ). (3.8)

The compatibility between Eqs. (3.6) and (3.8) is ensured by
the orthogonality relation obeyed by the Hermite polynomials
[131]: ∫ ∞

−∞
dpy ω(py )H�(py )H�′ (py ) = �! δ��′ . (3.9)
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Substituting (3.6) into the Boltzmann equation (3.1) and
projecting on the space of Hermite polynomials gives

∂tF� + px

m
∂xF� = − 1

τ

(
F� − FSφ

�

)
, (3.10)

where, as before, F� and FSφ

� depend on x, px , and t . Since
φ(eq) depends on n, u, and T , while Sφ depends on q, the

coefficients FSφ

� always involve the coefficients F�′ of orders
0 � �′ � 3. In this paper, only the moments of f up to q are
tracked. These moments can be expressed with respect to the
coefficients F� with 0 � � � 3. In our implementation, we
consider the expansion (3.4) of φ(eq) through a direct product
procedure, by separately expanding the factors gx and gy .
More precisely, gx is expanded with respect to the half-range
Hermite polynomials and gy is expanded with respect to the
full-range Hermite polynomials up to order Ny = Qy − 1
[91,92]. Since Sφ is a polynomial of the third order in p, the
evolution of q requires the recovery of the moments of φ(eq) of
order 3 + 3 = 6 on each axis. Such moments can be exactly
recovered when Ny � 6.

The above analysis shows that, when the Shakhov collision
term is employed, the numerical results for the 3D Couette
flow considered in this paper when Qy > 7 must coincide
with those obtained with Qy = 7. Furthermore, as discussed
in Ref. [91], the accurate simulation of flows at large values
of Kn requires the increase of the quadrature Qx . It is worth
mentioning that if Pr = 1, the Shakhov term S in Eq. (2.3)
vanishes and the LB models with Qy � 4 give identical
results, as discussed in Ref. [91].

IV. LOW MACH NUMBER VALIDATION

For low Mach number flows, the Boltzmann equation can
be approximated via its linearized form, which was tackled
by many authors using numerical simulations [13,132–135]
or semianalytic methods [11,93–95]. In order to approach
the assumptions of the linearized regime, the simulations
presented in this section are performed with uw = 10−5,
such that the temperature and density profiles remain nearly
constant throughout the channel. At higher values of uw,
deviations from the benchmark results can be expected, since
the profile of uy/uw does not scale perfectly with uw, as also
demonstrated in Ref. [136]. At uw = 10−5, a quadrature order
Qy = 2 is sufficient for the direction pointing along the flow.

Since the value of Pr does not influence the results in this
regime, the simulations are performed with Pr = 1 (the BGK
approximation). Furthermore, since the linearized regime
analysis is oblivious of the number of degrees of freedom of
the particle constituents, our simulations are performed only
at the level of the φ function, as follows:

∂tφ + px

m
∂xφ = − 1

τ
[φ − φ(eq)], (4.1)

where φ(eq) is given in Eq. (3.4) with the temperature obtained
as T = 1

2n
(Txx + Tyy ). The relaxation time is implemented

through

τ = k√
2
, (4.2)

where k is interpreted as the Knudsen number [11,93,95].

The numerical results presented in this section were ob-
tained with the HHLB(Nx ; Qx ) × HLB(1; 2) models, for var-
ious values of Qx . For consistency with the subsequent nu-
merical results sections, the expansion order Nx was set to
Nx = min(6,Qx − 1). The spatial domain was discretized
using S nodes, stretched according to Eq. (A4) with A = 0.98.
More details on the numerical scheme are provided in the
Appendix.

In the first part, we consider a comparison with the bench-
mark data obtained by Jiang and Luo in Ref. [93] for the
following four quantities: the slip velocity uslip, the velocity
derivative at the channel center u′(0), the mass flow rate ṁ,
and the nondiagonal stress Txy , which are introduced below.

The slip velocity is obtained by subtracting the fluid veloc-
ity at the wall uy (L/2) from the wall velocity,

uslip = uw − uy (L/2), (4.3)

where uy (L/2) is obtained by quadratic extrapolation from
the fluid nodes with indices S, S − 1, and S − 2 (S is the
index of the last node inside the fluid domain and uy;i is the y

component of the fluid velocity in node i, 1 � i � S):

uy (L/2) = (L/2 − xS−1)(L/2 − xS−2)uy;S

(xS − xS−1)(xS − xS−2)

+ (L/2 − xS )(L/2 − xS−2)uy;S−1

(xS−1 − xS )(xS−1 − xS−2)

+ (L/2 − xS )(L/2 − xS−1)uy;S−2

(xS−2 − xS )(xS−2 − xS−1)
. (4.4)

This expression of uy (L/2) is third order accurate with respect
to the spacing δη of the parameter of the stretched grid, which
is defined in the Appendix.

The velocity derivative at the channel center is obtained
using the following three-point formula:

u′
y (0) = x2

2x2
3uy;1

x1
(
x2

1 − x2
2

)(
x2

1 − x2
3

)
+ x2

1x2
3uy;2

x2
(
x2

2 − x2
1

)(
x2

2 − x2
3

)
+ x2

1x2
2uy;3

x3
(
x2

3 − x2
1

)(
x2

3 − x2
2

) , (4.5)

which is sixth order accurate if we take into account the an-
tisymmetry of the velocity profile with respect to the channel
center.

The half-channel mass flow rate is obtained using the
rectangle integration method:

ṁ =
∫ L/2

0
dx ρuy = L

2A

∫ arctanh A

0

dη

cosh2 η
ρuy

� L arctanh A

2AS

S∑
s=1

ρsuy,s

cosh2 ηs

, (4.6)

which is second order accurate with respect to δη. In the
hydrodynamic regime, when u

hydro
y = 2uwx/L [137,138], the

half-channel mass flow rate is given by

ṁhydro =
∫ L/2

0
dx ρuhydro

y = 1

4
ρuwL. (4.7)

063311-5
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FIG. 1. Comparison between the results obtained using our models for various quadrature orders Qx and number of grid points S (dashed
lines and points) and the benchmark data on the solution of the linearized Boltzmann equation reported by Jiang and Luo in Ref. [93]
(continuous lines), shown with respect to the Knudsen number k defined in Eq. (4.2), for (a) uslip/uw , (b) Lu′

y (0)/2uw , (c) ṁ/ṁhydro, and
(d) Txy/T bal

xy .

Finally, the nondiagonal stress Txy is obtained by averaging
Txy over the half-channel, using the equivalent of Eq. (4.6):

Txy = arctanh A

AS

S∑
s=1

Txy;s

cosh2 ηs

. (4.8)

In the ballistic regime, Txy is given by [11,91]

T bal
xy = −ρuw

√
2Tw

mπ
. (4.9)

In Fig. 1, the results obtained with our mixed quadrature
LB models are compared with those reported by Jiang and
Luo in Table 2 of Ref. [93], for (a) the relative slip velocity
uslip/uw, (b) the normalized velocity derivative at the chan-
nel center Lu′

y (0)/2uw, (c) the normalized mass flow rate

ṁ/ṁhydro, and (d) the normalized nondiagonal stress Txy/T bal
xy .

It can be seen that very reasonable agreement is obtained with
the HHLB(3; 4) × HLB(1; 2) model on a grid with S = 16
nodes. The small discrepancies seen in Fig. 1(b) at small
values of k are removed by doubling the grid points, while the
discrepancies observed at large values of k in Figs. 1(a)–1(c)
can be removed by increasing the quadrature order Qx of the
half-range Gauss-Hermite quadrature.

The comparison shown in Fig. 1 allows a qualitative assess-
ment to be made at the level of absolute differences between
our results and the benchmark results. We now discuss the
relative error ε(A), which is defined for a quantity A as

ε(A) = ALB

Alin
− 1, (4.10)
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FIG. 2. Effect of the quadrature order on the relative error ALB/Alin − 1 between our numerical results and the benchmark data reported
by Jiang and Luo in Ref. [93], shown with respect to the Knudsen number k defined in Eq. (4.2), where the quantity A stands for (a) uy (L/2),
(b) u′

y (0), (c) ṁ, and (d) Txy .

where ALB and Alin are the values of A obtained using our
models and those reported in Ref. [93], respectively. The use
of ε(A) augments the differences between our LB results
and the benchmark data in the regions where A is small.
In Figs. 2(a)–2(d), the relative errors ε(A), computed for
A ∈ {uy (L/2), u′

y (0), ṁ, Txy}, are represented with respect to
k (4.2) for various quadrature orders. The dashed lines in
Figs. 2(a)–2(c) and 2(d) indicate the 1% and 0.1% relative
error thresholds, respectively. It can be seen that for the
quantities (a) uy (L/2), (b) u′

y (0), and (c) ṁ, the relative error
at high values of k can be decreased below 1% only when high
quadrature orders Qx are employed. This is because these
three quantities go to 0 as k → ∞ and hence the absolute error
must decrease significantly in order to achieve the 1% thresh-
old for the relative error. By contrast, the relative error in Txy ,
shown in Fig. 2(d), is well below 1% even when Qx = 4. For

this quantity, the relative error becomes less than 0.1% when
Qx � 7. All results presented in Fig. 2 were obtained on a 1D
grid with S = 16 points, stretched according to Eq. (A3) with
A = 0.98, using the models HHLB(Nx ; Qx ) × HLB(1; 2) of
various quadrature orders Qx and Nx = min(6,Qx − 1).

In the second and final part, a comparison between our
results and those reported in Ref. [95] for the nonlinear part
of the velocity profile unl

y is considered. This nonlinear part
refers to the departure of the solution of the kinetic equation
from the straight line profile predicted via the Navier-Stokes
equations. The construction of unl

y is made by first obtaining
a linear velocity profile which vanishes at the channel center
and which attains the value predicted by the kinetic equation
on the channel wall. This linear profile can be regarded as
the solution of the Navier-Stokes equations with the correct
velocity slip taken into account. Subtracting the velocity
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FIG. 3. Comparison between our numerical results and those
reported by Li et al. in Ref. [95] for the nonlinear part of the
velocity profile (4.11): (a) for various values of the Knudsen number
k ∈ {0.03, 0.1 , 1, 10} (the simulation parameters are summarized in
Table I), (b) for k = 0.03, Qx = 4, and the number of grid points
S ∈ {16, 24, 64}. The Knudsen number k is defined in Eq. (4.2).

profile obtained by solving the kinetic equation gives a profile
which vanishes, by construction, at the channel center and at
the wall. This nonlinear velocity profile unl

y is defined as

unl
y = 2x

L
− uy (x)

uy (L/2)
. (4.11)

It can be seen in Fig. 3(a) that the resulting profiles cancel
at x = 0 and x = L/2, while reaching a maximum value
inside the channel. The value of this maximum increases
with k up to a maximum value, and decreases afterwards
as k → ∞, when the velocity profile is trivially a straight
line: ubal

y (x) = 0. Our results are in excellent agreement with
those reported in Ref. [95] and were obtained using the
models HHLB(Nx ; Qx ) × HLB(1; 2), with Nx = min(Qx −

TABLE I. Simulation parameters for the results shown in Fig. 3(a).

k Nx Qx S

0.03 3 4 64
0.1 6 7 32
1 6 21 32
10 6 80 32

1, 6), while Qx = 4, 7, 21, and 80 for k = 0.03, 0.1, 1, and
10, respectively. In order to maintain a good accuracy, the
number of grid points had to be increased to S = 64 for
k = 0.03 and S = 32 for k ∈ {0.1, 1, 10}. These simulation
parameters are summarized in Table I. For k = 0.03, the
approach of our LB results towards the benchmark solution
as the grid is successively refined can be seen in Fig. 3(b).

V. COMPARISON WITH DSMC: MAXWELL MOLECULES

We now benchmark our LB results against the direct simu-
lation Monte Carlo (DSMC) results for Maxwell molecules
reported by Struchtrup et al. in Refs. [99,116,117]. The
working gas in these simulations is argon, such that the
reference mass is taken to be m̃ref = m̃Ar � 6.63 × 10−26 kg.
Taking the reference (and hence, the wall) temperature to
be T̃ref = T̃w = 273 K, the reference velocity (2.7) is c̃ref �
238.35 m/s and the sound speed is c̃s � 307.71 m/s at T̃ =
T̃w. The average particle number density was taken to be
ñ = 1.4 × 1020 molecules/m3 and the mean free path is λ̃ =
0.008 833 m. The Knudsen number Kn is thus controlled by
varying the domain size, such that the reference length and
reference time depend on Kn, as shown in Table II.

In the Maxwell molecules model, the viscosity coefficient
has a linear temperature dependence,

μ̃ = μ̃ref
T̃

T̃ref
, (5.1)

where μ̃ref is the viscosity at the reference temperature. This
expression for the viscosity can be achieved within the single
relaxation time approximation by setting the nondimensional-
ized relaxation time to [6]

τ = Kn

n
. (5.2)

This expression ensures that the viscosity obtained via the
Chapman-Enskog expansion is linear with respect to the

TABLE II. Reference values for the length and time for various
values of Kn, in the context of the simulations discussed in Sec. V.

Kn l̃ref t̃ref

0.01 0.8833 m 3.71 ms
0.05 0.176 66 m 0.741 ms
0.1 0.088 33 m 0.371 ms
0.25 0.035 332 m 0.148 ms
0.5 0.017 666 m 74.1 μs
1.0 0.008 833 m 37.1 μs
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FIG. 4. Comparison of the LB results (dotted lines and points) and DSMC results from Refs. [99,116,117] (lines) for Maxwell molecules,
with uw � 0.63 and various values of Kn. (a) Velocity uy , (b),(c) components of the heat flux qi , (d) density n, (e) temperature T , (f) pressure
P , and (g)–(i) components of the shear stress �ij = Tij − nT δij .

temperature:

μ = Kn T . (5.3)

The Prandtl number is fixed at Pr = 2/3 using the Shakhov
model, as discussed in Sec. II.

In this section, we compare the results obtained using
our LB models and the DSMC results at the level of the
profiles of the density n, pressure P , temperature T , viscous
stress �ij = Tij − nT δij , velocity uy , and heat fluxes qx and
qy . We considered three batches of simulations, which are
discussed below. For all simulations, a grid with S = 16
nodes, stretched according to Eq. (A3) with A = 0.98, was
employed. The time step was set to δt = 5 × 10−4. The model
used was HHLB(6; 7) × HLB(6; 7) for all simulations, except
at Kn = 1. Since at Kn = 1, the flow enters the transition
regime, the quadrature order had to be increased to Qx = 11
and the simulations in this regime were performed with the

model HHLB(6; 11) × HLB(6; 7). We note that increasing the
expansion order of gx with respect to the half-range Hermite
polynomials from Nx = 6 to higher values does not have any
visible influence on the results.

In the first batch of simulations, the relative wall velocity
difference is fixed at 2ũw = 300 m/s (uw � 0.63) and Kn is
varied from 0.01 up to 1. Our simulation results are shown in
Fig. 4 alongside the DSMC results. An excellent agreement
can be seen for the velocity (a), the heat fluxes (b) and (c),
the density (d), and the nondiagonal component �xy of the
viscous stress tensor (i). The temperature, the pressure, and
the diagonal components of the stress tensor present visible
deviations when Kn � 0.25.

The second and third simulation batches are performed
at Kn = 0.1 and Kn = 0.5, respectively, for values of the
relative wall velocity difference 2ũw between 200 m/s
(Ma � 0.65) and 1000 m/s (Ma � 3.25), corresponding to
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FIG. 5. Comparison of the LB results (dotted lines and points) and DSMC results from Refs. [99,116,117] (lines) for Maxwell molecules,
at Kn = 0.1, for various values of the wall velocity uw . (a) Velocity uy , (b) transverse heat flux qx , (c) longitudinal heat flux qy , (d) density n,
(e) temperature T , (f) pressure P , and (g)–(i) components of the viscous stress �ij = Tij − nT δij .

uw � 0.42 and uw � 2.1, respectively. The simulation results
are shown in Figs. 5 and 6. In these figures, a very good
agreement can be seen between the LB and DSMC results.
It is interesting to note that there is some disagreement in the
results for �ij , T , and P at high wall velocities (uw � 1.68),
even at Kn = 0.1. This disagreement seems to indicate that
the relaxation time model becomes inaccurate at high shearing
rates.

The comparisons presented in this section validate the LB
models with mixed Gauss-Hermite quadratures, for a wide
range of the Knudsen number, as well as of the plate veloc-
ities. The simulations were performed using a discretization
of the velocity space employing 2QxQy = 98 distinct vectors
(Qx = Qy = 7) for Kn < 1 and 154 distinct velocities (Qx =
11, Qy = 7) at Kn = 1. This makes our proposed method
highly efficient for the study of channel flows in the rarefied
regime.

VI. COMPARISON WITH DSMC:
REALISTIC POTENTIALS

We now consider the validation of our LB models in the
case of the Couette flow of two noble gases, namely helium
(He) and argon (Ar). The transport coefficients for these
gases were measured experimentally and the experimental
data can be found in Ref. [139]. More recently, these transport
coefficients were computed using ab initio potentials and
the results were reported in Refs. [140] and [141] for dilute
helium and argon gases. In this subsection, we compare our
LB simulation results with the results reported in Ref. [118],
calculated using the direct simulation Monte Carlo (DSMC)
method based on ab initio potentials over a wide range of the
gas rarefaction parameter δ. The results reported in Ref. [118]
concern mixtures of He and Ar, including the limiting cases of
pure He and pure Ar. The treatment of gas mixtures requires
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FIG. 6. Same as Fig. 5 for Kn = 0.5.

more elaborate models, such as the McCormack model, which
was introduced in Ref. [32] for the linearized Boltzmann
equation. Outside the linear regime, a relaxation time model
for isothermal binary fluids was proposed in Ref. [142]. To
the best of our knowledge, there is no established relaxation
time model which can be used to simulate nonisothermal gas
mixtures. For simplicity, in this subsection we only consider
the case of pure monatomic gases (He or Ar), which can be
easily treated in the framework of the Shakhov model.

The Maxwell molecules model can be considered as a
particular case of interaction model, for which the dynamic
viscosity μ̃ varies with temperature according to

μ̃ = μ̃ref

(
T̃

T̃ref

)ω

, (6.1)

where μ̃ref is the value of the viscosity at the reference
temperature T̃ref and the viscosity index ω takes the value
ωMaxwell = 1 in the case of Maxwell molecules. In a more

general formulation, the variable hard sphere (VHS) model
gives rise to values of the viscosity index of the form ω =
1
2 + ν, where ν is a constant controlling the dependence of the
collisional cross section on the relative speed of the interacting
particles [6]. The particular case of the hard sphere (HS)
model is recovered by setting ν = 0. The VHS paradigm
works remarkably well for quasi-isothermal flows. However,
when the temperature variations in the flow are large, the data
tabulated in Refs. [139,140] for the transport coefficients of
various gases indicate that the viscosity index ω is a slowly
varying function of the temperature [118].

In order to obtain reasonable agreement between the col-
lisional model employed in DSMC and the realistic data
available for the transport coefficients, the generalized hard
sphere (GHS) model was introduced in Ref. [143]. This
model can reproduce with remarkable accuracy the experi-
mental data in Ref. [141] to temperatures as high as 1500 K,
where the deviation from the experimental data is about
5% [144].
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In this section, we consider the viscosity law which
emerges from the model proposed by Sutherland [145]. In
this model, the interaction potential is considered to be the
superposition between a hard-sphere-like infinite potential
barrier around the repulsive core, followed by an attractive
tail. This potential can be used to derive the scattering cross
sections of two-particle collisions and the value of the viscos-
ity coefficient emerging from this model is given by [145]

μ̃ = μ̃ref

(
T̃

T̃ref

)1/2
1 + S̃/T̃ref

1 + S̃/T̃
, (6.2)

where μ̃ref is the fluid viscosity at the temperature T̃ = T̃ref

and S̃ is Sutherland’s constant, which has the dimension of
temperature. According to Ref. [144], the Sutherland model
can be fitted in order to reproduce with reasonable accuracy
the experimental data reported in Ref. [141].

In order to validate our simulation results against the re-
sults reported in Ref. [118], we take the reference temperature
to be equal to the wall temperature, which was set to T̃ref =
300 K therein. At this temperature, the values of the viscosity
for He and Ar reported in Ref. [141] are μ̃He

ref � 20.04 μPa s
and μ̃Ar

ref � 22.83 μPa s. It can be seen that the viscosity of
He given above does not coincide with the value obtained via
the ab initio formulation, namely μ̃He

ref;ab initio � 19.91 μPa s
[118,139]. Thus, in deriving the value of the Sutherland
constant S̃, we consider the values of the transport coefficients
obtained in the framework of the ab initio calculations, as
presented in Refs. [139] and [140] for helium and argon,
respectively.

Since the maximum value of the temperature attained in
Ref. [118] is � 2T̃ref = 600 K, we seek the values of S̃

in Eq. (6.2) which best reproduce the reference data over
the temperature range 300–600 K. A nonlinear fit gives the
following values for S̃:

S̃He � 93.0387 ± 3.159 K,

S̃Ar � 157.1621 ± 0.4047 K. (6.3)

With the above choice of parameters, the maximum relative
deviation of the viscosity from the tabulated data is less than
0.8% and 0.2% for He and Ar, respectively. The result of the
fit is shown in Fig. 7.

The Sutherland model can be implemented by setting the
nondimensional relaxation time τ within the Shakhov model
to

τ = 1

nT 1/2δ
√

2

1 + S

1 + S/T
, (6.4)

where δ is the rarefaction parameter employed in Ref. [118],
while SHe � 0.3101 and SAr � 0.5239 after nondimensional-
ization.

The profiles of n, T , and uy for δ = 0.1, 1, and 10 at
wall velocity difference 2uw = 2

√
2 (Ma � 2.2) are shown in

Fig. 8. Good agreement can be observed in general, with the
largest discrepancies occurring in the temperature profile for
δ = 1 and in the velocity profile at δ = 0.1. For δ = 10 and 1,
the simulation results were obtained with the HHLB(6; 7) ×
HLB(6; 7) model using S = 16 lattice nodes stretched ac-
cording to Eq. (A3) with A = 0.98 and the time step δt =
5 × 10−4. At δ = 0.1, the flow is within the transition regime
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FIG. 7. Comparison between the tabulated values for the vis-
cosity of He and Ar from Refs. [139] and [140] (dotted lines and
symbols) and the fit obtained using the Sutherland model (6.2).
The reference values are μ̃He

ref � 19.91 μPa s and μ̃Ar
ref � 22.67 μPa s,

which represent the viscosity values at T̃ref = 300 K. The values of
the Sutherland parameter are SHe = 0.3101 and SAr = 0.5239 after
nondimensionalization.

and the simulation results obtained with Qx = 7 are no longer
accurate within the S-model. We thus obtained the results
at δ = 0.1 using the HHLB(6; 30) × HLB(6; 7) model with
S = 16, A = 0.98, and δt = 2.5 × 10−4 (increasing Nx to
values higher than 6 did not make any visible differences to
the results). The simulation parameters are summarized in
Table III. We note that increasing Qx did not bring the LB
simulation results closer to the DSMC profiles, as indicated
in Fig. 9. This seems to indicate the fundamental limitation of
the relaxation time approach, which fails to provide accurate
results far within the transition regime.

In order to validate our model with the results re-
ported in Ref. [118], we perform simulations at wall ve-
locity differences 2uw = 2

√
2 (Ma � 2.2) and 2uw = 0.2

√
2

(Ma � 0.22), corresponding to U = 2v0 and U = 0.2v0 in
Ref. [118], for various values δ ∈ {0.01, 0.1, 1, 10, 20, 40} of
the rarefaction parameter, covering the slip, transition, and
free molecular flow regimes. The validation is performed
at a quantitative level based on the numerical results for
the gradient ν of the velocity at the center of the channel
(Table IV), the value � of the shear stress (Table V), and
the value T0 of the temperature measured in the center of the
channel (Table VI). In all cases, the LB results obtained using
the above mentioned values of the simulation parameters were
compared with the results from Ref. [118]. The discrepancy is
quantified by the relative error,

ε(A) =
∣∣∣∣ALB

Aref
− 1

∣∣∣∣, (6.5)

where ALB represents our simulation result and Aref is the
reference value from Ref. [118]. The comparison is performed
for A ∈ {ν,�, T0}, where the values of the velocity gradient
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FIG. 8. Comparison of the LB results (dotted lines and points) and DSMC results from Ref. [118] (lines) for helium (top) and argon
(bottom) molecules modeled using ab initio potentials, at various values of the rarefaction parameter δ. The wall velocity is uw = √

2 and the
relaxation time is implemented using the Sutherland model (6.4). Left: density n; middle: temperature T ; right: velocity uy .

ν, of the temperature T0 (calculated in the channel center), as
well as of the quantity � (derived from the nondiagonal stress
Txy) are introduced below.

We begin by considering the dimensionless velocity gradi-
ent defined in Ref. [118], which in our nondimensionalization
convention reads

ν = L

2uw

duy

dx

⌋
x=0

. (6.6)

The derivative appearing above is computed using Eq. (4.5).
As can be seen in Table IV, our results are in very good agree-
ment with those reported in Ref. [118] for both He and Ar for
δ � 1. These results were obtained using the HHLB(6; 7) ×
HLB(6; 7) model and have the absolute error bounded by
±0.001. At δ = 0.1 and 0.01, in order to obtain LB results
with the same ±0.001 absolute error, the quadrature order

TABLE III. Simulation parameters for the results shown in Fig. 8
and in Tables IV–VI. The simulations were conducted on a grid with
S = 16 nodes, stretched according to Eq. (A3) with A = 0.98. The
expansion order of the equilibrium distribution with respect to the
half-range Hermite polynomials was always kept at Nx = 6.

δ Qx δt

� 1 7 5 × 10−4

0.1 30 2.5 × 10−4

0.01 100 2.5 × 10−4

was raised up to Qx = 30 and 100, respectively. For the
convenience of our readers, these simulation parameters are
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FIG. 9. Convergence process with respect to the quadrature order
Qx for the Sutherland model for argon molecules, compared with
the DSMC results reported in Ref. [118] at δ = 0.1. It can be seen
that increasing Qx causes the LB results to depart from the DSMC
profile.
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TABLE IV. Comparison of the results obtained for the velocity
gradient ν (6.6) using the LB model employed in this paper and the
DSMC data reported in Ref. [118], for uw = √

2 and various values
of δ.

ν (argon) ν (helium)

δ LB Ref. [118] ε(νAr ) LB Ref. [118] ε(νHe)

0.01 0.027 0.048 43.8% 0.028 0.041 31.7%
0.1 0.145 0.173 16.2% 0.149 0.172 13.40%
1 0.484 0.486 0.42% 0.493 0.494 0.20%
10 0.824 0.819 0.62% 0.831 0.826 0.61%
20 0.874 0.873 0.12% 0.880 0.880 0.0%
40 0.905 0.904 0.12% 0.911 0.914 0.33%

summarized in Table III. The effect of increasing Qx at small
values of δ on the absolute error ν(Qx ) − νconv computed with
respect to the value νconv obtained using the HHLB(6; 100) ×
HLB(6; 7) model on a grid with S = 32 points (A = 0.98)
is shown in Fig. 10(a). The necessity to increase Qx as δ is
decreased was also demonstrated in Fig. 2(b) in the context of
the analysis of the linearized limit of the Boltzmann equation
discussed in Sec. IV (a decreasing value of δ corresponds to
an increasing value of k in Fig. 2).

Next, we consider the nondimensional quantity �, defined
as [118]

� = − T̃xy

ñavgũw

√
2m̃K̃BT̃w

= − Txy

uw

√
2
, (6.7)

where ñavg represents the average density inside the channel.
Although � should be constant in the stationary state of the
Couette flow, small fluctuations of this quantity are always
present across the channel. For this reason, � is computed us-
ing the average value of Txy , obtained according to Eq. (4.8).
Table V summarizes our results for uw ∈ {√2, 0.1

√
2}. It can

TABLE V. Comparison of the results obtained for the shear stress
� (6.7) using the LB model employed in this paper and the DSMC
data reported in Ref. [118], for uw ∈ {√2, 0.1

√
2} and various values

of δ.

� (argon) � (helium)

δ LB Ref. [118] ε(�Ar ) LB Ref. [118] ε(�He)

uw = √
2

0.01 0.5619 0.5612 0.12% 0.5618 0.5615 0.05%
0.1 0.5358 0.5319 0.73% 0.5344 0.5315 0.55%
1 0.3720 0.3663 1.56% 0.3671 0.3616 1.52%
10 0.09787 0.09777 0.10% 0.09585 0.09551 0.36%
20 0.05328 0.05316 0.23% 0.05223 0.05191 0.62%
40 0.02769 0.02766 0.11% 0.02718 0.02704 0.52%

uw = 0.1
√

2
0.01 0.5594 0.5575 0.34% 0.5594 0.5585 0.16%
0.1 0.5225 0.5167 1.12% 0.5225 0.5191 0.65%
1 0.3392 0.3365 0.81% 0.3392 0.3382 0.30%
10 0.08324 0.08320 0.05% 0.08322 0.08324 0.03%
20 0.04546 0.04531 0.34% 0.04545 0.04540 0.12%
40 0.02383 0.02381 0.09% 0.02382 0.02383 0.04%

TABLE VI. Comparison of the results obtained for the tempera-
ture T0 at the center of the channel using the LB model employed in
this paper and the DSMC data reported in Ref. [118] for uw = √

2
and various values of δ.

T0 (argon) T0 (helium)

δ LB Ref. [118] ε(T Ar
0 ) LB Ref. [118] ε(T He

0 )

0.01 1.663 1.667 0.24% 1.663 1.665 0.12%
0.1 1.646 1.661 0.91% 1.645 1.660 0.91%
1 1.561 1.587 1.64% 1.558 1.583 1.58%
10 1.357 1.360 0.22% 1.355 1.356 0.08%
20 1.315 1.316 0.08% 1.314 1.313 0.08%
40 1.291 1.291 0% 1.291 1.289 0.16%

be seen that the relative error between the LB and DSMC
results is less than 2% for all tested values of the parameters.
For consistency with the results reported for ν in Table IV,
the models summarized in Table III were employed. However,
we note that the values of � obtained using the HHLB(6; 7) ×
HLB(6; 7) model are within 0.2% error with respect to the LB
values inscribed in the table, as can be seen from Fig. 10(b).
This observation is consistent with the results presented in
Fig. 2(d) for the error of Txy as compared with the solution
of the linearized Boltzmann equation.

Finally, the temperature T0 in the channel center is obtained
using the following formula:

T0(x = 0) = x2
2x2

3T1(
x2

1 − x2
2

)(
x2

1 − x2
3

)
+ x2

3x2
1T2(

x2
2 − x2

1

)(
x2

2 − x2
3

) + x2
1x2

2T3(
x2

3 − x2
1

)(
x2

3 − x2
2

) , (6.8)

which is sixth order accurate with respect to the spacing δη

for even functions of x. In the above, Ts corresponds to the
temperature T (xs ) at point xs , which is given by Eq. (A4).
Table VI shows a comparison between the LB and the DSMC
results for the temperature T0 in the center of the channel,
obtained for uw = √

2 and various values of δ. As was the case
for �, the results shown in the table were obtained using the
models summarized in Table III, however, the results obtained
using the HHLB(6; 7) × HLB(6; 7) model are within less than
0.1% relative error with respect to the LB results obtained
with the model HHLB(6; 100) × HLB(6; 7) on a finer grid
(S = 32, A = 0.98), as can be seen in Fig. 10(c).

We end this section with a comment on the accuracy of
the simulation results presented herein. The results reported
in Fig. 8 and in Tables IV–VI were obtained on a grid with
S = 16 nodes, stretched according to Eq. (A4) with A =
0.98. The time step was set to δt = 5 × 10−4 for Qx = 7
and δ = 2.5 × 10−4 for Qx = 30 and 100, as summarized in
Table III. The results shown in Table IV for ν have a maximum
absolute error of 0.001, while the results for � and T0 shown
in Tables V and VI have relative errors of less than 0.1%.
We checked that the effects of halving δt or doubling S were
within these error bounds.

A comparison of the LB and the DSMC data for � and
T0 shown in Tables V and VI together with the convergence
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FIG. 10. Departure of the LB results for ν, � and T0 obtained at uw = √
2 for the argon gas with the models HHLB(6; Qx ) × HLB(6; 7) on

a grid with S = 16 nodes (A = 0.98), with respect to the convergence values {νconv, �conv, T0;conv} obtained using the model HHLB(6; 100) ×
HLB(6; 7) on a grid with S = 32 nodes (A = 0.98), for δ ∈ {0.1, 1, 10}. (a) Absolute departure ν(Qx ) − νconv; (b) relative departure
�(Qx )/�conv − 1; (c) relative departure T0(Qx )/T0;conv − 1.

analysis shown in Figs. 10(b) and 10(c) reveals that the
Shakhov model can provide accurate estimates of the DSMC
results (relative errors below 2%) with a very modest cost,
since the results obtained with the HHLB(6; 7) × HLB(6; 7)
on a grid with 16 nodes have less than 0.2% error with respect
to the results obtained using the HHLB(6; 100) × HLB(6; 7)
model on a grid with 32 nodes. In terms of absolute error, the
values of the velocity gradient ν, obtained using our LB mod-
els, are within less than 5% of the DSMC results. However,
because the value of ν decreases as δ is decreased, the relative
error becomes very large when δ � 0.1. Furthermore, accurate
estimates of ν using our LB models require the quadrature
order Qx to be increased to large values as δ is decreased
(Qx = 100 was employed at δ = 0.01).

VII. CONCLUSION

In this paper, we studied the 3D Couette flow using
the mixed quadrature lattice Boltzmann models introduced
in Ref. [91], which employ the half-range Gauss-Hermite
quadrature of order Qx on the axis perpendicular to the walls
(the x axis) and the full-range Gauss-Hermite quadrature of
order Qy on the axis parallel to the flow direction (the y axis).
The third degree of freedom in the momentum space was
removed through the analytic integration of the Boltzmann
equation and the subsequent analysis was performed using
reduced distribution functions.

We first validated our LB models in the low Mach number
regime by comparing our simulation results with the bench-
mark results obtained in Ref. [93] through a semianalytic
procedure applied to the linearized Boltzmann-BGK equation.
To ensure that our simulations remained in the linearized
regime, the wall velocity was set to a small value (uw = 10−5).
The validation was performed at the level of the velocity at the
wall uy (L/2), the derivative of the velocity at the center of the
channel u′

y (0), the nondiagonal component Txy of the stress
tensor, and the half-channel mass flow rate ṁ. By employing a
convergence test, we concluded that the minimum quadrature
order required in order to achieve a given accuracy (1% error
tolerance) must be increased as the Knudsen number k is
increased. Setting Qx = 4 ensures that the relative errors in
Txy are less than 1% up to k = 100. For the remaining three

quantities, the relative errors are below 1% up to k � 0.1.
Setting Qx = 7 preserves the 1% error threshold up to k �
1, while the relative error in Txy is decreased below 0.1%
up to k = 100. Between 1 � k � 100, the quadrature order
has to be increased dramatically in order to ensure that the
relative errors in uy (L/2), u′

y (0) and ṁ remain below 1%.
This is partly due to the fact that the absolute values of these
quantities decrease as k is increased, such that maintaining a
1% relative error entails an effective increase of the simulation
accuracy. These convergence tests were performed employing
a grid with S = 16 points spanning half of the flow channel,
stretched towards the bounding wall. When comparing the
nonlinear part of the velocity profile with the data reported
in Ref. [95], we found very good agreement after refining
the grid to S = 64 points for k = 0.03 (Qx = 4 was sufficient
here) and S = 32 points for k = 0.1 (Qx = 7), k = 1 (Qx =
21), and k = 10 (Qx = 80).

Next, we compared the LB profiles of the macroscopic
quantities (particle number density, velocity, pressure ten-
sor, and heat flux) with the direct simulation Monte Carlo
(DSMC) results for Maxwell molecules reported in Refs. [99–
101,116,117]. The LB profiles were obtained for Kn < 1 with
the HHLB(6; 7) × HLB(6; 7) model, employing Qx = Qy =
7 and an expansion up to Nx = Ny = 6 of the equilibrium
distribution with respect to the half-range (on the x axis) and
full-range (on the y axis) Hermite polynomials. At Kn = 1,
the quadrature order on the x axis was raised to Qx = 11. We
found that the DSMC results for Knudsen numbers between
0.01 � Kn � 1 and for wall velocities between 0.42 � uw �
2.1 could be reasonably well recovered by employing the
Shakhov collision term. We found deviations between our LB
results and the DSMC data at Kn � 0.25, as well as when the
wall velocity exceeded uw � 1.68.

Finally, we performed a comparison with the results for
pure helium and argon obtained in Ref. [118] using an in-
teraction model based on ab initio potentials. In order to
match the ab initio transport coefficients, we implemented
the Sutherland model and obtained the Sutherland constant
by fitting the analytic expression for the viscosity to the
tabulated data reported in Refs. [139] and [140]. The relative
errors of the viscosity obtained in the frame of the Sutherland
model compared to the tabulated data are below 1% for the
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temperature range relevant for the simulations considered in
this paper (300–600 K). At the level of the profiles for the
density n, velocity uy , and temperature T , the LB results
are in very good agreement with the DSMC data when the
rarefaction parameter δ satisfies δ > 1. At δ � 1, visible devi-
ations occur in the profile of T . Moreover, the velocity profile
also deviates from the DSMC data at δ = 0.1. This observed
discrepancy is due to the limitations of the relaxation time
approximation of the collision integral, since increasing the
quadrature order does not bring our FDLB results closer to
the DSMC data. A quantitative analysis at the level of the
temperature T0 at the channel center and of the shear pressure
� shows that the deviations of our FDLB models from the
DSMC results are within a few percent. The velocity gradient
ν at the channel center presents an increasing relative error
as δ is decreased, which may also be due to the fact that ν

decreases towards 0 as δ is decreased. In terms of an absolute
error, the LB results for ν still remain within a few percent of
the DSMC data (for the argon gas at δ = 0.01 and uw = √

2,
νDSMC = 0.048, while the FDLB result is νFDLB = 0.027).

The analysis presented in this paper indicates that the
solution of the S-model equation seems to be within a few
percent of the DSMC results in the context of the Couette
flow for velocities up to 2.1 and for values of the rarefaction
parameter δ down to 0.01 (values of the Knudsen number Kn
up to �70).

We finish this paper by noting that the HHLB(6; 7) ×
HLB(6; 7) model, which employs only 2QxQy = 98 distinct
velocities, can be used to obtain a very good estimate (within
1% relative error) of the solution of the Shakhov model equa-
tion at the level of the temperature in the channel center and
nondiagonal component of the stress tensor. We thus conclude
that the use of half-range quadratures is an essential ingredient
when considering the channel flow of rarefied gases.
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APPENDIX: NUMERICAL SCHEME

The simulation results presented in this paper were ob-
tained using an explicit third order total variation diminish-
ing (TVD) Runge-Kutta (RK-3) time marching procedure
[123–126], as described in Sec. A 1. In order to increase the

TABLE VII. Butcher tableau for the third order Runge-Kutta
integration summarized in Eq. (A2).

0
1 1
1/2 1/4 1/4

1/6 1/6 2/3

simulation efficiency, we follow Refs. [74,146] and employ
a grid stretching algorithm to increase the grid resolution
in the vicinity of the solid wall, as described in Sec. A 2.
The fifth order weighted essentially nonoscillatory (WENO-5)
scheme [78,119] employed for the advection is presented in
Sec. A 3. Finally, the implementation of the diffuse reflec-
tion and bounce-back boundary conditions is discussed in
Sec. A 4.

1. Time stepping

In order to implement the time stepping algorithm, it
is convenient to cast the Boltzmann equation (2.11) in the
following form:

∂tF = L[F ], L[F ] = −px

m
∂xF − 1

τ
[F − F (eq)(1 + SF )],

(A1)

where F ∈ {φ, χ} is any of the two reduced distributions
introduced in Sec. III, while SF is given in Eq. (3.5).

Let us consider a discretization of the time coordinate using
equal time steps δt , such that t� = � δt . The distribution func-
tions at time step � can be written as F� ≡ F (t�). The value of
F�+1 can be obtained using the third order Runge-Kutta TVD
method introduced in Ref. [123], using two intermediate steps,
as follows:

F
(1)
� = F� + δt L[F�],

F
(2)
� = 3

4F� + 1
4F

(1)
� + 1

4δt L
[
F

(1)
�

]
, (A2)

F�+1 = 1
3F� + 2

3F
(2)
� + 2

3δt L
[
F

(2)
�

]
.

The Butcher tableau [147] for the above scheme is summa-
rized in Table VII.

2. Grid stretching

As highlighted in Refs. [74,146], a finer mesh is needed
in the vicinity of solid boundaries as compared to the bulk
regions of the flow in order to capture the Knudsen layer
effects. This can be achieved by performing a standard grid-
stretching procedure and in this paper, we follow Ref. [122]
and characterize the refined mesh using the nondimensional
parameter η as follows:

x(η) = L

2A
tanh η, (A3)

where 0 � η � arctanh A and 0 < A < 1 controls the stretch-
ing such that when A → 0, the grid becomes equidistant with
respect to x, while as A → 1, the grid points accumulate
towards the right boundary.
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The flow domain is discretized using S equidistant values
of η, namely

ηs = 1

S

(
s − 1

2

)
arctanh A, xs = L

2A
tanh ηs, (A4)

where the points with 1 � s � S lie within the flow domain.
The value A = 0.98 was employed for all simulations pre-
sented in this paper.

3. Advection

The spatial derivative occurring in Eq. (2.11) can be ap-
proximated by considering an equidistant grid with respect to
the η coordinate (A4):(px

m
∂xF

)
s
= Fs+1/2 − Fs−1/2

xs+1/2 − xs−1/2
. (A5)

The flux Fs+1/2 corresponds to the interface between the
cells centered on ηs and ηs+1, while the coordinates xs±1/2 of
these interfaces are obtained by substituting η = ηs ± δη/2
in Eq. (A4). The fluxes are computed using the WENO-5
algorithm [78,120,122,148]. For the case when the advection
velocity px/m is positive, the flux is given by

Fs+1/2 = ω1F1
s+1/2 + ω2F2

s+1/2 + ω3F3
s+1/2, (A6)

where Fq

s+1/2 (q = 1, 2, 3) are interpolating functions, which
can be computed as follows:

F1
s+1/2 = px

m

(
1

3
Fs−2 − 7

6
Fs−1 + 11

6
Fs

)
,

F2
s+1/2 = px

m

(
−1

6
Fs−1 + 5

6
Fs + 1

3
Fs+1

)
, (A7)

F3
s+1/2 = px

m

(
1

3
Fs + 5

6
Fs+1 − 1

6
Fs+2

)
.

The weighting factors ωq are given by

ωq = ω̃q

ω̃1 + ω̃2 + ω̃3
, ω̃q = δq

σ 2
q

, (A8)

where δq ∈ {0.1, 0.6, 0.3} are the ideal weights. The indica-
tors of smoothness σq can be computed using

σ1 = 13
12 (Fs−2 − 2Fs−1 + Fs )2 + 1

4 (Fs−2 − 4Fs−1 + 3Fs )2,

σ2 = 13
12 (Fs−1 − 2Fs + Fs+1)2 + 1

4 (Fs−1 − Fs+1)2,

σ3 = 13
12 (Fs − 2Fs+1 + Fs+2)2 + 1

4 (3Fs − 4Fs+1 + Fs+2)2.

(A9)

It is customary in numerical algorithms to add a small quantity
ε � 10−6 to σq in order to avoid division by zero. This oper-
ation can have side effects which depend on the magnitude
of the advected quantity F , as discussed in Ref. [125]. In
order to avoid such side effects, ωq is computed directly from
Table VIII in the limiting cases when one or more of the σq

functions vanish.

4. Boundary conditions

The Couette flow considered in this paper is symmetric
with respect to the channel centerline, thus allowing the

TABLE VIII. The limiting values of ωq (A8) when any combina-
tion of indicator of smoothness functions σi have vanishing values.

ω1 ω2 ω3

σ1 = σ2 = σ3 = 0 0.1 0.6 0.3

σ2 = σ3 = 0 0 2/3 1/3
σ3 = σ1 = 0 1/4 0 3/4
σ1 = σ2 = 0 1/7 6/7 0

σ1 = 0 1 0 0
σ2 = 0 0 1 0
σ3 = 0 0 0 1

simulation domain to be reduced to only the right half of the
channel, such that 0 � x � L/2. The symmetry condition of
the Couette flow is immediately achieved when bounce-back
boundary conditions are implemented on the centerline at x =
0. The gas-wall interaction is modeled using diffuse reflection
boundary conditions [91,92,149], which are implemented at
x = L/2. In order to apply the fifth order WENO scheme
described in the previous subsection, the simulation domain
must be extended on both sides through the addition of three
ghost nodes. Let the pair of indices ij ( 1 � i � 2Qx , 1 �
j � Qy) label the momentum vector corresponding to each
discrete population.

For the bounce-back condition at x = 0, the following
procedure is performed to define the particle populations in
the ghost nodes. Let F1;ij , F2;ij , and F3;ij be the population
of particles of momentum pij = (px,i , py,j ), located in the
first three nodes of the simulation domain near the channel
centerline. These nodes are counted in the positive (right)
direction of the x axis. The first three ghost nodes located at
the left of the channel centerline and counted in the negative
direction of the x axis have the populations F0;ij , F−1;ij , and
F−2;ij , respectively. To implement the bounce-back condition,
these ghost populations are related to the populations in the
simulation domain according to

F0;ij = F1;̃ıj̃ , F−1;ij = F2;̃ıj̃ , F−2;ij = F3;̃ıj̃ , (A10)

where the indices ı̃ (j̃ ) refer to the components px,̃ı (py,j̃ )
defined through

px,̃ı = −px,i , py,j̃ = −py,j . (A11)

Let S denote the last (rightmost) node located in the flow
domain. The first three ghost nodes outside the right boundary
will be denoted S + 1, S + 2, S + 3. On the right boundary,
the diffuse reflection concept should be imposed. According
to this concept, the flux of particles coming from the ghost
nodes is Maxwellian and equals φ

(eq)
w;ijpx,i/m, where φ

(eq)
w;ij is

defined by Eq. (3.4). In the frame of the WENO scheme, this
can be exactly achieved when [122,148]

FS+1;ij = FS+2;ij = FS+3;ij = F
(eq)
w;ij , for px,i < 0,

(A12)

where F
(eq)
w;ij = φ

(eq)
w;ij when Fs;ij refers to φs;ij , while F

(eq)
w;ij =

χ
(eq)
w;ij = Twφ

(eq)
w;ij in the case when Fs;ij refers to χs;ij . Since

Eqs. (A2) and (A5) cannot be used in the nodes s ∈
{S + 1, S + 2} when px,i > 0, the corresponding functions
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Fs;ij , which describe the particles traveling rightwards, are
extrapolated at every time step by a quadratic procedure:

Fs;ij = (xs − xs−2)(xs − xs−3)

(xs−1 − xs−2)(xs−1 − xs−3)
Fs−1;ij

+ (xs − xs−1)(xs − xs−3)

(xs−2 − xs−1)(xs−2 − xs−3)
Fs−2;ij

+ (xs − xs−1)(xs − xs−2)

(xs−3 − xs−1)(xs−3 − xs−2)
Fs−3;ij . (A13)

The wall density nw, which is required in order to construct
F

(eq)
w;ij ∈ {φ(eq)

w;ij , χ
(eq)
w;ij }, is thereafter obtained by imposing mass

conservation on the right wall:

∑
i,j

�S+1/2;ij = 0 ⇒ nw = −
∑

i,j,px,i>0 �S+1/2;ij∑
i,j,px,i<0

φ
(eq)
w;ij

nw

px,i

m

, (A14)

where �S+1/2;ij is the flux (A6) corresponding to the reduced
distribution φij through the interface between the last fluid cell
and the first ghost node.
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