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Simplification of the molecular dynamics that preserves thermodynamics
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A systematic algorithm to reduce the potential energy surface is presented, which is based on successive
inversions of virial data, so that the molecular dynamics is capable of preserving the thermodynamics of the
system. The algorithm is tested by reducing the potential energy surface of diatomic molecules that interact
through a non-spherically symmetric potential, into an effective potential which is spherically symmetric,
showing that all rotational degrees of freedom of the molecules can be disregarded from the thermodynamic
point of view, as long as the virial expansion is a good description of the system. Furthermore, our analysis
allows us to understand how we can make use of the non-uniqueness of the solution of an inverse problem to
generate simplified models.
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I. INTRODUCTION

Much work and several strategies have been developed
to establish a good parametrization of the potential-energy
surface (PES) for interacting atoms or molecules. The inter-
action energies are then used to make quantitative predictions
about dynamical processes like energy transfer, scattering,
and chemical reactions [1]. However, in such calculations,
computational time grows quite fast with the degrees of
freedom and the number of particles, eventually making the
system quite expensive computationally. One possible way to
avoid these constraints is to consider that the thermodynamic
behavior of these systems usually do not depend on every
detail stored in the PES, so that a simpler effective PES could
be found. This idea is supported by many coarse-grain (CG)
models that reproduce many properties of the systems under
consideration. These CG models have become widely used as
they are applied in simplified water models [2–12], solvent
free models [13–20], and models that include chemical speci-
ficity [21–23]. The development of the form of the functional
used in these models is normally based on physical intuition.
Of course, there are no guarantees that these potential de-
scriptions, or reductions, provide a good representation of the
molecular dynamics of the interacting particles or molecules,
i.e., that the potential, although simplified, it reproduces the
correct thermodynamics.

Hence, in this article we present a systematic method to
reconstruct an effective PES parametrization in an unbiased
way, with fewer degrees of freedom than the starting one,
but with the same thermodynamics properties. This opens the
door to a new way to approach the problem of molecular inter-
actions, making possible a simplification of the problem both
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theoretical and in practical applications. To do so, we propose
to reconstruct an effective PES from the virial coefficients at
different temperatures. As a test of our method, we present the
reduction of the potential energy surface of a non-spherically
symmetric variant of a Lennard-Jones diatomic potential into
an effective potential which is spherically symmetric, showing
that all rotational degrees of freedom of the molecules are
negligible from the thermodynamic point of view at low
enough density. We must say that this is not the only way
to solve this problem at hand, but certainly is an alternative
strategy to established approaches like iterative Boltzmann
inversion [24], force-matching [25,26], inverse Monte Carlo
[27], and relative entropy [28].

We choose the inversion of the virial coefficients for three
reasons. First, they contain all the thermodynamic proper-
ties of the system, namely the state equations for pressure
and energy, overcoming some limitations of other methods
in representing thermodynamic properties like pressure and
compressibility [29,30]. Second, the PES can be parametrized
sequentially, solving for a two-body potential given the second
virial data. After that we can solve for a three-body potential
given the third virial data, and so on. Finally, the procedures
to perform the inversion have been successfully developed
before [31,32].

In contrast to the calculation of the virial coefficients
given the PES, the reconstruction of the PES given the virial
coefficients is an ill-posed problem [31], where existence,
uniqueness, and continuity are not all fulfilled. We will see
that the non-uniqueness of the solution of this inverse problem
is fundamental to the generation of simplified models. Fur-
thermore, the inversion of the second virial coefficient can be
attempted in a number of ways. One way is to first introduce
a specific expression for a potential and then try to fit the
parameters of the short- and long-range two-body potential
separately [31], which usually are represented in different
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temperature ranges of the virial coefficients. Another way is to
use a nonlinear inversion procedure, such as was proposed by
Sebastião et al. [32] using a neural network (NN). Hence, here
we will adapt the non-unique nonlinear inversion procedure
based on NNs to construct a simplified model for the particle
interaction (reduction of the PES) that is consistent with
the statistical mechanics of the original system, and therefore,
the molecular dynamics. This method does not involve a
specific form of the potential and so it allows to solve for the
short and long range of the potential at the same time. In this
work, we will use a NN for the inversion of the second and
third virial data to generate a reduced potential. Hence, the
NN give us an unbiased approach to the problem, saving us
from choosing a functional form.

Our approach can be related to the relative entropy min-
imization approach, where a CG model is constructed by
imposing that the probability of finding a microstate in the
ensemble is the same for the model and the target system
[28]. In our approach, such condition is imposed sequentially,
similar to a cluster expansion in statistical mechanics, because
virial coefficients are closely related to the canonical partition
function. And so, it constitutes an alternative to the use of
potentials and mean force approaches, like gaussian approx-
imation potentials, where the mean forces are constructed
sequentially in a cluster expansion manner [25,26].

By construction, the convergence of our approach depends
on the convergence of the virial expansion, and so is appli-
cable for small densities only. It is possible to generalize our
approach by expanding around another density ρo of interest,
e.g., ρo ≈ 1, as shown in Ref. [33]. We plan to work on this
interesting idea in a future manuscript. In a similar way, it
can be generalized for multicomponent systems, using a mul-
ticomponent virial expansion as it is presented in Ref. [34].

II. NONLINEAR INVERSION PROCEDURE

The virial equation of state is the standard way to repre-
sent the deviation of the pressure p from a non-interacting
behavior as an infinite power series in the number density ρ,
namely [35],

p

kBT
= ρ + B(T )ρ2 + C(T )ρ3 + O

(
ρ4

)
, (1)

where kB is the Boltzmann constant and T the temperature.
The first virial coefficient is identically 1 and represents
the case of non-interacting particles, B is the second virial
coefficient and C the third virial coefficient. Similarly, the
internal energy U can be expanded as

U = U0 − NkBT 2 ∂B(T )

∂T
ρ − NkBT 2 ∂C(T )

∂T
ρ2 + O(ρ3),

(2)

where U0 is the internal energy in the non-interacting limit,
which can be adjusted adding internal degrees of freedom, and
N the number of molecules. Note that all the thermodynamic
properties can be derived from these two equations, and
consequently from the virial coefficients.

For second virial inversion, we start considering a NN with
the following architecture: one perceptron on the input layer,
one hidden-layer with n perceptrons, and one perceptron on

the output layer. The hidden layer uses a tanh as an activation
function and the output layer considers linear function. For the
sake of simplicity, we can picture the NN as a function with
many parameters, namely,

N2(r ) = b0 +
n∑

j=1

w2,j tanh(w1,j r + bj ) , (3)

where bj and wij are the biases and weights of the NN to
adjust. In order to have a reasonable representation of the
potential with physical sense, we choose b0 so that N (r ) = 0
when r → ∞, so this is a constrained NN.

We first construct the second virial coefficient as a func-
tion of temperature of a non-spherically symmetric variant
of the Lennard-Jones potential for diatomic molecules, that
considers the structure of the diatomic molecule as if all atoms
in the diatomic molecule interact by standard Lennard-Jones
potential with atoms of other diatomic molecules. This adds
an angular interaction of a dipole type given by u(r,�1,�2),
where r is the distance between the diatomic molecules, and
�1 and �2 are the solid angles representing the absolute
orientation of each diatomic molecule.

The second virial coefficient can be calculated from [35]

B(T ) = −1

2

〈∫
f12(u) d�r12

〉
�1,�2

. (4)

Here, T is the non-dimensional temperature, u(r12,�1,�2)
the potential between two molecules and

f12(u) = exp

(
− u(r12,�1,�2)

kBT

)
− 1 , (5)

the Mayer-f function for the potential u.
Our goal is to make a spherically symmetric NN that repre-

sents this non-spherically symmetric potential, but reproduces
all of its thermodynamic properties for low enough density. To
do so, let us define the cost function as

S2 = 1

2M

M∑
j=0

[Bobj(Tj ) − BNN]2 . (6)

Note that the cost function is zero precisely when the objective
second virial coefficient Bobj is the same for the potential
produced by the NN and the original potential over all desired
temperatures. So, if we perform a minimization we can find
the correct set of weights and biases to construct the potential
provided by the NN which will have the same second virial
coefficient than the original potential u(r,�1,�2), but with-
out considering the angular interaction. In this work, we use
the gradient descendant algorithm, with several random seeds,
as a minimizer.

To compute the second virial of a given potential we use
the Gauss-Laguerre quadrature, because it is a fast way to
compute the integral, but we stretch the function by an α factor
to improve convergence, namely,

∫ ∞

0
f12(N2) r2

12 dr12 ≈
N∑

i=1

ωie
xi x2

i

α3
f xi

α
(N2) , (7)

where xi is the ith root of the Laguerre polynomial and wi the
respective weight.
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For third virial inversion, we start considering a NN with
the following architecture: three perceptrons on the input
layer, to represent the three input distances; one hidden-layer
with n perceptrons; and one perceptron on the output layer.
We use tanh as the activation function in the hidden layer and
a linear function in the output layer. To ensure the particle
exchange symmetry we sum over the set of all permutations
(P) for the input layers, namely,

N3(r1, r2, r3) = b0 +
n∑

j=1

∑
a,b,c∈P3

ω2,j tanh
(∣∣ω1

1,j

∣∣ra

+ ∣∣ω2
1,j

∣∣rb + ∣∣ω3
1,j

∣∣rc + bj

)
, (8)

where bj and wij are the biases and weights of the NN
to adjust. In order to have a representation of the poten-
tial with more physical sense we choose b0 so that N3 =
0 if any distance goes to infinity. This is the reason to
have only positive weights, so we obtain a constrained and
symmetrized NN.

The third virial coefficient is given by [35]

C(T ) = Cadd + �Cnadd, (9)

where the contribution of the pairwise additive terms is
given by

Cadd(T ) = −1

3

〈 ∫∫
f12(u2)f13(u2)f23(u2) d�r12d�r23

〉
�1�2�3

(10)

and the contribution of the three-body terms is given by

Cnadd = −1

3

〈 ∫∫ (
e−u3/T − 1

)

×e−[u2(r12 )+u2(r13 )+u2(r23 )]/T d�r12d�r23

〉
�1�2�3

, (11)

where u3 is the three-body non-additive contribution.
In analogy with the previous second virial case, we define

the cost function by

S3 = 1

2M

M∑
j=0

[Cobj(Tj ) − CNN(Tj )]2. (12)

In every computation of C we use the Gauss-Laguerre quadra-
ture, including the averaging over all orientations. So, if we
perform a minimization over all weights and biases of N3 us-
ing N2 as the corresponding pairwise potential, we will obtain
a pair of effective potentials, namely, N2 and N3, that have
the same second and third virial coefficient than the original
potentials u2 and u3, but with no rotational dependence.

It is straightforward to extend this method for inversion to
higher virial coefficients, which will allow to obtain four-body
potentials and so on. However, we decided to truncate the
expansion, which could be technically extended to any order
multibody potential [36], to the three-body potential not only
for simplicity, but also because it is flexible enough to provide
a good account for the interactions on systems as complex as
water [10], or a model for self-assembly of amphiphiles in
vesicles [13], etc.
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FIG. 1. Comparison between the two-body spherical symmetric
potential N2 produced by the NN, and four times the Lennard-Jones
potential to which converges the full diatomic potential when a =
0. Lennard-Jones diatomic parameters are a = 21/6σ . We note that
these two potentials do not agree as expected. Three neurons in the
hidden layer were used.

III. RESULTS

We test our method using a Lennard-Jones diatomic poten-
tial, where all atoms are allowed to interact with

u(r ) = ε

[(
σ

r

)12

−
(

σ

r

)6]
. (13)

Each molecule is composed of two atoms that are constrained
to be part of the diatomic molecule at a distance a = 21/6σ ,
the minimum of the potential. Then, the interaction between
two molecules (each composed of two Lennard-Jones atoms)
can be calculated with four Lennard-Jones evaluations. Note
that if a → 0 the full interacting potential becomes four times
the Lennard-Jones potential, consequently in such case there
is no coarse-graining and the approach becomes the one
presented in Refs. [31,32]. Using the adaptive algorithms dis-
cussed above we construct the virial coefficients as a function
of temperature for the non-spherically symmetric potential
that we use as data for the construction of the spherically
symmetric potential through the NN representation.

We use the same adaptive algorithms to perform an in-
version of the second virial data. In Fig. 1 we show the
spherically symmetric potential obtained from the inversion
procedure of the virial data for the diatomic molecules with
a = 21/6σ . This potential is compared with the full diatomic
potential in the known limit a → 0 (only in the case when it
becomes spherically symmetric). It is interesting to confirm
that the two potentials do not agree. Note that the repulsive
part of the reduced potential extends to bigger distances than
the limit a → 0. This is expected because it represents in
essence a weighted average that includes the fact that the
atoms in a molecule at distance a in some configurations can
get very close together with other atoms in other molecules.
In Fig. 2 we observe a comparison between the second virial
data obtained from the Lennard-Jones diatomic potential and
the inverted potential. Note that the curves are almost the same
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FIG. 2. Comparison between the second virial of the spherical
symmetric potential obtained from a Lennard-Jones diatomic poten-
tial and the second virial of such potential.

with S2 = 10−10σ 3. We then perform an inversion of the third
virial data. In Fig. 3 we show the potential obtained in the
inversion and in Fig. 4 we observe a comparison between the
third virial data obtained from the Lennard-Jones diatomic po-
tential and the inverted spherically symmetric potential. Note
that the curves are very close, with a value of S2 = 10−5σ 6.
At first sight, such an agreement may seem no surprise at
all, after all the inversion procedure is constructed to try to
ensure so. However, there is no guarantee that a monoatomic
potential, that is able to reproduce the same thermodynamics
and molecular dynamics, even exists. In this example, we see
that such a solution can indeed exist.

Finally, in Fig. 5 we see a comparison between the mi-
croscopic potential energy of a fluid of diatomic molecules
and a fluid of monoatomic particles interacting with our two-
body spherically symmetric potential. Both the calculations
were made by a molecular dynamics simulation at fixed
temperatures, namely T = 1.25, 1.5, 2.0 [ε/kB], which were
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FIG. 3. Three-body spherical symmetric potential N3, evaluated
at r = r1,2 = r1,3 = r1,3, obtained from a Lennard-Jones diatomic
potential. Three neurons in the hidden layer were used.
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FIG. 4. Comparison between the third virial of the spherical
symmetric potential obtained from a Lennard-Jones diatomic poten-
tial and the third virial of such potential.

the values of T used to generate the virial data in the training
process of the NN. To calculate the internal energy we first got
rid of the transient by iterating the system for 100,000 time
steps and then we averaged the total energy of the system for
an additional 100,000 time steps. We use a time step of δt =
0.003 [σ−1ε1/2m−1/2] as it was recommended by Johnson
et al. [37] for Lennard-Jones fluid. In the diatomic case, 1000
molecules were followed with periodic boundary conditions,
while in the monoatomic case we use 4000 particles. As a
reference, we also present the microscopic potential energy
predicted by the virial expansion truncated up to quadratic
order in ρ. Note that the correspondence is very good for
small ρ and deviation are observed ρ → σ−3 as expected.
Moreover, our spherically symmetric potential gives better
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FIG. 5. Comparison between the microscopic potential energy of
a fluid of diatomic molecules (dots), the microscopic potential energy
of a fluid of monoatomic molecules interacting by our two-body
spherically symmetric potential (continuous line), and the internal
energy predicted by the virial expansion truncated up to quadratic
order in ρ (dashed line), for different temperatures as a function of
the number density.
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results than the proper virial expansion used for training,
and the correct microscopic potential energy always stays be-
tween the two results. This can be explained by remembering
that the two body potential contributes to all terms in the virial
expansion, so that there are effects on the molecular dynamics
by the two-body potential beyond the ρ2 expansion. Although
this result can be improved as we add more n-body potentials,
it is quite impressive that a spherical potential can reproduce
the thermodynamic of a non-spherically symmetric potential,
such as the Lennard-Jones diatomic potential used here, and
at a reduced computational expense.

IV. CONCLUSIONS AND DISCUSSION

Summing up, we present a systematic reduction of the
PES by proposing a simplified version of the potential that
preserves the thermodynamics of the system, at least for low
density, that can be constructed through successive inversion
of the virial coefficients. This is supported by the fact that
such inversion is ill-posed, so that there exists more than one
potential that reproduces the same virial data, and as such it
makes sense to chose a spherical symmetric potential which
allows to speed up calculations giving a simpler description
of the system. In the future, we plan to use a similar approach
to construct a high-density expansion, such as the one used

in Lee-Yang lattice gases [33], to overcome the limitations of
our current strategy given by the convergence of the standard
virial expansion for larger densities.

In general, we would like to apply our strategy to construct
interacting potentials which would allow us to make faster
simulations of real liquids or melts of molecules with several
degrees of freedom, taking care of preserving the thermody-
namics of the system.

Finally, we must note that our approach to reduce the
degrees of freedom could be applied not only to the inversion
of other thermodynamic quantities, but also to other ill-posed
problems, because the existence of many solutions allow us
to choose one branch of solutions, in particular, the one that
makes the problem simpler.
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