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Crystal nucleation along an entropic pathway: Teaching liquids how to transition
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We combine machine learning (ML) with Monte Carlo (MC) simulations to study the crystal nucleation
process. Specifically, we use ML to infer the canonical partition function of the system over the range of densities
and temperatures spanned during crystallization. We achieve this on the example of the Lennard-Jones system
by training an artificial neural network using, as a reference dataset, equations of state for the Helmholtz free
energy for the liquid and solid phases. The accuracy of the ML predictions is tested over a wide range of
thermodynamic conditions, and results are shown to provide an accurate estimate for the canonical partition
function, when compared to the results from flat-histogram simulations. Then, the ML predictions are used to
calculate the entropy of the system during MC simulations in the isothermal-isobaric ensemble. This approach is
shown to yield results in very good agreement with the experimental data for both the liquid and solid phases of
argon. Finally, taking entropy as a reaction coordinate and using the umbrella sampling technique, we are able to
determine the Gibbs free energy profile for the crystal nucleation process. In particular, we obtain a free energy
barrier in very good agreement with the results from previous simulation studies. The approach developed here
can be readily extended to molecular systems and complex fluids, and is especially promising for the study of
entropy-driven processes.
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I. INTRODUCTION

Entropy is central to many phenomena in chemistry,
physics, biology, and materials science. For instance, entropy
is a key concept in our understanding of molecular association
processes, such as, e.g., the dimerization of insulin [1], of pat-
tern formation on nanoparticle surfaces [2], of the partitioning
behavior of small molecules in lipid bilayers [3], and of
self-assembly processes [4,5]. Furthermore, entropy provides
a measure of the amount of coded information contained in
the canonical genetic code [6], as well as a thermodynamic
characterization of supercooled liquids [7,8] and amorphous
materials [9,10]. Entropic effects are also crucial for mixture
separation during adsorption processes [11,12], for the design
of protein geometries to facilitate the active transport of ions
[13], and in protein-protein binding for signal transduction
and molecular recognition [14,15].

Since entropy provides a measure of the amount of or-
der, or conversely, of disorder, within a system [16], it is
often used to characterize the level of organization of this
system. As such, entropy-driven processes have been the
focus of intense research in recent years and have led to
many insightful discoveries. Such phenomena include the
entropy-driven self-assembly in charged lock-key particles
[17], entropy-driven segregation processes of polymer-grafted
nanoparticles [18], and the entropy-driven crystallization of
DNA grafted nanoparticles [19], polymers [20], proteins [21],
and atomic [22], molecular [23], and polymeric crystals [24].
Furthermore, such studies have shed light on the interplay be-
tween competing processes, e.g., entropy-driven segregation
and crystallization [25,26] that can lead to complex molecular
mechanisms, such as two-step nucleation processes for silicon
[27] and clathrate colloidal crystals [28]. Recent work has

also highlighted the key role played by entropy during the nu-
cleation of liquid droplets [29,30], the formation of capillary
bridges during condensation processes in nanotubes [31–33],
and the nucleation of cavitation bubbles [34].

A full characterization of these entropic effects hinges
on the determination of entropy along the transition path-
way [35]. However, such calculations are not straightfor-
ward, since a direct determination of the entropy S =
−kB

∑
i P

B
i ln P B

i requires knowing the Boltzmann probabil-
ity P B

i , in which i denotes a system configuration [36–39].
Alternatively, free energy calculations can be carried out to
determine the entropy change along a given pathway, using
either thermodynamic integration [40–43] or flat histogram
methods [44–47]. Other possible routes involve entropy ex-
pansions in terms of the correlation functions [48,49] or the
analysis of the dynamical response of the system, through
a Fourier transform of the velocity autocorrelation function
[50,51]. In this work, we adopt a different approach and take
advantage of machine learning techniques to evaluate on-the-
fly the entropy of the system as it undergoes crystal nucle-
ation. Machine learning is now widely used in applications
as diverse as modeling molecular atomization energies [52],
density functional theory [53], and molecular docking [54]. In
particular, artificial neural networks (ANNs) have been shown
to give excellent results for the free energy landscape of a
wide range of systems, including peptides, biomolecules, and
polymers [55–57]. Here, we use ML to predict the canon-
ical partition function of the system over a wide range of
temperature and densities spanned during the crystallization
process. To achieve this, we train ANNs to model accurately
the Helmholtz free energy of the Lennard-Jones system, as
given by an equation of state obtained by Johnson et al. for
the liquid phase [58] and by the equation of state of van der
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Hoef [59] for the solid phase. Then, using the predictions
provided by the ANN for the Helmholtz free energy, we are
able to evaluate the entropy S of the system. The advantages
of this approach are threefold, since it allows us to (i) eval-
uate the canonical partition function and thus the Helmholtz
free energy as a function of only two variables, density and
temperature, along the crystallization process, (ii) calculate
the entropy of a system over a wide range of conditions, and
(iii) define entropy as a reaction coordinate to follow the onset
of order in the system, here during a crystal nucleation event.
To assess the first point, we show that the ML predictions are
accurate over a wide range of conditions and yield estimates
for the canonical partition function in excellent agreement
with the results from flat-histogram simulations. Second, we
compare the entropy obtained on the Lennard-Jones system to
experimental data available for argon [60] and show that the
entropy obtained using our method is in very good agreement
with the data on both liquid and solid argon. Third, we sim-
ulate the crystal nucleation process in the isothermal-isobaric
ensemble using entropy as a reaction coordinate. Specifically,
we implement the umbrella sampling technique within NPT
Monte Carlo simulations and compare our results with prior
work in the field [61] using geometric parameters, such as the
bond orientational order parameter Q6 defined by Steinhardt
et al. [62].

The paper is organized as follows. In the next section, we
present the approach developed in this work, starting with the
type of machine learning technique used here. We also discuss
how entropy is evaluated and used as a reaction coordinate in
Monte Carlo simulations and show how the ML predictions
yield accurate results for the partition function, and, in turn,
for the thermodynamic properties. We then study the crystal
nucleation process from a supercooled liquid of Lennard-
Jones particles, determine the free energy barrier of nucleation
along the entropic pathway and compare our results to those
from previous work. We finally draw the main conclusions
from this work in the last section.

II. SIMULATION METHOD

A. Machine learning technique and entropy calculations

The first step in our approach consists of using machine
learning (ML) to model accurately the canonical partition
function Q(N,V, T ), or equivalently the Helmholtz free en-
ergy A = −kBT ln Q(N,V, T ), for densities and tempera-
tures spanned during crystallization. For this purpose, we
train an artificial neural network using as reference data the
Helmholtz free energy of the Lennard-Jones system from the
Johnson, Zollweg and Gubbins equation of state (JZG EOS)
for the fluid phase [58] and from the van der Hoef equation of
state (VDH EOS) for the face-centered cubic crystal [59]. The
structure of the ANN used in this work is given in Fig. 1.

The ANN we employ includes four layers, the input and
output layers, as well as two hidden layers. The input layer
is composed of two input neurons, corresponding to the two
input parameters, temperature T and density ρ, for which we
need to evaluate the Helmholtz free energy of the system. The
next two layers are hidden layers, for which we have used,
respectively, five and four neurons. We add that we include
the usual bias node b for the input layer and every hidden
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FIG. 1. Structure of the ANN used in this work for the determi-
nation of the Helmholtz free energy A for a given temperature T and
density ρ, in which each neuron is labeled with a number between
1 and 5 for the first hidden layer, between 1 and 4 for the second
hidden layer, and in which b designates a bias node for each of the
first three layers.

layer [55–57,63]. Finally, the output layer only contains a
single neuron, since we aim here to predict the Helmholtz free
energy for any (T , ρ) set. The machine-learned Helmholtz
free energy AML can then be obtained through the following
equation [64,65],

AML = f4[b3 +
4∑

l=1

W (3, 4, l, 1)f3(b2

+
5∑

j=1

W (2, 3, j, l)f2[(b1 + W (1, 2, 1, j )T

+W (1, 2, 2, j )ρ])], (1)

in which W (i − 1, i, ki−1, ki ) is the weight matrix connecting
neuron ki−1 from layer i − 1 to neuron ki from layer i, the
bi functions are bias nodes that act as adjustable offsets, the
fi functions are the activation functions, chosen as the tanh
function for i = 1, 2, 3 and the linear function for i = 4. The
weights for the ANN are trained during an iterative process,
going first through a forward pass and then a back-propagation
algorithm. Equation (1) therefore provides a way to estimate
the Helmholtz free energy not only for the equilibrium phases,
i.e., the solid and liquid which serve to train the ANN, but also
for the intermediate, nonequilibrium, states [66] that connect
the starting point, the metastable liquid, to the top of the free
energy barrier, corresponding to the formation of the critical
nucleus.

The entropy of the system S can be calculated from the
canonical partition Q(N,V, T ) function through the follow-
ing statistical mechanical expression

S = U + kBT ln Q(N,V, T )

T
(2)

in which U is the internal energy of the system.
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An important insight brought by this connection between
Q(N,V, T ) and S is the intrinsically statistical nature of
the entropy as defined in Eq. (2). Q(N,V, T ) contains all
information for a system of a given size, both for homoge-
neous systems, when the density N/V corresponds to either
a liquid or a solid phase, and for inhomogeneous systems,
for intermediate densities for which the system may contain
nuclei or slabs of the new phase immersed in the parent
phase [66]. However, as a result of the finite size of the
system, Q(N,V, T ) and thus the Helmholtz free energy will
vary smoothly and will depend on the system size for these
intermediate densities, as shown, e.g., in prior flat histogram
simulations of first-order phase transitions [46,67]. In turn,
while the value of S, calculated from Eq. (2), is expected
to match the bulk values for the solid and liquid phases, its
value can depend on the system size for the intermediate
nonequilibrium states that span the nucleation pathway.

Equation (2) suggests a route for the determination of
entropy during the simulations in a form that can be readily
used as a reaction coordinate for the nucleation process. For
this purpose, starting from Eq. (2) and using the relation
between the Helmholtz free energy and the canonical partition
function, we define Si for each configuration i generated
during the (N,P, T ) simulations as

Si = Ui − AML(ρi, T )

T
(3)

in which Ui = U
pot
i + 3

2NkBT is the sum of the interaction
(potential) energy and of the ideal gas (kinetic) contribution
to the internal energy and AML(ρi, T ) are the ML predic-
tions for the Helmholtz free energy at a density ρi = N

Vi

and a temperature T . We assess in Sec. III the accuracy
and reliability of Eq. (3) for the liquid and for the solid by
testing it against experimental data for argon, for which the
Lennard-Jones model performs well, and against the results
from flat-histogram simulations.

B. Exploring an entropic pathway

The next step consists of using the entropy, obtained from
our machine learning approach, as a reaction coordinate. Pre-
vious work has shown that the umbrella sampling (US) tech-
nique [68] is a very successful approach to study the onset of
nucleation, both for the vapor-liquid transition [29,69–72] and
the solid-liquid transition [26,61,73–86]. We therefore build
on our previous work [29,30,33], in which we simulated the
nucleation of liquid droplets using US in the grand-canonical
μV T ensemble. Here, since we focus on crystal nucleation,
the very low acceptance rates for the insertions and deletions
of atoms preclude the use of μV T simulations. We therefore
implement the US technique, using the machine-learned en-
tropy as a reaction coordinate, within isothermal-isobaric NPT
Monte Carlo simulations. The US method is a non-Boltzmann
sampling technique [68,87] that consists in applying a US
potential, usually chosen as a harmonic function of a reaction
coordinate, to sample configurations with a very low Boltz-
mann weight. Once the simulation data have been collected,
the US potential is then subsequently removed to obtain the
free energy profile for the process, specifically here the Gibbs
free energy profile since this approach is implemented in

the isothermal-isobaric ensemble [61,68]. The ANN weights
allow for the calculation of entropy for a given temperature
T and density ρ, making the use of the machine-learned
entropy very well suited to serve as a reaction coordinate
for processes occurring under isothermal-isobaric conditions,
such as crystal nucleation. From a practical standpoint, we
start from a metastable supercooled liquid (parent phase)
and carry out simulations for gradually decreasing values of
entropy to promote the formation of the critical nucleus. In
each of these simulations, we use an US potential with the
following functional form,

Ubias = 1
2k(Si − S0)2, (4)

in which S0 is the target value for the entropy, Si is provided
using Eq. (3) for a configuration i of the system, and k is a
spring constant. Then, we collect the simulation results under
the form of an histogram that yields the probability associated
with each value of the entropy once the US potential has
been removed [68,87]. Repeating the simulations for steadily
decreasing target values for the entropy allows us to build
the Gibbs free energy profile for the nucleation process as
discussed in prior work [61,84,88].

C. Technical details

The first stage of this work involves training the ANN. This
is carried out using a learning rate set to 0.2, as well as a
training dataset that includes 11 970 data points, generated by
the VDH EOS and the JZG EOS. For the solid (VDH EOS),
we include data for reduced densities ρ∗ = ρσ 3 ranging from
0.94 to 1.2 and reduced temperatures T ∗ = kBT /ε from 0.1
to 2 (here, the density and temperature are given in units
reduced with respect to the Lennard-Jones parameters ε and
σ , as discussed by Allen and Tildesley [87]). For the fluid
phase (JZG EOS), we include data for temperatures ranging
from 0.7 to 6. The ANN training is deemed to be complete
when the error estimate becomes less than 5 × 10−7. Once the
ANN has been trained, we perform two types of simulations.
First, we test the accuracy of the ML predictions for the
Helmholtz free energy, the canonical partition function and
for the entropy on simulations carried out on systems of 500
Lennard-Jones particles for the fluid and solid phases. Second,
we carry out simulations of the crystal nucleation process
using the US technique under isothermal-isobaric conditions
and with the entropy as a reaction coordinate and refer to these
simulations as NPT-S simulations in the rest of this work.
Simulations of crystal nucleation are carried out on system of
3 000 Lennard-Jones particles for a reduced temperature T ∗ =
0.86 and a reduced pressure P ∗ = 5.68, which correspond to
a supercooling of 22% [59]. All simulations are carried out
within a NPT Monte Carlo (MC) framework. Two types of
random moves are implemented, corresponding to the random
translation of a single atom (99% of the attempted MC moves)
or a random change in the volume of the cubic simulation cell,
leading to a rescaling of the positions of all atoms (1% of
the attempted MC moves). The maximum displacement and
volume change are set such that 50% of the attempted MC
moves are accepted. The usual periodic boundary conditions
are applied [87], and tail corrections beyond a cutoff radius of
3σ are employed.
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III. RESULTS AND DISCUSSION

A. ML predictions for the Helmholtz free energy
and the canonical partition function.

We start by presenting the results obtained for the ML
predictions of the Helmholtz free energy. Figure 2 shows a
plot of the reduced Helmholtz free energy against the reduced
density ρ∗. In this graph, we compare the ML predictions,
obtained using Eq. (1), to the data from the two equations of
state we use for the Lennard-Jones system, namely the JZG
EOS for the liquid and the VDH EOS for the solid. Figure 2
shows that there is an excellent agreement between the ML
predictions and the EOS data across a wide temperature range,
from T ∗ = 0.75 to T ∗ = 4. Furthermore, we see that the
weights of the trained ANN allow us to obtain very accurate
results for both the liquid phase and the solid phase (face-
centered cubic [fcc] crystal). More specifically, focusing, e.g.,
on the agreement between the VDH EOS and ML predictions
for T ∗ = 1.35, we find a root mean square deviation (RMSD)
of 0.11. Turning to the agreement between the JZG EOS and
the ML predictions for the liquid at T ∗ = 3, we obtain a
RMSD of 0.15. Both examples show that ML predictions for
the Helmholtz free energy are in excellent agreement with the
EOS data.

Second, we analyze how the ML predictions perform for
the excess Helmholtz free energy, which is also provided
by the EOS data. We show in Fig. 3 the variations of the
product of the inverse temperature by the reduced excess

FIG. 2. Reduced Helmholtz free energy as a function of the re-
duced density. Results from the JZG EOS are shown as filled circles
for a reduced temperature of T ∗ = 2 (in black), T ∗ = 3 (in red),
and T ∗ = 4 (in green) for the liquid, while results from the VDH
EOS are plotted for reduced temperatures of T ∗ = 0.75 (in blue) and
T ∗ = 1.35 (in purple). The ML predictions for the corresponding
conditions are shown as open triangles connected through dashed
lines.

FIG. 3. Product of the reduced excess Helmholtz free energy by
β = 1/(kBT ) against density for the Lennard-Jones system. Same
legend as in Fig. 2.

Helmholtz free energy (A∗
ex) for both phases, and for reduced

temperatures ranging from T ∗ = 0.75 to T ∗ = 4. The quantity
βA∗

ex behaves in a dramatically different way when compared
to the reduced Helmholtz free energy. The largest values for
βA∗

ex are now obtained for the highest temperature (T ∗ = 4)
and the lowest βA∗

ex values are reached for T ∗ = 0.75. This
is the expected behavior, since the attractive interactions
between LJ particles are predominant as the temperature
of the system decreases and the solid becomes the stable
phase. Furthermore, this effect becomes more pronounced as
a result of the scaling by the inverse temperature β at low
temperatures. This qualitative trend is well captured by both
the EOS data and the ML predictions. From a quantitative
standpoint, in line with the results obtained for A∗, we find
that the ML predictions for the excess Helmholtz free energy
are in very good agreement with the JZG EOS and VDH EOS
data. Considering the same state points as for A∗, we find
a RMSD between the EOS data and the ML predictions of
0.05 at T ∗ = 3 for the liquid and of 0.08 at T ∗ = 1.35 for the
solid. This confirms the ability of the trained ANN to calculate
accurately the Helmholtz free energy of both the liquid and
solid phases for the Lennard-Jones system.

To assess further the performance of the ML predictions,
we now examine their ability to predict the value of the
canonical partition function. The partition function can be
obtained from the Helmholtz free energy from the following
equation:

A = −kBT ln Q(N,V, T ) (5)

with

Q(N,V, T ) = V N

N !�3N

∫
exp[−βU (�)]d�, (6)
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FIG. 4. Logarithm of the reduced canonical partition functions
Q∗(N,V, T ) against N , the number of LJ particles. Filled circles are
the results from prior work using EWL simulations [46], for reduced
temperatures T ∗ = 0.75 (in blue), T ∗ = 1.35 (in purple), T ∗ = 2
(in black), T ∗ = 3 (in red), and T ∗ = 4 (in green). Open triangles
connected through dashed lines are the ML predictions.

where � is the de Broglie wavelength and the integration is
performed over the coordinates of the N atoms of the system
(� denoting a specific configuration of the system). This
relation therefore allows us to obtain QML(N,V, T ) from the
ML predictions for the Helmholtz free energy. We present
in Fig. 4 a comparison between the ML-derived partition
function QML(N,V, T ) and the partition function obtained
in prior simulation work using the expanded Wang-Landau
(EWL) simulation method [46]. Figure 4 shows that the ML
predictions and the EWL simulation results are in very good
agreement over the whole temperature range from T ∗ = 0.75
to T ∗ = 4, as demonstrated for densities corresponding to
the liquid phase in the plot. This corresponds to numbers
of particles between about 300 and 450 in the plot, since
EWL simulations were performed for a fixed reduced volume
of 512σ 3. Interestingly, the ML predictions also provide an
insight into how the reduced canonical partition function
varies as a function of N for very large densities. This range
of densities corresponding to the solid phase is not accessible
through EWL simulations. This is because EWL simulations
are implemented within the grand-canonical ensemble and, as
such, require the insertion and deletion of atoms during the
simulation, which becomes very difficult at high densities.

B. Entropy calculations for liquid and solid phases.

Now that the reliability of the ML predictions for the
Helmholtz free energy has been examined, we look at how
these perform for the determination of the entropy of the
system. For this purpose, we carry out the first type of simula-
tion discussed in the Methods section. In order to compare to
experimental data for the liquid [60] and for the solid [89], we

FIG. 5. Monte Carlo NPT simulations of liquid argon at T =
95 K and P = 5 bar. Variation of the interaction energy (top) and
of entropy (bottom) as a function of the number of MC steps. In both
plots, the red line indicated the average value.

present results in real units, using the conventional Lennard-
Jones parameters for argon (σ = 3.4 Å, ε/kB = 117.05 K,
and m = 40 g/mol). We show in Fig. 5 the results of NPT
simulations carried out at T = 95 K and P = 5 bar for the
liquid. In this graph, we plot the variation of the interaction
energy during the simulation, as well as the entropy calculated
through Eq. (3). These plots exhibit the behavior expected,
once the simulation has converged, and provide an estimate
for the extent of the fluctuations around the average value
during the simulation.

How do the simulation results compare to the experimental
data? To assess this in detail, we carry out a series of NPT
simulations of the liquid phase for several state points, with
pressure ranging from P = 5 bar to P = 100 bar and temper-
ature ranging from T = 90 K to T = 100 K. The results are
provided in Table I. Liquid densities predicted by the simula-
tions are found to be in good agreement with the experimental
data (within 0.03 g/cm3), which confirms the accuracy of the
model for argon under these conditions. Looking closely at
the thermodynamic function enthalpy (H ), we also see that
there is a good agreement between the experimental data
and the simulation results with the maximum deviation of
0.6 kJ/kg occurring at the the lowest temperature (T = 90 K).
This also provides an estimate of the accuracy with which
the LJ potential models the thermodynamic properties of real
argon. Turning now to the entropy calculations, we find that
there is a very good agreement between the experimental data
and our calculations, since the maximum deviation is also
observed at T = 90 K, in line with the findings for H , and is
0.02 kJ/(kg K). Moving on to the Gibbs free energy (G), we
obtain a good agreement between the experimental data and
the simulation results, with deviations of less than 1% across
the entire range of conditions studied.
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TABLE I. Liquid argon: Comparison between the experimental data [60] and the simulation results (this work) for various state points.
Temperatures are given in K, ρ in g/cm3, S in kJ/(kg K), and H and G in kJ/kg. Standard deviations are of the order of 3 × 10−3 g/cm−3 for
the density, of 10−2 kJ/(kg K) for S, and of 0.1 kJ/kg for H and G.

T ρexp ρsim Sexp Ssim Hexp Hsim Gexp Gsim

P = 5 bar
90 1.377 1.375 1.420 1.442 −113.2 −113.8 −241.0 −243.5
95 1.344 1.342 1.477 1.494 −108.0 −108.0 −248.3 −249.9

100 1.311 1.308 1.532 1.543 −102.6 −102.3 −255.8 −256.6

P = 100 bar
90 1.405 1.403 1.391 1.414 −109.1 −109.6 −234.3 −236.8
95 1.376 1.374 1.446 1.462 −104.0 −104.0 −241.4 −243.0

100 1.347 1.344 1.498 1.509 −98.9 −98.6 −248.7 −249.6

We now analyze the results obtained for the solid phase.
First, we show in Fig. 6 the variation of the interaction energy
during a NPT simulation of a fcc crystal at T = 80 K and P =
100 bar. We observe a behavior similar to that of the liquid
(shown in Fig. 5), but with a lower interaction energy as a
result of the increased attractive interactions that takes place
in the solid phase. Turning to the variations of entropy during
the simulation, we also find that the entropy fluctuates around
its average value. As expected, we find this average value to
be lower than for the liquid, as a result of the greater amount
of order found in the crystal.

As for the liquid, we perform a series of NPT simulations
on the fcc phase for temperatures ranging from T = 70 K to
T = 80 K and for pressures from P = 1 bar to P = 100 bar.
The simulation results are given in Table II, together with the
experimental data for the solid. The results for the densities
show that there is an overall good agreement between the
experimental data and the simulation results for the density,
with deviations of less than 0.02 g/cm3 for the state points
studied here. In line with results for the liquid, we also obtain

FIG. 6. Monte Carlo NPT simulations of solid argon at T = 80 K
and P = 100 bar. Same legend as in Fig. 5.

a good agreement for the thermodynamic functions, with the
simulation results for the enthalpy exhibiting a deviation of
up to 1% for the enthalpy, of up to 1.1% for the entropy,
and up to 1% for the Gibbs free energy. This confirms that
the entropy calculations carried out using the ML predictions
for the Helmholtz free energy, together with Eq. (3), provide
accurate results for both the liquid and the solid phases, as
established through this comparison with the experimental
data.

C. Crystal nucleation using entropy as reaction coordinate.

We finally turn to the last type of simulations carried out
in this work, and perform NPT-S simulations of crystal nu-
cleation in the supercooled liquid of Lennard-Jones particles
at T ∗ = 0.86 and P ∗ = 5.68. We start from the supercooled
liquid, for which we obtain an average density of ρ∗ = 0.989.
Using the ANN trained in the first part of this work, together
with Eq. (1), we have a Helmholtz free energy A∗ = −10.31,
which yields an entropy S∗ = 5.71 through Eq. (3). From
there, we start carrying out NPT-S simulations, through um-
brella sampling, to study the onset of crystal nucleation. We
perform 13 successive simulations with overlapping windows,
each window being associated with a decreasing value for
the target entropy. We plot in Fig. 7 the variation of the
density during the successive NPT-S simulations, with each
data point on the graph corresponding to the average density
for a simulation window. We find that, as entropy gradually
decreases, the density of the system steadily increases, with
an overall increase amounting to 1.3% over the entire range of
entropies sampled. We also show in Fig. 7 how the interaction
energy is impacted by the decrease in entropy. We observe
that the interaction energy steadily decreases with entropy,
resulting in a overall change of −2.8% over the whole pro-
cess. The decrease in interaction energy, combined with an
increase in density, point toward a solidification of the system.
Furthermore, to characterize the order within the system, we
calculate the value taken by the Steinhardt order parameter
[62] Q6 over each window. We plot the evolution of Q6 as
the function of the decreasing entropy in Fig. 7 and find that
Q6 increases as entropy decreases, indicating that crystalline
order starts to develop within the system, consistently with the
onset of crystal nucleation.

Using the umbrella sampling results, we calculate the free
energy profile for the entire process and present it in Fig. 8(a).
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TABLE II. Solid argon: Comparison between the experimental data [89] and the simulation results (this work) for various state points.
Temperatures are given in K, ρ in g/cm3, S in kJ/(kg K), and H and G in kJ/kg (standard deviations are of the same order as for the liquid).

T ρexp ρsim Sexp Ssim Hexp Hsim Gexp Gsim

P = 1 bar
70 1.664 1.681 0.825 0.823 −160.4 −161.9 −218.2 −219.5
75 1.649 1.662 0.874 0.886 −156.5 −157.6 −222.1 −224.1
80 1.633 1.642 0.932 0.950 −152.4 −153.0 −227.0 −229.0

P = 100 bar
70 1.675 1.693 0.815 0.806 −155.2 −156.9 −212.2 −213.3
75 1.661 1.676 0.867 0.867 −151.4 −152.7 −216.4 −217.4
80 1.645 1.656 0.919 0.929 −147.4 −148.3 −220.9 −222.6

The free energy profile shows that the starting point for the
nucleation process is the metastable supercooled liquid with
S∗ = 5.71, which is associated with a local minimum in free
energy, as shown in Fig. 8(a). Then, as entropy decreases, the
organization within the system starts to develop. During this
stage, we observe that the free energy increases, until the top
of the free energy barrier is reached for S∗ = 5.48. At this
point, a critical nucleus has formed. We show in Fig. 8(b)
a snapshot of the critical nucleus, surrounded by the liquid
(solidlike particles are identified using the same criteria as in
previous work [61,76,78]). Looking now at the height of the

FIG. 7. Variation of (a) the reduced density, (b) the reduced
interaction energy, and (c) Q6 as a function of the reduced entropy
for the successive NPT-S simulations.

FIG. 8. (a) Crystal nucleation of the Lennard-Jones system at
T ∗ = 0.86 and P ∗ = 5.68: Gibbs free energy of nucleation as a
function of the reduced entropy S∗. (b) Snapshot of a crystal nucleus
(in red) of a critical size formed within a supercooled liquid (in cyan)
of Lennard-Jones particles.
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free energy barrier obtained for this process, we find that it is
of 17 ± 2 kBT . This is consistent with the results from prior
simulations on the Lennard-Jones system [61], which estimate
a barrier of roughly 20 kBT for the supercooling considered in
this work. These results show that our approach, which relies
on the use of entropy as a reaction coordinate, can indeed
be used to simulate the onset of crystal nucleation within a
supercooled liquid. One of the advantages of using entropy
as a reaction coordinate is that it is not structure specific.
As such, it does not impose any bias on the type of crystal
structure, or polymorph, formed during the crystal nucleation
process, either for precritical nuclei and or for the structure
of the crystal nucleus. This is of key importance, and in turn,
makes the approach implemented here especially promising,
since a complete understanding of the polymorph selection
process still remains elusive and is one of the outstanding
issues in solid-state physics and chemistry [90]. In future
work, we will examine this point and compare the structural
features of crystallites obtained along the nucleation pathway
using either entropy or geometric order parameters, such as,
e.g., Q6.

IV. CONCLUSIONS

In this work, we use machine learning to infer the canonical
partition function and the Helmholtz free energy of a system.
This, in turn, allows us to calculate its entropy using molecular
simulation. This is achieved by training an artificial neural
network using, as a training dataset, previously published
equations of state for the Lennard-Jones system for both the

fluid and solid phases. Once the ANN has been trained, we
are able to evaluate the Helmholtz free energy as a function of
density and temperature. Our approach is validated by testing
the ML predictions over a wide range of thermodynamic con-
ditions. In particular, these predictions for the Helmholtz free
energy lead us to calculate the canonical partition function,
thereby providing a direct comparison with results from recent
flat-histogram simulations on the Lennard-Jones system. The
second stage of this work consists of using these ML predic-
tions to calculate the entropy of the system. This is validated
by performing MC simulations under NPT conditions. The
simulation results are found to be in very good agreement
with experimental data on liquid and solid argon, a system
that is very well modeled by the Lennard-Jones potential.
Finally, we use entropy as a reaction coordinate in umbrella
sampling simulations and show that a gradual decrease in
entropy results in the formation of a crystal nucleus within a
supercooled liquid. The analysis of the crystal nucleation pro-
cess along the entropic pathway is found to be consistent with
the results from previous simulation studies. This approach
can be readily extended to nucleation processes for molecular
systems and complex fluids and is also especially promising
for the study of entropy-driven organization processes. For
such systems, the method developed in this work requires the
prior knowledge of the canonical partition function for the
liquid and solid phases, or alternatively of the dependence
of the Helmholtz free energy on temperature and density.
Methods have been recently developed to this end [91–99],
opening the door for applications of this approach to realistic
systems.
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