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Random sequential adsorption of unoriented rectangles at saturation
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This study presents an algorithm to generate a saturated random packing built of identical, unoriented
rectangles. The algorithm is based on tracing regions that are unavailable for placing subsequent shapes. If these
regions cover the whole packing the algorithm stops because no more objects can be added to the packing;
thus it is saturated. The algorithm is used to study packings built of rectangles of side-to-side length ratio
ε ∈ [1.0, 2.5]. The densest packings are obtained for ε = 1.49 ± 0.02, and the packing fraction, in this case,
reached 0.549641 ± 0.000017. The microstructural properties of the obtained packings are studied in terms of
density autocorrelation function and propagation of orientational ordering.
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I. INTRODUCTION

Random sequential adsorption (RSA) is one of numerous
protocols used for random packing generation. A packing is
built of objects that are added sequentially according to the
following rules:

(1) A virtual object position and orientation is selected
randomly inside a packing.

(2) If the virtual object does not intersect with any other
previously placed shapes, it is added to the packing, and its
position and orientation remain unchanged.

(3) Otherwise, if there is an overlap with at least one of the
shapes, the virtual object is removed and abandoned.

For finite packing, after a large enough number of itera-
tions, the packing becomes saturated, i.e., there is no possibil-
ity of adding another object that does not overlap with shapes
added earlier.

Although packing problems originate from ancient times,
the aforementioned protocol was first used by Flory in 1939
to study statistics of pairs of consecutive substituents of a
long vinyl polymer [1]. In 1958 Renyi provided an analytical
solution for the mean packing fraction of unit intervals on a
one-dimensional line by solving the car parking problem [2].
The popularity of RSA owes to the fact that the random pack-
ings it generates resemble monolayers obtained in irreversible
adsorption experiments [3,4]. Therefore a number of both
utilitarian and fundamental studies on random packing created
under the RSA protocol have appeared [5–8]. Apart from
adsorption modeling, RSA packings are also useful for mesh
generation, e.g., Voronoi meshes, for other stochastic methods
[9]. They can serve as a starting configuration for molecular
dynamics simulations of nonoverlapping objects, as well as
for protocols used in dense packings generations [10–12]. In
computer graphics, they help to render high-quality images
[13].
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Interestingly, most of the properties of RSA packings, e.g.,
mean packing fractions, are based on numerical simulations.
However, RSA is very ineffective for almost saturated pack-
ings because the probability to find a large enough place
for the particle decreases according to a power law with a
number of iterations [14,15]. Therefore, a huge number of
trials are required to add a subsequent object. Additionally,
the RSA protocol in its above-described form cannot detect if
packing is already saturated. This problem has been solved for
spherically symmetric particles like disks or (hyper)spheres
by tracing the space available for placing subsequent objects
[16–19]. Although RSA packings of anisotropic objects are
widely studied [20–24], there is no general method to generate
saturated packings built of such objects. The main problem is
that the shape of available space depends on virtual particle
orientation. Thus the development of an efficient algorithm is
much harder than for spherically symmetric particles.

The primary goal of this study is to present algorithm that
effectively generates saturated RSA packings of rectangles.
Recently, Zhang showed an algorithm that can be used for
a wide range of polygons [25]; however, as we will show
further, in the case of squares and rectangles our approach is
much faster. The second goal is to find the rectangle for which
the mean packing fraction reaches its maximum [23,24]. This
problem has been studied already by Vigil and Ziff [20], but
now, using strictly saturated packing, we can provide much
more accurate results.

II. ALGORITHM

The algorithm uses the concept of exclusion zones. An
exclusion zone is an area around a given shape in a packing
where no other particle can be placed because it will overlap
with this given shape. However, for a given anisotropic object,
the shape of its exclusion zone depends on the orientation
of another trial particle that can potentially be placed nearby
(see Fig. 1). Thus, the subsequent particle can be added only
outside exclusion zones defined by all shapes already added to
the packing. The algorithm presented here is based on tracing
available areas [16,18]. Because the shape of an available area
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FIG. 1. Examples of exclusion zones of a green (center) rectan-
gle. The exclusion zone is defined as the area where the center of
another rectangle cannot be placed due to overlapping. The shape of
the exclusion zone depends on the orientation of another rectangle,
here the gray one. If the gray rectangle is parallel to the green one,
the exclusion zone is rectangular; see the orange region in panel (a).
If the gray rectangle is rotated by π/3, the exclusion zone will be
described by the orange region in panel (b).

depends on the orientation of a trial particle, it is, in general,
a three-dimensional object, where the third dimension is an
angle. In our algorithm, available areas are approximated by
three-dimensional voxels: two-dimensional squares with an
additional coordinate denoting angle range. A point inside
a voxel corresponds to a position and orientation of a trial
particle [25].

At the beginning the packing is empty; thus it is fully
covered by voxels with a full range of orientations. During
packing generation, a voxel can be removed if and only if it
is inside an exclusion zone of a single object added to the
packing. It means that the square defined by voxel spatial
coordinates has to be inside all the exclusion zones defined by
its angle range. The voxel is removed only when there is no
possibility of placing a trial particle in it. Thus, sampling in the
RSA protocol is limited only to remaining voxels. When the
sampling becomes ineffective, e.g., the number of consecutive
unsuccessful tries of placing the next rectangle in a packing
exceeds a given threshold value, each of the remaining voxels
is split into eight identical smaller voxels, which allows us
to approximate the available space more accurately. The RSA
sampling and voxel splitting are iterated until all voxels are
removed. Then we are sure that no shape can be placed
anywhere in the packing.

The crucial point of this algorithm is to determine if a
voxel is inside an exclusion zone of a single shape. Below
we discuss this point in details in the case of rectangles.

A. Voxel inside the exclusion zone test

A three-dimensional interval from (x, y, α1) to (x, y, α2)
is inside the exclusion zone of a given rectangle if and only
if the point (x, y) is inside the intersection of all exclusion
zones defined by virtual rectangles oriented from [α1, α2].
Because each exclusion zone is convex, their intersection is
also convex. Thus, a voxel is inside an exclusion zone when
all its spatial vertices are inside the intersection of exclusion
zones for angular range determined by the angular size of the
voxel. Thus, it is enough to provide the test whether a given

FIG. 2. (a) Example of the exclusion zone of a brown (dark gray)
rectangle for a relative orientation α ∈ [0, π/3] interval. The red
(gray) area corresponds to the exclusion zone for α = 0, and the
yellow (light gray) one is for α = π/3. The resulting exclusion zone
is their intersection less the violet (the darkest gray) areas shown
enlarged in panels (b) and (c).

point is inside intersection of exclusion zones. An example of
such an intersection for an angular range [0, π/3] is shown in
Fig. 2. A point is inside the exclusion zone if it is inside the
exclusion zones for relative orientation 0 and π/3, and it is not
inside the violet areas shown in Figs. 2(b) and 2(c).

The algorithm determining whether a point is inside an
exclusion zone of a given rectangle is as follows:

(1) Rotate and translate the coordination system to align it
with a given rectangle. The rectangle sides should be parallel
with the system’s axes, and its center should be in the origin.
The tested point in this coordinate system has the position
(x, y), and the angle range is [α1, α2].

(2) If the angle range does not fit in the interval
[ kπ

2 , (k+1)π
2 ] for k = 0, 1, 2 or 3, divide it into subintervals,

and each of them should be tested separately.
(3) Check whether the point is inside exclusion zones for

α1 and α2 (whether rectangles with the center in the point and
of orientations α1 and α2 intersect with the rectangle in the
origin). If it is not inside both these zones, it is outside the
exclusion zone for angles from the [α1, α2] interval. Other-
wise, continue.
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FIG. 3. Comparison of the regions built of spatially infinitely
small voxels around a black square that are to be removed for our
algorithm (a) and Zhang’s algorithm (b). In both panels, these regions
are marked orange (gray). Note that for our algorithm this region is
equal to the exclusion zone, while for Zhang’s algorithm it is smaller.
The difference between these regions is colored purple (dark gray) in
panel (b). These regions were calculated for the black square and
angle range [0, π/12].

(4) Check whether the point is inside a cone corresponding
to circular sectors (see blue regions in Fig. 2). If not, the point
is inside the exclusion zone. Otherwise, continue.

(5) Check whether the point is inside the circular sector
(if its distance from the rectangle’s corner is smaller than half
the length of the rectangle side—shorter or longer depending
on the corner). If not, the point is outside the exclusion zone.
Otherwise, the point is inside the exclusion zone.

Recently Zhang proposed a different method to generate
the saturated random packing of regular polygons [25]. In
brief, to determine if a voxel can be removed, the author used
a function depending on position and orientation of the new
rectangle, which tells if it will intersect with any of the previ-
ously placed objects. In the case of an intersection, the func-
tion is negative, and positive otherwise. Then he estimated
the maximum of this function over all possible positions and
orientations of a particle placed inside a given voxel. If this
estimation is negative, the voxel is removed. Note that the
estimation has to be no less than the actual maximum to pre-
vent us from removing voxels, in which the next particle may
be successfully placed. Thus, for some voxels, the estimation
may be positive even if the maximum is negative. Therefore,
such voxels will not be removed. The method presented here
is more efficient, because we do not use any estimations, but
remove all the voxels that are inside the exclusion zone of
any previously placed rectangle in a packing. To illustrate this
difference, we draw regions built of spatially infinitely small
voxels of a given orientation range, which are eliminated by
both of the algorithms. The comparison is presented in Fig. 3.
Although at first the difference between these regions seems
not to be large, it significantly influences the speed of voxels’
removal. When the voxel orientation range tends to zero, the
shape of the region given by the Zhang algorithm approaches
the exclusion zone. Thus, his algorithm will finally eliminate
all unnecessary voxels but later than our method. It appears
that the algorithm presented here generates saturated packing
of squares even 100 times faster. This allows us to study

FIG. 4. Example fragments of saturated random packing built
of (a) squares (x = 1.0) and rectangles of different width-to-height
ratio: (b) x = 1.5; (c) x = 2.0; (d) x = 2.5.

bigger packings and thus improve statistics as well as decrease
finite-size effects of obtained results.

III. SATURATED RANDOM PACKINGS OF RECTANGLES

To test the algorithm, we generate and analyze saturated
random packings built of rectangles of different width-to-
height ratio. Packings were square, and the surface area of
each packing was 106. The unit of length was equal to 1/1000
of packing side size. To lower finite-size effects periodic
boundary conditions were used [26]. The lengths of the rect-
angle sides were

√
x and 1/

√
x. Thus, their surface was 1,

and the width-to-height ratio was x. For each value of x,
100 independent saturated random packings were generated.
Voxels were split when the number of consecutive failed
attempts of adding a rectangle to packing exceeds 2 × 105.
To prevent the overflow of a computer’s memory, the total
number of voxels was limited by 4 × 107. If splitting could
violate this limitation, existing voxels were analyzed and
removed only if they are not entirely inside an exclusion zone
of particles inside a packing. Example fragments of obtained
packings are shown in Fig. 4.

A. Saturated packing fraction

A packing fraction θ is the ratio of occupied surface to the
whole surface of a packing. Because here a single shape has a
unit surface, the packing fraction is given by

θ = n

106
, (1)

where n is the number of particles in a packing of a surface
equal to 106. The dependence of a saturated packing fraction
on rectangle anisotropy x is shown in Fig. 5. For squares,
the most symmetric shape, a local minimum is observed.
It agrees with theoretical predictions [27]. It is interesting
that the dependence of θ (x) for the relatively wide range
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FIG. 5. Mean saturated packing fraction θ dependence on
a rectangle width-to-height ratio x. The inset enlarges the
region around the maximum. Dots correspond to mean values
obtained from numerical simulations. Error bars correspond to
the standard deviation of the mean saturated packing fraction.
Solid lines are least-square fits of sixth- and second-order
polynomials for the data in the main panel and the inset,
respectively. These polynomials are θ (x ) = −0.94305 + 4.5047 x −
5.68 x2 + 3.837 x3 − 1.464 x4 + 0.29833 x5 − 0.025314 x6, and
θ (x ) = 0.47377 + 0.10168 x − 0.034071 x2.

of anisotropies is approximated very well by a sixth-order
polynomial. However, to determine the maximum of θ (x)
precisely, we used quadratic fit only for the data near the
maximum. The maximum of the mean saturated packing
fraction is θmax = 0.549632 ± 0.000017, and it is obtained
for anisotropy xmax = 1.492 ± 0.022. The error of θmax is
the mean standard deviation of the mean saturated pack-
ing fractions obtained for x near the maximum: σ (θ ) =√∑100

i=1(θi − θ̄ )2/100. The error of xmax was estimated as a
half width of the fitted parabola at the height of 0.000017
below its maximum.

Another parameter, which can be used for describing parti-
cle anisotropy instead of the width-to-height ratio, is the shape
factor. It can be defined as

ζ = C2

4πS
, (2)

where C and S are the perimeter and surface area of a shape,
respectively [28,29]. The shape factor is not smaller than
1, and the shape corresponding to its minimum value is a
disk. Recently, it has been observed that the densest packing
fraction for several different types of shapes, e.g., ellipses and
two-dimensional spherocylinders, is reached for ζmax ≈ 1.13
[24]. In the case of rectangles, the shape factor is given by

ζrec(x) =
(√

x + 1√
x

)2

π
. (3)

The densest packing fraction is observed for rectangles of
ζrec(1.492) = 1.325, which is significantly larger than ζmax.
Therefore, the conjecture that for a given type of object the
highest packing fraction is reached when shape factor is close
to ζmax is false. On the other hand, the minimal possible value
of ζrec is 1.273. Thus, in this case, there is no possibility to
approach ζmax.
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G
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)

x = 1.0
x = 1.5
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FIG. 6. Density correlation function for squares (x = 1.0) and
rectangles (x ∈ 1.5, 2.0, 2.5) inside saturated random packings.

Two more things are worth mentioning when discussing
obtained packing fractions. First, our results are approxi-
mately 100 times more precise than the previous one obtained
by Vigil and Ziff [20]. Those authors estimated that the
maximal packing fraction is obtained for x ≈ 2 and its value
is θmax = 0.545 ± 0.002. For x ≈ 1.5 the obtained packing
fraction was slightly smaller: θ = 0.543 ± 0.003. The sat-
urated packing fraction obtained in this paper agrees with
earlier results for x = 2 but is a little bit higher for x = 1.5.
The maximum, however, according to our results is near x =
1.5 and not for x = 2. Second, the mean saturated packing
fraction of squares is θ (x = 1) = 0.527640 ± 0.000018 and
agrees with the value recently reported by Zhang [25], but
again, due to the more efficient method of packing generation,
we were able to decrease the statistical error approximately
four times.

B. Microstructural properties

Microstructural properties of obtained random packings
were studied in terms of density and order correlation func-
tions. The density correlation function describes density fluc-
tuations as a function of distance from a reference particle:

G(r ) = lim
dr→0

N (r, r + dr )

2πr dr θ
, (4)

where N (r, r + dr ) is the mean number of rectangles with
centers at a distance between r and r + dr from the center of
a reference particle. The normalization factor in denominator
causes G(r ) → 1 for r → ∞. In addition, in general, for
anisotropic objects, the autocorrelation function depends on
the direction of r; here we averaged it over angular vari-
ables. To calculate G(r ), dr = 0.02 was used. The density
correlation functions for some example packings are shown
in Fig. 6. As we noted before, the distance unit is equal
to 1/1000 of the side size of the packing, and all studied
shapes have a unit surface area. It means that, for example,
a square shape (x = 1) has sides equal to 1, and a rectangle
of x = 2 has side sizes

√
2 ≈ 1.4142 and 1/

√
2 ≈ 0.7071.

The density fluctuations are damped fast, which agrees with
expectations that the density autocorrelation function decays
superexponentially in RSA packings [30]. For r = 4 there are
no visible fluctuations. According to the results reported in
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FIG. 7. Orientational order propagation for squares (x = 1.0)
and rectangles (x ∈ 1.5, 2.0, 2.5) inside saturated random packings.
The main panel shows the dependence of q1(r ) and the inset shows
q2(r ).

Ref. [26] it means that finite-size effects are far below the sta-
tistical error. At short distances, interestingly, for rectangles,
two maxima are observed. This is probably related to par-
allel and perpendicular orientations of neighboring particles,
which suggests that the local orientational ordering should be
present. To study it, two different order parameters were used:

q1(r ) = 〈2 cos2 ϕ(r ) − 1〉, (5)

q2(r ) = 〈4.0[cos4 ϕ(r ) + sin4 ϕ(r )] − 3.0〉, (6)

where ϕ(r ) is a relative orientation of particles at a
distance r , and 〈·〉 denotes averaging over all pairs of particles
at this distance. The first parameter works well for anisotropic
particles like rectangles and has been used previously in
similar studies, e.g., Refs. [24,31]. It, however, does not
work for squares because there two perpendicular axes are
equivalent. Therefore, even for a fully orientationally oriented
set of squares it can give a value close to zero, because

statistically, for one-half of the squares we get cos ϕ = 1, and
for the other half cos ϕ = 0. For this case, parameter q2 was
introduced because it takes these axes into account equiva-
lently. Dependence of both order parameters on the distance is
shown in Fig. 7. As expected, orientational ordering is present
only at very short distances. Besides parallel alignment for
small r , for slightly larger distances for rectangles q1 indicates
a dominance of perpendicular alignment. Any orientational
order vanishes for r > 2.0. Note that, as predicted above, for
squares the order parameter q1 ≈ 0, for all r , even where the
order parameter q2 indicates orientational ordering.

IV. SUMMARY

We have proposed what we view as the most effective
method to generate saturated random sequential adsorption
packings of rectangles. Then our algorithm was used to find
the width-to-height ratio of the rectangle that follows to the
densest RSA packing. The optimal ratio is approximately
1.49 ± 0.02, and the densest packing fraction is 0.549641 ±
0.000017. The density autocorrelation function for the ob-
tained packings decays very fast with the distance. There
is no global orientational ordering, but it can be observed
locally. The presented algorithm also can be used in further
studies to precisely study the packing growth kinetics for
anisotropic shapes [14,15,32,33] and if it is governed by the
same exponent as the dependence of iterations needed to
generate saturated random packings on packing size [34].
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