
PHYSICAL REVIEW E 98, 063303 (2018)

Policy-guided Monte Carlo: Reinforcement-learning Markov chain dynamics
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We introduce policy-guided Monte Carlo (PGMC), a computational framework using reinforcement learning
to improve Markov chain Monte Carlo (MCMC) sampling. The methodology is generally applicable, unbiased,
and opens up a path to automated discovery of efficient MCMC samplers. After developing a general theory, we
demonstrate some of PGMC’s prospects on an Ising model on the kagome lattice, including when the model is
in its computationally challenging kagome spin ice regime. Here we show that PGMC is able to automatically
machine learn efficient MCMC updates without a priori knowledge of the physics at hand.
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I. INTRODUCTION

Since the invention of Markov chain Monte Carlo
(MCMC) in the mid 20th century [1,2], MCMC methods have
grown to become the backbone not only of computational
physics, but arguably of modern civilization as a whole [3].
The basic idea of MCMC is seemingly innocuous: Use a
Markov chain to obtain a set of samples {s} from a state space
S , each sample with a probability weight (or density) given
by some function, or model, w : S → R�0. Unfortunately,
however, the autocorrelation of the samples means that long
and possibly computationally expensive simulations may be
needed in order to achieve reliable results. This reality poses
a threat to the feasibility of using MCMC in practice, as
real-world computational resources are limited (and comes
with a monetary cost).

To combat this problem, a plethora of MCMC algorithms,
methods, and paradigms has been developed, most of which
attempt to improve the original Metropolis-Hastings frame-
work [1,4] in one way or another [5]. Among those, an
intriguing group of algorithms has emerged with the recent
influx of machine-learning ideas and techniques to the do-
main of MCMC: the effective model Monte Carlo (EMMC)
method [6,7].1

In EMMC, the task of sampling states following model w

is divided into two stages: a learning or training stage and an
earning or sampling stage. First, one obtains a set of training
data, meaning a set of samples following the distribution of
w, e.g., by means of a traditional MCMC simulation. Then
an effective model w̃θ : S̃ → R�0, S̃ ⊇ S , parametrized by a
set of parameters θ = {θi}, is fitted to this data set by some
form of regression, i.e., machine learned, such that w̃θ (s) ≈
w(s) for states of statistical significance. The effective model

*troels.bojesen@aion.t.u-tokyo.ac.jp
1We use the label effective model Monte Carlo instead of, e.g.,

self-learning Monte Carlo as done in [7], since the latter (i) is a
too broad description and (ii) strongly resembles the name of the
algorithmically different (and by more than a decade preceding)
self-learning kinetic Monte Carlo method [8].

should be constructed in a way that makes it computationally
advantageous over the original model w. It could, for example,
be computationally cheaper to evaluate and/or open up for
the use of a previously inaccessible sampling method. In
the second stage, w̃θ is used as a proposal generator: A
number of updates s → s1 → s2 → · · · → sn−1 → sn = s ′ is
performed following some MCMC sampling scheme applied
to the effective model w̃θ . Then the new state s ′ is treated as
a proposal for the sampling of the original model, in which
case it is accepted with the Metropolis acceptance rate (or any
other acceptance rule fulfilling the detailed balance condition)

α(s → s ′) = min

[
1,

w̃θ (s)w(s ′)
w̃θ (s ′)w(s)

]
. (1)

This ensures that the detailed balance condition

w(s)π (s → s ′)α(s → s ′) = w(s ′)π (s ′ → s)α(s ′ → s) (2)

holds, in which case the Markov chain will asymptotically
sample the distribution of w instead of the distribution of
w̃θ . Here π (s → s ′) denotes the probability of proposing the
change s → s ′. By choosing a sensible effective model and
update rule, an overall faster diffusion in state space (in CPU
and/or real time) can be achieved, with obvious beneficial
implications.

Although the EMMC scheme has demonstrated significant
speedups in various instances [6,7,9–14], it is not without
caveats and shortcomings. First, the effective model has to
be flexible enough to be able to “imitate” the original model.
If this is not the case, EMMC may perform worse than
a traditional “naive” MCMC method. Second, the effective
model has to be trained using sufficiently good training data,
with complex effective models with more parameters requir-
ing more data. Acquiring the training data can in itself be
challenging, e.g., if the dynamics of the MCMC sampler used
is slow. Should the training data not represent a sufficiently
good sampling of the relevant parts of state space, the effective
model, and hence the final outcome, will reflect this. In the
best case, this only makes the EMMC simulation slower, in
the worst, the proposed states will be drawn from a wrong or
incomplete subset of state space.
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Issues concerning the first stage of the EMMC can be
somewhat mitigated by iteratively (and gradually) improving
the effective model, constructing a cascade of learning runs
based on the previously obtained effective models, until con-
vergence has been reached. Such a scheme, however, does
not resolve situations where the MCMC algorithm used to
generate proposal states based on the effective model is intrin-
sically inefficient or inappropriate for the problem at hand. For
example, an effective-model-based proposal generator that is
frozen, in the sense that it never or almost never proposes
significant movements in state space, will lead to poor MCMC
performance, (almost) regardless of each iteration’s evaluation
speed. EMMC is only as good as its weakest link: the proposal
generation.

Naturally, the latter concerns can sometimes, when the
details of the Markov chain dynamics are known a priori,
be countered by hand crafted updates during the sampling
run. Such “human intervention,” however, does offset some
of the usefulness and automatic discovery potential of having
machine-learned algorithms in the first place.

In this work, we take a different approach in the quest for
not only finding efficient MCMC algorithms, but also doing
so in an as automatic as possible fashion. Instead of focusing
on constructing effective models, we argue that it is more
fruitful to target the proposal generation directly by tuning
the policy for making updates, akin to what is done within
the reinforcement-learning branch of machine learning [15].
After all, we are primarily interested in the (efficient) diffusion
of Markov chains through state space, not the effective models
per se.2

The idea of automatically tuning the proposal distributions
of MCMC samplers is not new: It is not unreasonable to
speculate that ad hoc solutions may have emerged already
shortly after the invention of MCMC.3 Later attempts at
formalizing the process can be found, e.g., in Ref. [16] (and
references therein) as well as in the form of the so-called
adaptive MCMC algorithms.4,5 Shared by these is the tuning
of some defining parameters of select, typically Gaussian,
proposal distributions. In joining forces with reinforcement
learning, however, we will show that it is possible to take the
idea even further.

In the following section, we will connect a few core
concepts of reinforcement learning to MCMC as we prepare

2Even if the goal is to determine an effective model, we would
claim that PGMC sampling is superior to EMMC in obtaining the
necessary training data.

3After all, Metropolis et al. themselves note that, with respect to
their tunable parameter α, “[it] may be mentioned in this connection
that the maximum displacement α must be chosen with some care;
if too large, most moves will be forbidden, and if too small, the con-
figuration will not change enough” [1]. The motivation for finding a
way to more or less automatically choose a “decent” α was present
right from the start.

4See, for instance, Refs. [17,18] and references therein. Examples
of algorithms showing some similarities to the algorithms presented
in this work can be found in, e.g., Refs. [19,20].

5The naming is rather confusing, as the adaptive MCMC algorithms
are not Markovian.

the foundation, before we develop in Sec. III a general rein-
forcement learning MCMC framework, dubbed policy-guided
Monte Carlo (PGMC). In Sec. IV, PGMC is demonstrated
through a series of simulations of the kagome lattice Ising
model in a field. The examples also lead the way to a more
detailed discussion of the specifics of the methodology. Fi-
nally, we attempt to put PGMC somewhat in perspective in
Sec. V, before summarizing in Sec. VI.6

II. MCMC IN LIGHT OF REINFORCEMENT LEARNING

The Markov decision processes heavily employed within
reinforcement learning may be regarded as a superset of the
Markov chains [15]. Thus, much of the formalism developed
in reinforcement learning can readily be adopted to MCMC:
The update s → s ′ may be regarded as an action, one of
possibly many taking the system, or agent, from state s to
some other state s ′. We denote the space of all actions by As ,
where the subscript s, when included, implies that the possible
actions may depend on the initial state s. The policy for
taking action a : s �→ s ′, a ∈ As , is quantified by the proposal
probability π : As × S → [0, 1]. We will later refer to π itself
as the policy. The inverse action is denoted by a−1 : s ′ �→ s.

In Metropolis-Hastings MCMC, the acceptance probability
α can in principle be chosen in any way that satisfies Eq. (2).
However, for simplicity, and in order to make the discussion
more concrete, we will be using the Metropolis acceptance
rate [1,4]

α(s → s ′) = min

[
1,

w(s ′)π (s ′ → s)

w(s)π (s → s ′)

]
. (3)

Then the Markov chain dynamics will be determined solely
by the choice of policy π (which implicitly also determines
the action space), as the model w is given a priori.7

In the original Metropolis algorithm, the policy is symmet-
ric, π (s → s ′) = π (s ′ → s), rendering Eq. (3) particularly
simple. However, although convenient, there is no reason to
believe that this choice is optimal. For example, by associating
π (s → s ′) with updates based on w̃θ , the proposal generation
of EMMC may be seen as a (typically) asymmetrical policy.
A similar case can be made for many other existing MCMC
algorithms.

A natural question then follows: What is the optimal policy
for an MCMC simulation of a given model? To address
this in a quantitative way, we look at the sampling of some
observable O. (After all, this is ultimately the goal of the
simulation.) The statistical efficiency of this process is typi-
cally gauged by the associated integrated autocorrelation time

6Recently, the author became aware that Ref. [21] briefly floats a
similar idea of applying reinforcement learning methods to directly
search for an optimal policy. The idea however is not pursued in any
way in Ref. [21].

7The derivations done here can straightforwardly be adopted for
other acceptance rates as well. In the case in which these acceptance
rates involve tunable parameters, like in Ref. [22], the parameters can
be treated similarly to other parameters in the PGMC algorithm (see
Sec. III).
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FIG. 1. Sketch of the hierarchy of abstractions in play. A state,
e.g. a configuration of a lattice model, constitutes a single point in a
high-dimensional state space S . A trajectory of states s1 → s2 →
· · · → sn of length n corresponds to a single point c in the even
higher-dimensional trajectory space C. The darker areas illustrate the
regions of higher probability density that contributes the most to the
final result.

τO : C → [ 1
2 ,∞) [23].8 Here C denotes the set of all possible

trajectories of states the Markov chain can follow through
state space, as illustrated in Fig. 1. In this work, τO is mea-
sured in units of Monte Carlo updates, so to reflect the real-
world performance of generating a trajectory, the autocorrela-
tion time should be multiplied by a cost factor u : C → R>0

that, ideally, incorporates all costs of importance associated
with obtaining a trajectory. The costs of importance could, for
example, be the time or computational resources needed.

Equivalently, and more conveniently, we introduce the
performance factor

εO (c) ≡ 1

2τO (c)u(c)
> 0, c ∈ C, (4)

as a measure of efficiency; the larger the performance factor,
the better the MCMC sampling. If εO (c) = 0, all samples are
perfectly correlated and/or infinitely expensive to generate,
while εO (c) = u(c)−1 means that they are statistically inde-
pendent. Thus, all other factors being equal, the optimal policy
π∗ is the one that maximizes the expected performance factor

〈εO〉c∼w =
∑
c∈C

εO (c)p(c). (5)

The subscript c ∼ w (or sometimes just ∼w) signifies that
the states of the trajectory c are sampled following the w

distribution. This statistics is captured by p(c), the probability
of creating c. In the language of reinforcement learning,
the performance factor plays the role of a reward function.
Denoting by π (c) and α(c) the probability of proposing and
accepting a trajectory c = (s1 → s2 → · · · → sn) of some
length n, we have

p(c) = p(s1)π (c)α(c)

= p(s1)
n−1∏
t=1

π (st → st+1)α(st → st+1) (6)

due to the Markov property of the Markov chain. Here p(s1)
is the probability of starting in state s1, which must fulfill
p(s1) ∝ w(s1) if c ∼ w is to hold in Eq. (5). (In practice,
this will be the case if the trajectories are obtained from
equilibrated MCMC simulations.)

8In this work, we assume that the samples may not be anticorre-
lated. Nevertheless, even if (mild) anticorrelation emerges, the algo-
rithms and procedures presented are expected to work qualitatively.

III. POLICY-GUIDED MONTE CARLO

Similar to EMMC, we propose a two-stage PGMC scheme:
(1) Given a model w, find a policy π∗ that makes Eq. (5)
as large as possible and (2) use π∗ in an MCMC simulation
to obtain samples distributed according to probability weight
w. Thus, unlike conventional reinforcement learning, where
the policy determines the complete behavior of an agent, in
PGMC the policy only guides the behavior of the Markov
chain. The final determinant is always the MCMC acceptance
step, which enforces the sampling of w to be unbiased.
Importantly, this holds regardless of the details of the policy,
as long as it is ergodic.

Whereas stage 2 is conceptually straightforward, stage 1
demands a more thorough treatment. In the following sec-
tions, we will discuss each of the following central aspects of
finding π∗: policy search, how to model the policy, and how
to estimate the performance factor.

A. Policy search

Any practical attempt at finding π∗ will run into at least
two obstacles: (i) The set of all possible policies P is infinite
and (ii) the set of all possible trajectories C is either infinite or
extremely large. Clearly, approximations have to be made in
order to proceed. We should therefore not expect to find the
optimal policy, but rather just a good one.

To tackle (i), we restrict the policy search to {πθ } ⊂ P for
some policy model πθ parametrized by θ ∈ Rd . Demanding
πθ to be (almost everywhere) differentiable with respect to
θ , we may proceed by policy gradient optimization [15].
At a conceptual level, the procedure is to perform gradient
descent on −〈εO〉c∼w, now a function of θ , until a minimum
is reached. In practice, we will use some variant of stochastic
gradient descent to do so [24].

Using stochastic gradient descent also partially solves (ii),
as the optimization is now based on a stochastic sampling of C,
rather than a practically impossible exact integration over C.
The samples, i.e., trajectories, can be generated and stored as a
set of training data prior to the optimization (offline optimiza-
tion), although in reinforcement learning it is typically more
advantageous to generated them on the fly, as needed (online
optimization). Here we will focus on the latter approach.

Generating even a single trajectory can be expensive if
we demand it to be statistically independent of previous tra-
jectories. Fortunately, this is not necessary for the stochastic
gradient descent to converge; as long as all regions of C
of importance are eventually visited, it is acceptable with
correlations between subsequent samples. This, together with
the statistical time translation invariance of the Markov chain
in equilibrium, means that time-shifted segments of the same
trajectory may be regarded as separate shorter (and strongly
correlated) trajectories, or subtrajectories (see Fig. 2). In
this sense, a new trajectory is created with every update
step. Furthermore, if old subtrajectories are discarded from
the training data as new ones are generated (as is the case
with online optimization), it is reasonable to expect that a
stochastic gradient descent optimization based on a small
set of memorized subtrajectories will converge to a correct
optimum, even if initial subtrajectories are out of equilibrium.
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FIG. 2. Trajectory c may be regarded as a number of shorter,
time-shifted, and correlated subtrajectories, e.g., c′, c′′, and c′′′.

During the policy optimization, the trajectories are gener-
ated following a behavior policy b ∈ P . The behavior policy
may in general be different from the target policy πθ we
are trying to optimize. In other words, b controls the update
dynamics during the first stage of the PGMC simulation, while
the target policy with optimized parameters θ = θ∗, πθ∗ ≈ π∗,
is to be used in the MCMC sampling in the second stage.
Formally, Eq. (5) in conjunction with Eq. (6) may be written

〈εO〉c∼w =
∑
s1∈S
c∼b

εO (c)p(s1)
πθ (c)

b(c)
αθ (c) (7)

since we are generating trajectories based on b, as indicated
by c ∼ b, but ultimately desire the statistics generated by πθ .
Like before, each trajectory starts in some state s1. A subscript
θ has been included in αθ as a reminder that the acceptance
rate also depends on θ [through πθ ; see Eq. (3)]. We opt
to not include a Metropolis acceptance step in the training
stage of the simulation (i.e., all updates are accepted), as we
desire as fast an exploration of the state space as possible.
Then αθ should be treated just as a numerical factor during
the optimization.

Since the terms of Eq. (7) may span several orders of mag-
nitude, especially in the initial iterations of the optimization,
we will attempt to maximize ln〈εO〉c∼w rather than Eq. (7)
directly. This does not change π∗, but reduces the variance of
the policy gradient estimate, because

∇θ ln〈εO〉c∼w = ∇θ 〈εO〉c∼w

〈εO〉c∼w

(8)

is numerically more stable when 〈εO〉c∼w is approximated by
a finite number of stochastically sampled terms [15].

Moreover, exploiting that a reversible Markov chain in
equilibrium is invariant with respect to time reversal, we may
perform the replacement

p(c) →
√

p(
→
c )p(

←
c ). (9)

The arrows in
�
c = (s1 � s2 � · · · � sn) indicate whether

the trajectory c is traced forward or backward in time.
Although not imperative, this symmetrization improves the

stability and convergence of the optimization. First, the
amount of information taken into account is increased by im-
posing the time-reversal symmetry. Second, the multiplicative
combination of p(

→
c ) and p(

←
c ) has a regularizing effect on

the optimization, since before equilibrium has been reached,
a large p(

→
c ) will not necessarily be favored if it leads to

a small p(
←
c ). Thus, we expect the symmetrization to be of

particular importance in dampening temporary learning of
any transient behavior the system might experience before
reaching equilibrium.

Using Eqs. (3), (7), and (9), the symmetry εO (
→
c ) =

εO (
←
c ) = εO (c), and the identities ∇θgθ = gθ∇θ ln gθ and

min(0, x) + min(0,−x) = −|x|, we get

∇θ 〈εO〉c∼w

=
∑
s1∈S
c∼b

p(s1)εO (c)
πθ (c)

b(c)
αθ (c)∇θ [ln πθ (c) + ln αθ (c)]

→ 1

2

∑
s1∈S
c∼b

√
p(s1)p(sn)εO (c)

√√√√πθ (
→
c )πθ (

←
c )

b(
→
c )b(

←
c )

× exp

[
−1

2
|�fθ (c)|

]
∇θ [ln πθ (

→
c ) + ln πθ (

←
c )−|�fθ (c)|],

(10)

where

�fθ (c) ≡
n−1∑
t=1

[ln w(st+1) + ln πθ (st+1 → st )]

− [ln w(st ) + ln πθ (st → st+1)]

= ln w(sn) − ln w(s1) +
n−1∑
t=1

[ln πθ (st+1 → st )

− ln πθ (st → st+1)] (11)

and

∇θ ln πθ (
�
c ) =

n−1∑
t=1

∇θ ln πθ (st � st+1). (12)

Equation (10) is the most general policy gradient for
PGMC policy optimization. It can in principle be employed
using any ergodic behavior policy b (off-policy learning), but
unless a good behavior policy can be found, bad or very bad
convergence is to be expected [15]. The particular choice
of b = πθ (on-policy learning) circumvents this issue, as the
behavior policy presumably will be the best available estimate
for the optimal policy at any given time. Although such a
choice makes b nonstationary, it is reasonable to expect that
any undesired effects of this will only be transient as long as
θ converges.

Furthermore, like Eq. (5), Eq. (10) is based on the as-
sumption that p(si ) ∝ w(si ), i = 1, n. If we were to restrict
ourselves to the nonsymmetrized form of Eq. (10), p(s1) ∝
w(s1) could be achieved by drawing the initial states of the
trajectories from an equilibrated MCMC simulation. If the
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symmetrized form is to be used, p(si ) ∝ w(si ), i = 1, n,
can only be guaranteed if the entire trajectories are taken
from equilibrated MCMC simulations. Both approaches are
clearly not desirable, since they run against the aim for an
efficient, online policy optimization procedure. Specifically,
if a trajectory c = (s1 → s2 → · · · → sn) is to be treated as
a collection of subtrajectories {(s1 → s2 → · · · → sk ), (s2 →
s3 → · · · → sk+1), . . .}, then p(s) for almost all s ∈ c will de-
pend on the particular dynamics of b, which is not guaranteed
to sample states proportionally to w. Nevertheless, we will
ignore this fact and continue to treat the states as if p(s) ∝
w(s). The bias introduced by doing so may at first seem
severe, but note that a good behavior policy will only generate
states close to the desired true distribution of w; as the policy
of the on-policy learning becomes better (due to optimization
and/or improved modeling), the bias will diminish.

With the above considerations taken into account, Eq. (10)
is approximated by

∇θ 〈εO〉c∼w ≈ 1

2Nc

∑
s1∼πθ

c∼πθ

εO (c)exp

[
−1

2
|�fθ (c)|

]

×∇θ [ln πθ (
→
c )+ln πθ (

←
c )−|�fθ (c)|], (13)

where Nc is the number of trajectories sampled. Equation (13)
is the form of the policy gradient we will be using in this work.

B. Modeling the policy

There are very few restrictions on the functional form of a
policy. As long as ergodicity and reversibility are preserved,
the latter meaning that π (s → s ′) > 0 ⇔ π (s ′ → s) > 0, any
function π : A × S → [0, 1] will do (albeit only a few of
those will do well).

Without loss of generality,9 we may write

π (a|s) = exp[h(a|s)]∑
a′∈As

exp[h(a′|s)]
∈ (0, 1], (14)

where h(a|s) is the preference for taking action a from state
s [15]. It is often computationally more convenient to work
with the preference than the policy directly. One reason is that
h : A × S → R is not restricted to a finite interval. Another is
that the preference, being logarithmic, easily handles a large
range of policy values without leading to numerical underflow
or overflow.

In practice, the preference will be parametrized by θ . It can
be modeled by an arbitrary function approximator, although
the PGMC performance will depend strongly on its ability to
imitate an efficient Markov chain dynamics for the probability
weight model in question (and doing so efficiently): Not only
will Eq. (14) have to be evaluated given an action a, actions
also have to selected based on it, all while the state s and
possibly the action space As are dynamically changing during
the simulation. Depending on the model to be simulated, a

9Strictly speaking, the functional form of Eq. (14) forces π (a|s ) >

0 ∀a ∈ As , s ∈ S , i.e., π (a|s ) = 0 is now prohibited. In practice,
however, there is no numerical difference between π (a|s ) = 0 and
π (a|s ) → 0+ and the discrepancy can safely be neglected.

significant portion of the computer time may be spent on
handling Eq. (14).

We will simply use linear feature maps as preferences
in this work [15]. Despite these having limited expressive
power, they are fast, automatically incorporate translational
invariance, scale efficiently, and are easy to deal with in the
relatively simple scenarios explored in Sec. IV. Utilizing more
sophisticated constructs such as decision trees, neural net-
works, etc. [25], is left for future works to explore. Examples
of more complex policy structures going beyond Eq. (14) are
presented in Sec. IV.

C. Performance factor

The final element of the PGMC optimization to be dis-
cussed is the performance factor, as defined by Eq. (4). The
first factor of the denominator, the integrated autocorrelation
time, is formally given by

τO = lim
�→∞

1

2

�∑
δ=−�

ρO (δ), (15)

ρO (δ) ≡ 〈OtOt+δ〉 − 〈O〉2

〈O2〉 − 〈O〉2
(16)

for a trajectory of samples O1 → O2 → · · · , where Oi ≡
O(si ). In practice, the series should be truncated when � is
a few times larger than τO to give a meaningful result, since
Var(τO ) → ∞ as � → ∞ [23].

Estimating τO (c) based on Eq. (15) is a viable strategy
during the training stage if the training trajectories fed to
the stochastic gradient descent optimization are only weakly
correlated. If this is not the case, as suggested in Sec. III A,
the change in τO (c) between two consecutive subtrajectories
will be minuscule and sensitive to noise and the optimization
likely unstable. An alternative, heuristic approach is to simply
use

(2τ̃O )−1 ≡ 1 − ρO (1), (17)

possessing the desired limiting properties of (2τ̃O )−1 = 0 for
perfectly correlated samples and (2τ̃O )−1 = 1 for perfectly
uncorrelated samples.

The takeaway message of Eq. (17) is that a rough estimate
for τO can be obtained based only on pairs of consecutive
samples (Ot,Ot+1). Ultimately, this means that it should be
viable to perform stochastic gradient descent with subtrajec-
tories merely of length 2. Obviously, one has to be careful
when doing so, as such a myopic perspective may disregard
important longer-timescale dynamics; additional means may
have to be employed to ensure that the policy converges to
a reasonable target. When in doubt, the unbiased integrated
autocorrelation time given by Eq. (15) will always be the
correct measuring rod to compare with. Nevertheless, and cru-
cially from a practical perspective, the challenging problem of
maximizing Eq. (5) is now within reach of relatively simple
program designs.

Among the many aspects that make up the cost factor u,
only the cost associated with the policy is easily controllable
and hence of interest here. The specifics are strongly case
dependent, but two limiting regimes may be identified. (i) If
the cost of evaluating the model dominates a PGMC sampling
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Elementary triangle

FIG. 3. Configuration of the Ising model on an L = 3 kagome
lattice. The dark and light disks indicate down (−1) and up (+1)
spins, respectively.

iteration, the cost of evaluating the policy, i.e., selecting an
action, is of minor importance and may be approximated by
a (negligible) constant; in this case, the focus should be on
getting the most out of each model evaluation, meaning that
one should seek to minimize the integrated autocorrelation
time in order to maximize Eq. (4). (ii) If, on the other hand,
the cost of evaluating the model is small compared to that of
the policy, the cost of the policy is obviously not negligible. In
this case, a reasonable approximation would be to make u(c)
proportional to the number of operations needed to propose c.

Note that it should be sufficient to select a single, hopefully
representative, slow mode (i.e., large autocorrelation time)
observable for calculating the performance factor used in
finding a good policy. Performing separate simulations for
each observable of interest, as opposed to sample all of them
during the same simulation, is most likely not an efficient
strategy.

IV. PGMC IN PRACTICE

In this section, we will demonstrate how the PGMC frame-
work can be employed in simulating a simple but challenging
lattice model. The solutions presented are not necessarily
meant to be the best ones, but are selected to gradually expose
some of PGMC’s potential. It should also be emphasized
that PGMC is a general scheme and not restricted to the
examples presented here. To underline this, we briefly share
some general thoughts on the usage of PGMC in other cases
in Sec. IV E. See the Appendix for technical details about the
simulations.

FIG. 4. Generation of two separated monopole excitations from a
kagome spin ice ground state by flipping a string of alternating spins.
The monopoles are associated with the colored elementary triangles,
the only ones that violate the spin ice constraint by not containing
two up spins (light) and one down spin (dark).

FIG. 5. Tunneling from one kagome spin ice ground state to
another. A loop of spins of alternating signs has to be flipped in
order to conserve the spin ice rule everywhere. The smallest loop for
which this can be accomplished belongs to an elementary hexagon
or plaquette.

A. Test model

As a test model, we choose the Ising model on a kagome
lattice of size N = 3 × L2 with periodic boundary conditions
(see Fig. 3).

Now the state space is S = {σ |σi ∈ ±1} and the logarithm
of the probability weight is given by

ln w(σ ) = K
∑
〈i,j〉

σiσj − KB
∑

i

σi, (18)

with K a coupling constant and B the strength of an external
field. This simple model displays a surprisingly rich physics:
In the thermodynamic limit, for 0 < K < Kc and B = 0, it
is a paramagnet, which at Kc = 1

4 ln(3 + √
12) ≈ 0.467 un-

dergoes a continuous phase transition to a ferromagnetically
ordered state [26]. Conversely, when K < 0, the model is
frustrated. As K → −∞ and B = 0, it does not experience
a phase transition, but rather a crossover to an extensively
degenerate ground macrostate10 with a residual entropy of
approximately 0.502 per spin [27]. In the ground macrostate,
the elementary triangles are constrained to contain either
two up and one down spin, or one up and two down spins.
The configurations belonging to this manifold of states are
connected by a series of single spin flips, each of zero-
energy cost. Applying a field of strength 0 < |B| < 4 partially
lifts the degeneracy, since now only one of the elementary
triangle configuration categories will minimize the energy.
This reduces the residual entropy to approximately 0.108 per
spin, and the system enters the kagome spin ice submanifold,
so named for its connection to (pyrochlore) spin ice [28].
This macrostate is topologically nontrivial, with particlelike
gapped excitations dubbed monopoles [29,30] (see Fig. 4). In
order to tunnel from one spin ice configuration to another, a
minimum of six spins in a loop has to be flipped, as illustrated
in Fig. 5.

The simple model of Eq. (18) provides a rich test bed
for PGMC algorithms, whereby the intrinsic dynamics, and
hence the nature and difficulty of the simulation, can be tuned
by only two parameters. In the following, we will consider
the representative set of parameters given in Table I for
benchmarking.

10We use the term macrostate, instead of the more customary
state, to explicitly distinguish this physical mode from the microstate
meaning attached to the word state elsewhere.
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TABLE I. Parameters used in the simulations of Eq. (18). The
parameters have been chosen so as to realize the various physical
(hence also simulation) regimes of the model.

K B Description

Kc ≈ 0.467 0 critical point
0.5 1 ferromagnetic and nonzero field

−4 0 strong frustration and zero field
−4 0.5 strong frustration and weak field
−4 2.5 strong frustration and strong field

B. Single-flip policies

To demonstrate the basics of PGMC, we compare the
performance of a few simple but increasingly complex pol-
icy models. The policies all have action spaces restricted to
single-site spin flips

A = {
aσi

|i ∈ {1, . . . , N}}, (19)

aσi
: σj �→

{−σj , j = i

σj , j �= i,

a−1
σ = aσ ,

(20)

the minimum required for ergodicity to be possible. They are
as follows.

(i) The trivial policy π1, i.e., uniformly random spin selec-
tion as given by the preference

h1(aσi
|σ ) = 1

N
. (21)

This corresponds to the policy of a canonical Metropolis
MCMC, with no independent parameters to be determined.

(ii) The local spin orientation policy π2. This policy is
given by

h2(aσi
|σ ) =

{
θ1 if σi = 1
θ2 if σi = −1.

(22)

With π2, the probability of flipping a spin may depend on its
sign. Although we expect θ1 = θ2 to be the right choice in
zero external field, a distinction may be advantageous when
the global Z2 symmetry of Eq. (18) is explicitly broken. The
cost is that one independent parameter has to be tuned.

(iii) The local energy sign policy π3, with preference

h3(aσi
|σ ) =

{
θ1 if Elocal,i > 0
θ2 if Elocal,i � 0,

(23)

where Elocal,i ≡ σi (
∑

〈j,i〉 σj − B ), the sum being over the
nearest-neighbor sites of i. It is quite typical that the physics
of a model is determined by only a few excited degrees
of freedom, surrounded by a sea of less relevant, relaxed
ones. This means that the trivial policy π1 may waste most
of its action proposals on unimportant (and mostly rejected)
update attempts. The policy π3 is designed to combat this
by making a distinction in selecting (locally) excited and
nonexcited spins. Compared to π2, π3 takes more information
into account, rendering it more versatile and potent. This
comes at the expense of more complexity. As with π2, there is
now one independent parameter to be determined.

(iv) The local mean field policy π4, with

h4(aσi
|σ ) = θqi

, (24)

where

qi = 1

2

⎡
⎣(σi + 1) + 2

∑
〈j,i〉

(σj + 1)

⎤
⎦ + 1 (25)

associates a unique integer ∈ {1, 2, . . . , 2(z + 1)} with each
possible pair of (σi,

∑
〈j,i〉 σj ). For the kagome lattice, the

coordination number is z = 4, so there are now nine inde-
pendent parameters to be fixed. The policy π4 contains all of
the other policies, in the sense that π1, π2, and π3 may be
considered instances of π4 with a restricted parameter space.
It is therefore guaranteed to perform at least as well as them,
given sufficient training.11

We have omitted the subscript θ to avoid clutter in the
above expressions. Like the model (18), the policies π1–π4

are translationally invariant. However, except trivially for π1,
they do not take advantage of the global Z2 symmetry when
B = 0.

The parameters θ are determined during the learning stage
in an on-policy fashion, as outlined in Sec. III A. Setting the
autocorrelation observable to

O(σ ) = σ , (26)

while treating the spin state as a vector with scalar product as
multiplication, the performance factor may be approximated
by just ε̃O (c) = const. This is because all available actions
will change the state by exactly the same amount, namely, one
spin flip, meaning that Eq. (17) will be constant during the
policy search. We also assume that the costs of evaluating the
single-flip policies are all similar. Then, if only a single two-
state subtrajectory ct = (st → st+1) is kept in memory, Eq. (8)
reduces to

∇θ [ln πθ (
→
c t ) + ln πθ (

←
c t ) − |�fθ (ct )|], (27)

which is simply the gradient of the log-likelihood of creating
this subtrajectory.

Examples of the policy optimization, as monitored by the
mean acceptance rate 〈α〉 and the normalized effective degrees
of freedom12

d(π, s) ≡ 1

N
exp

⎛
⎝−

∑
a∈As

π (a|s) ln π (a|s)

⎞
⎠ (28)

are shown in Fig. 6. (Note that in this case, since ε̃O = const
and b = πθ , 〈ε̃O〉 ∝ 〈α〉. If this does not hold, it is more
reasonable to track 〈ε̃O〉 directly.) After a short initial
relaxation phase, the policies quickly converge to focus on a

11Likewise, no linear combination of the form π̃ = ∑4
x=1 ωxπx for

some ωx > 0 can surpass the performance of just π4; π̃ will have the
exact same ability to categorize local spin configurations as π4.

12The effective degrees of freedom may also be seen as the expo-
nential of the Shannon entropy [31] of the policy for a given state; it
basically measures the amount of information encoded in the policy,
with a lower entropy corresponding to less uncertainty of which
action will be selected next.
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FIG. 6. Learning curves for the nontrivial single-flip policies π2,
π3, and π4 [with πx = πx (t )] showing the expected acceptance rate
〈α〉 and normalized effective degrees of freedom d as a function of
optimization iterations. The quantities displayed are averages over
sweeps of N optimization iterations. Each case was initialized with
a random configuration and θ = 0.

subset of more relevant degrees of freedom, with π4 focusing
more than π3, and π3 more than π2. Concurrently, this leads
to a bias towards sampling physically relevant states, which in
turn makes a more refined tuning of the parameters possible.
The overall effect is to increase the acceptance rate and
decrease the effective number of degrees of freedom, with
the additional benefit of improving the equilibration of the
system. As expected, π2 is not able to learn anything from the
B = 0, nonsymmetry broken cases. The increase in number of
parameters from π2 and π3 to π4 means that the convergence
typically (but not always) is slower for the latter: The number
of iterations required increases because finding a convergent
point in a higher-dimensional parameter space requires more
information. On the other hand, an improved knowledge
about the dynamics may also help with a quicker relaxation of
the system, somewhat countering, and in the case of (K,B ) =
(0.5, 1), exceeding, this effect. The peculiar nonmonotonic
behavior of 〈α〉∼π4 for (K,B ) = (−4, 2.5) most likely relates
to the challenging state space in this regime: At this point
in (K,B ) space, the model is close to the kagome spin ice
ground macrostate. The remaining energy above the ground
macrostate is associated with localized monopoles and can
only be released by their mutual annihilation. Hence, while

FIG. 7. Snapshots of configurations (top) and the corresponding
relative probability weights for selecting the spin to flip in the next
iteration (bottom), according to policy π4. The state on the left
is sampled at criticality, while the state on the right is frustrated.
The policy, separately optimized to each parameter point, assigns a
larger weight to energetic structures like domain walls and monopole
excitations, and relatively more so in the case of the frustrated state
close to the ground macrostate. The connectivity lines of Fig. 3 and 5
have been omitted and only the values associated with the sites (the
small hexagons) are shown.

the monopoles diffuse around in search of an annihilation
partner, π4 is able to temporarily learn the “incorrect”
dynamics of these excitations, before the ground macrostate
is finally found and the parameters are adjusted accordingly.
On the other hand, π2 and π3 do not have the capacity
to model the physical macrostate properly, and therefore
converge to a less restricted subset of state space. The policies
ability to automatically learn to focus on important degrees of
freedom may also be visualized directly, as is done in Fig. 7.

After convergence, the learned policies are used in the
second stage of PGMC, the actual MCMC simulation. Their
relative performances are evaluated by comparing estimates
of 〈εO〉, obtained from Eqs. (4), (15), and (26). The cost
factors are set to be equal to the number of elementary actions,
i.e., single spin flips, involved in a PGMC step, which in
these cases equals one. The results are summarized in Fig. 8,
where the measured acceptance rates are also plotted. The
trends of the training results repeat here: The performance
typically increases, sometimes significantly, by going from π1

to π4, with the notable and expected exception of π2 when
B = 0. Sampling at (K,B ) = (−4,−2.5) is by far the most
challenging task, for which all the single-flip policies, except
maybe π4, fail. Tracking the performance at this parameter
point will therefore be of great interest later on. The seemingly
low yield at the critical point is a consequence of measuring
the performance using the observable of Eq. (26), which does
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FIG. 8. PGMC sampling performance of Eq. (18) for the pa-
rameters listed in Table I and all policies investigated in this work,
after being optimized. The top plot shows the estimated performance
factor (4) calculated from Eq. (26) and (15) and the cost factor u(c),
which is equal to the number of elementary actions used in construct-
ing c. The performance factor has been scaled by the number of sites
N to make the timescale correspond to a Monte Carlo sweep. The
bottom plot shows the acceptance rate. The horizontal lines indicate
the optimal performance, i.e., what the results would have been had
the configurations been drawn directly following Eq. (18) instead of
being generated by Markov chains. The background shading indicate
classes of policies sharing a similar structure. Results obtained at the
same (K, B ) point share a common color and symbol style, with lines
as guides to the eye. Results in unfrustrated parameter regimes are
shown with closed symbols, while the frustrated ones are shown with
open symbols. In some cases, for π1–π3, π5, and π7, finding 〈εO〉 for
(K,B ) = (−4, 2.5) was too slow or unreliable, so these points have
been omitted. Error bars indicate sample standard deviation. See the
main text and the Appendix for discussion and further details.

not take the global Z2 symmetry into account; the autocor-
relation length is therefore determined by the long timescale
of reversing the global polarization. Another interesting man-
ifestation of the focusing ability of the (nontrivial) policies
appears at the ferromagnetic and polarized (K,B ) = (0.5, 1).
As N〈εO〉 > 1 in this case, the PGMC simulations are able
to outperform a hypothetical perfect sampling of drawing
directly from the desired probability distribution. The reason
is straightforward: As the physically relevant states are close

to being completely polarized, the effective number of degrees
of freedom is significantly lower than the actual number of
degrees of freedom N . Most spins are left untouched during
an update, which corresponds to “updating” them “for free.”
On the contrary, constructing a configuration from scratch,
however efficiently it is done, comes at a cost proportional
to the actual number of degrees of freedom. At some point,
the former starts outperforming the latter.

For several of the parameter choices, especially when using
π4, the PGMC simulations have close to 100% acceptance
rates, i.e., they are almost rejection free. This means that the
policies are able to capture almost the entire Markov chain dy-
namics, similar to what is achieved by algorithms hand crafted
to do so (see, for example, Refs. [32–34]). This does not mean
that these policies are optimal, in the sense of maximizing
〈εO〉, but rather that the updates proposed by them, however
correlated, closely follow the desired probability distribution
of Eq. (18).

C. Chain policies

So far, we have encountered just a small fraction of the vast
space of possible policies. The single-flip policies π1–π4 only
(at most) take information about nearest-neighbor spins into
account. This is not always sufficient for a satisfying PGMC
sampling, as is exemplified by the challenging parameter point
of (K,B ) = (−4, 2.5).

There are several possible directions to explore in a quest
for improving this. One would be to increase the amount of in-
formation available for each action selection by taking further
neighbors into account. It is easy to imagine that this could
help a policy in guiding the Markov chain more precisely
and hence improve the sampling performance. However, as a
single-spin-flip policy can only change a configuration by one
spin flip at a time, such an approach (alone) would still strug-
gle with state space probability barriers of several spin flips.

A more radical way is to enlarge the action space by
allowing for more spin flips between the Metropolis accep-
tance steps. In other words, let an action consist of several
elementary actions instead of just one. Doing so increases the
entropy associated with selecting an action, making longer
jumps in state space possible and freezing of the Markov chain
less likely.

We will pursue the latter approach here, by what we
call chain policies. A chain policy consists of a number of
elementary policies, each successively selecting and applying
an elementary action to the most recent (transit) state, as
illustrated in Fig. 9. For example, a chain policy π of the two
elementary policies πI and πII is given by

π (s → s ′) = πI(s → s ′′)πII(s
′′ → s ′), (29)

where the action a : s �→ s ′ is composed of the two ele-
mentary actions aI : s �→ s ′′ and aII : s ′′ �→ s ′, i.e., a = aIIaI.
Using π , the probability weight of the transit state s ′′ will not
be subject to the Metropolis acceptance step (3), opening up
the possibility of tunneling probability barriers. The state s ′′
is still needed in calculating the policy of the inverse pro-
cess, which simply reads π (s ′ → s) = πI(s ′ → s ′′)πII(s ′′ →
s). Note that the elementary policy of going from one (transit)
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FIG. 9. Example of a three-state trajectory of a chain policy of
length 4. Each action, a12 : s1 �→ s2 and a23 : s2 �→ s3, consists of
four elementary actions. The Metropolis acceptance step is only
concerned with the states before and after the actions have been
completed (circles with white fill), making room for temporary visits
of transit states (open circles) with lower probability weights.

state to the next does not need to be the same for the inverse
action [compare πI(s → s ′′) with πII(s ′′ → s)].

Now, if a chain policy is to be constructed based on the
single-flip policies of the preceding section, the Markov chain
will no longer be ergodic: In the above example of a chain
policy of length 2, there is no way in which a configuration
with an odd number of spins pointing up can be reached from
a configuration with an even number of spins pointing up, a
consequence of the binary nature of the spins.13 Therefore, to
ensure ergodicity, we are forced to extend the action space of
the single-flip policies with a do-nothing action

a∅ : s �→ s, a−1
∅

= a∅ (30)

and assign an additional preference weight of θ∅ for selecting
this.14

The increased complexity of the action space makes the
policy training more complicated as well. The actions may
now result in a net nflips(s → s ′) ∈ {0, . . . , n} spin flips when
updating s → s ′ with a length n chain policy. (In this regard,
a bounce process, aσ followed by a−1

σ , constitutes zero spin
flips if it happens within an update, since a−1

σ aσ = a∅.) For
simplicity, we model the performance factor for the chain
policies as

ε̃O (s → s ′) = nflips(s → s ′). (31)

This should, to leading order, be proportional to the true
value for policy chains of moderate lengths, again assuming
that the elementary policies all have similar cost factors.
Since Eq. (31) is not constant, Eq. (27) can no longer be
used. Instead, a minimum of three states st−2 → st−1 → st

has to be memorized such that two subtrajectories of length
2, c1 = (st−2 → st−1) and c2 = (st−1 → st ), can be used
in approximating 〈εO〉. This is necessary if Eq. (8) is to be

13Flipping two spins leads to an overall change of ±1 ± 1 = 0, ±2
in the number of spins pointing up. Adding an even number to an
even (odd) number is an even (odd) number.

14Alternatively, we can extend the elementary action space to
encompass both single spin flips and multiple spin flips. Such a
solution is however significantly more complicated than extending it
with a do-nothing action. That said, the main point is that the policy
has to be made ergodic. Should the degrees of freedom of a model
to be simulated be of a different character, e.g., continuous instead
of binary, the elementary policies may not need to be amended when
used in a chain policy.

calculated without the performance factors in the denominator
and numerator canceling.15

We first test the following two chain policies of length 2:
π5, with an elementary preference like h3 [Eq. (23)], with the
addition of a∅ to the elementary action space, which increases
the number of independent parameters to 2, and π6, with an
elementary preference like h4 [Eq. (24)], with the addition
of a∅ to the elementary action space, which increases the
number of independent parameters to 10. For simplicity, we
have kept the elementary policies of these chain policies equal
(i.e., πI = πII).

The performance of PGMC sampling with π5 and π6,
after training, is also shown in Fig. 8. Some trends are
clear: The inclusion of a∅ in the action space means that
the Markov chain dynamics may now follow the probabil-
ity distributions of Eq. (18) much closer in all parameter
regimes, as the Metropolis rejections are modeled as well.
This leads to a very high acceptance rate, especially for π6,
which has the most flexible elementary policy. Were we to
simulate a model that is expensive to evaluate, this feature
may be of significance in itself: It is redundant to calculate
the probability weight in the Metropolis acceptance step if it
is known, in advance, that the state will not change. In the
current case, however, such a saving is negligible. For the
field-free parameter points (K,B ) = (Kc, 0) and (K,B ) =
(−4, 0), the performance factor estimates do not change much
as compared to the results of the corresponding single-flip
policies; from the perspective of the Markov chain dynamics,
there is little difference in taking one or two elementary action
steps at a time. If anything, there seems to be a disadvantage
for π5 at the critical point, as the imperfect tracking of the
desired probability distribution by the elementary policy is
enhanced when not corrected until after two iterations. The
situation is more interesting with stronger fields. There is
an additional energy cost of 2B associated with flipping a
single spin, i.e., there is a probability barrier of exciting a spin
against a nonzero field. The reverse operation cannot always
counter this, as the gain of −2B may be more than necessary
for Metropolis acceptance. However, by combining two flips,
one of a spin parallel and one of a spin antiparallel to the field,
the overall energy change associated with the field cancels;
the barrier has been tunneled, or at least lowered. This effect
is readily seen for π6, with an improvement over π4 for both
(K,B ) = (0.5, 1) and (K,B ) = (−4, 2.5). Similar gains are
expected for π5 over π3 as well, but as mentioned above, the
benefit seems to be outweighed by the cost of insufficient
tracking of the probability distribution.

It is tempting to repeat the exercises of π5 and π6 with
the chain policies π7 and π8 of lengths 6, composed from
the same elementary policies, respectively. The motivation
for the extended length is to make direct tunneling between
kagome ice ground states possible (Sec. IV A). In order to
promote such processes, we skew the training performance
factor estimate from Eq. (31) to

ε̃O (s → s ′) = max[0, nflips(s → s ′) − 2], (32)

15In the case ε̃O (c1) = ε̃O (c2) = 0, Eq. (8) can, for instance, be set
to zero. This is what has been done in this work.
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FIG. 10. Frequency of updates leading to nflips(s → s ′) ∈
{0, . . . , 6} net spin flips in a PGMC sampling of Eq. (18) at (K,B ) =
(−4, 2.5) with policy π8. Most updates involve no change, either
because the proposed action effectively is a∅ or because the proposed
update was rejected. The error bars, indicating the sampled standard
deviation, are smaller than the symbol size. See the Appendix for
technical details.

hence ignoring training samples that involve two or fewer spin
flips.

Figure 8 shows that π7 and π8 continue the trends of π5

and π6: When the elementary policy is able to follow the
probability distribution given by the model (18), the perfor-
mance is similar or improved, while if not, the consequence
is more severe. Observe that π7 and π8 are the only policies
presented so far that have the potential to properly sample
the true kagome spin ice ground macrostate K → −∞ and
B �= 0, regardless of available computer power.

D. Stochastic chain policies

Figure 10 reveals what can also be deduced from Fig. 8:
At (K,B ) = (−4, 2.5), most PGMC iterations guided by π8

do not lead to a change in configuration. Furthermore, most
of the spin flips that do take place are basically spent undoing
previous flips. Overall, the Markov chain diffusion through
state space is computationally inefficient and very slow.

Loop and worm algorithms [35–40], hand crafted for tak-
ing advantage of the stringy structure of the ground states
of many frustrated models, like Eq. (18) with K � 0, will
typically perform much better than the policies used so far.
This raises the question of whether it is possible to construct a
policy model that can mimic such an algorithm. The answer is
affirmative, as can be demonstrated with the following worm
policy scheme.16

(1) Initially, select and flip a random spin at site i1 accord-
ing to the single-flip policy πstart, a1 = aσi1

. (This time it is not
necessary to include a∅ in the elementary action space.) Mark
the site as the head of the worm.

16Only one out of several possible worm policies is given; others
may be constructed by permuting the order in which the movement,
flip, and termination actions are selected. Note also that the worm
policy operates in the ordinary spin space, as opposed to the dual
space representation used in, e.g., Ref. [40].

FIG. 11. Worm action aw = a∅an · · · a1 : s �→ s ′ (solid arrows)
and its inverse a−1

w = a∅a−1
1 · · · a−1

n : s ′ �→ s (dashed arrows).

(2) For t = 2, 3, . . ., until the worm construction is termi-
nated after n spin flips, according to elementary policy πmove,
either pick a nearest-neighbor site j of the head it−1, flip σj

(at = aσj
), move the head it ← j , and repeat the step with

t ← t + 1, or terminate the worm construction (at = an+1 =
a∅).

(3) The complete worm construction s = s1 → aws ≡
a∅an · · · a1s1 = sn+1 = s ′ can then be seen as the action cho-
sen by the worm policy

πworm(s → s ′) = πstart(s1 → s2)
n∏

t=2

πmove(st → st+1)

× πmove(sn+1 → sn+1), (33)

where st+1 = at st .
Observe that the inverse action a−1

w will not follow the
exact same chain of elementary actions as aw (in reverse),
since, in order for the worm policy to be reversible, a−1

w =
a∅a−1

1 · · · a−1
n �= a−1

1 · · · a−1
n a∅ (see Fig. 11).

The worm policy is an example of a chain policy of
stochastic length, or stochastic chain policy. In a stochastic
chain policy, a good distribution of lengths will be (indi-
rectly) machine learned, instead of fixed a priori by a hyper-
parameter.

The training of the stochastic chain policy proceeds in very
much the same fashion as before, but now with the training
performance factor estimate (32) normalized by the length of
the worm n. It is important to incorporate such a normalization
to reflect the cost of creating a longer worm and prevent the
average worm length from diverging.

We test the above-sketched worm policy in the form of π9,
for which πstart = π4 and πmove is given by the same prefer-
ence (24) (with a different set of parameters θ) but with the
action space Aσ ,i = a∅ ∪ {aσj

| j nearest neighbor(s) of i},
where i is the current position of the head. In total, there are
9 + 10 = 19 independent parameters to be determined.

Figure 8 reveals π9’s success in simulating the kagome ice
regime, with close to perfect sampling at (K,B ) = (−4, 0.5)
and (K,B ) = (−4, 2.5), orders of magnitude better than what
is achieved by π1–π8. In the other parameter regimes, where
the important states are of another, less stringy character, the
worm policy does not offer any advantages.

The universality and great flexibility of the PGMC frame-
work makes it easy to explore more sophisticated policy
models. For example, it is only a matter of imposing a few re-
strictions on the action space of the worm policy to essentially
mimic (and extend) the highly specialized directed worm
algorithms [41,42] within PGMC. The idea is to suppress
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or prevent the worm from backtracking itself, letting fewer
elementary actions be wasted on reversing what has been
done. In Refs. [41,42] this is achieved by carefully solving a
set of coupled equations. Here we simply remove the actions
associated with the m sites last visited by the worm head
(including the current one) from the elementary action space.
For instance, if m = 2, both the spin at the current position
of the head it and the spin at the previously visited site (if it
exists) it−1 are excluded from possibly being flipped back in
the next step: Aσ ,it ← Aσ ,it \ {a−1

σit
, a−1

σit−1
}.

It should be stressed that including a time dependence or
memory restricted to within an action is perfectly valid in an
MCMC simulation; the elementary policies do not need to be
Markovian, as long as the entire chain policy is.17

We test two worm policies with memory:18π10, which is
like π9 but with memory m = 2, hence with immediate back-
tracking blocked, and π11, which is like π9 but with memory
m = 3. Now no more than three consecutive spin flips may
happen within an elementary triangle of the kagome lattice.
(By construction, π9 has m = 1.) Here π10 and π11 do not re-
sult in any significant change from the already excellent sam-
pling in the kagome ice regime by π9, but the performances in
the other parameter regimes are improved (see Fig. 8).

Now, in light of the criticism of hand-crafted effective
models within EMMC (Sec. I), it is not unreasonable to be
equally reluctant towards hand-crafted policies, like the worm
policies just presented. The physics of Eq. (18) is well known,
making targeted policy modeling possible, but what if it was
not? The final policy model to be presented attempts to tackle
this issue.

With the success of the worm policies in mind, the idea is
rather straightforward: Remove the special worm constraint,
but keep the much more general memory constraint. In other
words, let the policy be a stochastic chain policy with an
elementary action space

As,t = As \ {
a−1

t−δ | δ ∈ {1, . . . , m}}, at�0 = ∅ (34)

where As is the space of all possible elementary actions
and a1, a2, . . . are the elementary actions taken so far. The
constraint on immediately reversing elementary actions forces
the policy to explore state space, instead of falling into the
computationally wasteful local minima (attractive fix points)
of bouncing. We call such a policy a short-term self-avoiding
policy with memory m.

To demonstrate the short-term self-avoiding idea, we sim-
ply replace the πmove elementary policy of the worm algo-
rithms π9–π11 with a πSA self-avoiding elementary policy.
The spin-flip preference of πSA is given by h4 [Eq. (24)] and
instead of using just a constant preference for terminating

17This is not unique to the stochastic chain policies presented in
this work. All traditional cluster algorithms are basically based on
this fact. After all, they may themselves be cast as stochastic chain
policies within the PGMC framework.

18These are the only two worm policies with memory, apart from
m = 1, that make sense in the kagome lattice simulations. Longer
memories either do not add extra benefits or run the risk of trapping
the worm head in a position it cannot escape.

FIG. 12. Snapshots of configurations and most recent actions
leading to them, at the critical point (left) and in the kagome spin
ice regime (right). In the top panels, the actions have been selected
by the worm policy π9, while in the bottom panels, they have
been selected by the short-term self-avoiding policy π14. Stronger
intensity indicates that the same spin has been flipped (and flipped
back) multiple times within the last action, while the weakly colored
background spins have not been flipped at all. Note that while the
elementary actions of the worm policy, by construction, form a single
connected set, the actions of the short-term self-avoiding policy have
no such restrictions imposed. This makes the latter more flexible in
adjusting to other parameter regimes, where string or loop updates
may no longer be optimal.

the update, we choose to use a slightly more involved (and
flexible) stopping preference

hstop(a∅|σ ) = ln

[
N∑

i=1

exp
(
θ stop
qi

)]
(35)

parametrized by θ stop. As for h4, the local feature map qi

is also given by Eq. (25). In total, there are 29 independent
parameters.

Four such short-term self-avoiding policies are tested: π12,
with memory m = 1; π13, with memory m = 3; π14, with
memory m = 6; and π15, with memory m = 10. As can be
seen in Fig. 8, avoiding backtracking actions is indeed the
crucial ingredient in improving the Markov chain dynamics,
with π12–π15 performing better than any of the other nonspe-
cialized policies in the deep spin ice regime. The short-term
self-avoiding policies may not be quite as efficient as the
worm policies here, but crucially their aptness come from
machine learning, rather than a hard coded design.

Figure 12 compares updates generated by the worm pol-
icy π9 and the short-term self-avoiding policy π14 in the
critical and frustrated regimes. In the latter, both construct
efficient nonlocal loop updates. In the critical regime, how-
ever, the worm policy is no longer particularly advantageous;
the stringy worm updates do not cope well with the fractal
nature of the critical configurations, resulting in inefficient
updates containing multiple bounce processes. The short-term
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self-avoiding policy, on the other hand, does not suffer from
the restricted action space of the worm policy and may there-
fore to a greater degree adjust to the physics experienced.

It is not unreasonable to speculate that a policy model
even more flexible than π14 could rediscover a cluster algo-
rithm [43,44] at criticality, as the cluster algorithms may them-
selves be regarded as stochastic chain policies with memory. If
so, a single policy model would be sufficient to competitively
simulate Eq. (18) in the entire (K,B ) space.

The last to be examined in this work, the short-term self-
avoiding policy model certainly does not represent the end of
the story. The need for selecting the right memory, i.e., too
short and the benefits of self-avoidance are not maximized,
too long and the policy is no longer able to adequately track
the desired probability distribution, again means tedious and
inefficient hyperparameter tuning. It is not hard to envision
better and more flexible policies that deal with such issues
and more; after all, the stochastic chain policies with memory
presented constitute only a few members of a broader class
of policies with history-dependent elementary policies. In
principle, such a history dependence can also be modeled by
a differentiable structure and subsequently machine learned.
The practicalities, however, are left for future work.

E. PGMC for other systems

While ideas like the chain and self-avoiding policies do not
depend on the specifics of the probability weight model in
question, other aspects of the preceding examples do. Specif-
ically, the (elementary) policy models of the kagome Ising
model all exploit the translational invariance of Eq. (18) and
the binary nature of the Ising spins, both nonuniversal case-
dependent traits. Even though the PGMC idea is generally
applicable, specific policies may not be.

Clearly, if symmetries like translational invariance are not
present in the system of interest, this should be reflected in
the policy model. Not only is this likely to render the training
stage more expensive (there is less information reuse when
symmetries are not imposed), a feature map approach, such as
the one employed in this work, may no longer be computation-
ally efficient or feasible. Then other action selection strategies
may be necessary, like those briefly mentioned in Sec. III B
(see also the Appendix).

Furthermore, if the degrees of freedom are not binary, it is
no longer sufficient to let the elementary actions be of the form
of flips, i.e., to change the value of some degree of freedom i

to its other value. In cases where a degree of freedom still
constitutes a finite discrete set χ (e.g., χ = Zn with n > 2) it
may be possible to construct (chain) actions of the following
form: select a degree of freedom i and change it from σi to
σ ′

i , σi, σ
′
i ∈ χi . Assigning individual weights to all elements

of the (local) action space is however viable only up to some
point. Beyond this, for cases where the number of elements
in χ is too large or even infinite (i.e., for continuous degrees
of freedom, like χ = R, χ = O(2), etc.) some degree of
probability weight or density interpolation has to take place.

As an example, in the case of a classical XY model [χ =
O(2)], each degree of freedom can be parametrized by a
continuous angle φ ∈ [0, 2π ). A possible policy for updating
a single degree of freedom may then read as follows.

(1) Select a site i with probability π (i|s).
(2) Then select a sector χk ≡ [ 2πk

n
, 2π (k+1)

n
), k ∈ {0, 1, . . . ,

n − 1}, with probability π (χk | neighborhood of i).
(3) Finally, select a new angle φ′

i ∈ χk by sampling a
uniform random number R ∈ [0, 1) and then calculate φ′

i =
2π (k+R)

n
.

The two first steps can then be modeled (parametrized
by θ ) and learned in a way similar to what was done for
the kagome Ising model of the previous sections.19 Since
the infinitesimal probability weight of step 3 is constant and
independent of state, its value is not of importance when
calculating Eq. (8).

Interestingly, systems of continuous degrees of freedom
may possess additional geometric information not available in
the discrete systems. Thus, for systems of continuous degrees
of freedom, one may contemplate policies where not only
the state, but also properties like the state space gradient of
the probability weight (or even a machine-learned effective
model) is taken into account. Such a scheme could then be
considered a PGMC equivalent to the Metropolis-adjusted
Langevin algorithms (MALAs) [45–47].

V. DISCUSSION

After having seen some of PGMC’s potential in the case
studies of the preceding section, we now turn back to the more
general perspective. The aim of the following brief discussion
is to put PGMC somewhat in context with respect to MCMC
in general and EMMC in particular. We also mention a few
challenges and possible pitfalls concerning PGMC.

A. Machine-learning MCMC

Common to all traditional Monte Carlo algorithms is the
trade-off between the inclusion of a priori knowledge and
stochasticity, specialization, and generality: A very general,
hence also “oblivious,” Monte Carlo algorithm, which is
applicable to many problems, will typically perform poorer
than a specialized but limited algorithm that exploits many
aspects of the problem at hand. Intriguingly, MCMC methods
incorporating machine learning, like EMMC and PGMC, have
the potential to bridge this gap: By letting the algorithms au-
tomatically learn from and adjust to the sampled distribution,
these methods may, in a sense, be both general and specialized
at the same time: general in usability and specialized in
computation.

The value of such a property should not be understated.
Even if algorithms hard coded by domain experts may sur-
pass the performance of machine-learned algorithms in some
cases, the usefulness of having general, flexible, and still
reasonably well performing tools is significant in many real-
world scenarios.

Looking further, there is nothing intrinsic that prevents the
machine-learning methods from surpassing what is already
known. In fact, for anything beyond the simplest and most

19There are obviously infinitely many alternative (and probably
better) policy models in this particular case. Determining a good one
is outside the scope of this work.
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well understood models, machine-learning methods are likely
to be a practical necessity if one wishes to reap the benefits of
specialization.

B. EMMC and PGMC

The main difference between the EMMC and PGMC meth-
ods lies in their computational perspectives: While EMMC
is static, exchanging one model (the original one) for an-
other (the effective), PGMC is dynamic, attempting to model
the Markov chain dynamics directly. Whereas the effective
models of EMMC are constructed by imitating the training
data, the policy search of PGMC aims at surpassing what is
currently known. The autocorrelation, a central trait of the
final MCMC sampling, is specifically taken into account in
the PGMC policy optimization, while it is disregarded in
EMMC’s effective model training.

The PGMC scheme offers other advantages in the opti-
mization stage, both conceptually and practically: The goal
is clearly and quantitatively stated (maximize the expected
performance factor), regardless of implementation details.
This provides an explicit path forward, leading directly to
efficient real-world algorithms, as seen in Sec. IV. Efficient
bootstrapping techniques, like on-policy learning, is a natural
consequence of the dynamical perspective.

The global view that readily comes with the policies is
another asset of PGMC: Computational resources can easily
be directed towards the most important or relevant degrees of
freedom of a state. Exemplified in Fig. 7, even a relatively
simple policy may target structures like domain walls or par-
ticlelike excitations, while spending less time on fluctuations
of minor importance. Thus, a PGMC simulation can easily
approach a performance that would otherwise require more
specialized and involved rejection-free MCMC schemes.

The situation is less clear for EMMC. Even with an effec-
tive model in place, there is still a need to find or design good
updates, with no definite guidelines to follow. The effective
model updates used are therefore prone to be either generic
and relatively poor or specialized and of limited applicability.

C. Pitfalls and challenges

In machine-learned MCMC, as in reinforcement learning,
there is danger in trading stochastically sampled training data
for increased simulation speed: If the available information
is inadequate or wrong, the effective models or policies,
and hence the final sampling, may be bad. In PGMC, extra
care has to be taken when the policy training is conducted
online, on policy. The reason is that the optimization may,
in some situations, enter a feedback loop where the policy,
with an increasingly strong bias, selects update proposals
among only a subset of relevant states. The exploration of the
state space stops and, for all practical purposes, ergodicity is
broken. Taking the worm PGMC of Sec. IV D as an example,
if the policy training was not properly controlled, it could
happen that the learned policy would end up staying entirely
within the kagome spin ice manifold. The correct sampling at
(K,B ) = (−4, 2.5) should contain a low density of excited
states. Nevertheless, these excitations may not always have
been encountered sufficiently often during a crucial period of

the training, leading the policy into a spiral of suboptimization
where excited states were not proposed because excited states
were not proposed.

Such problems, although mostly absent from the simple
test cases of Sec. IV, are likely to happen more if policy model
complexity, hence also (overfitting) capacity, is increased. A
possible solution, similar to what is done within reinforcement
learning [15], could be to move away from strict on-policy-
based learning by including some stochastic noise in the
behavior policy. For example, a uniformly random action
could be selected with some low frequency, sacrificing a little
bootstrapping performance for a persistent exploration of the
state space.

Another set of issues may arise with the training of intricate
policies, e.g., chain policies with long actions. First, a larger
policy model requires more information and is typically more
demanding to train. Second, the longer actions take longer to
construct, hence the frequency of generating training samples
is reduced. Furthermore, the longer delay between selecting
elementary actions and evaluating the total action means that
the propagation of information back through the chain will be
less efficient and more noisy, as the effect of later actions may
strongly depend on earlier ones. Overall, the positive aspects
of having more complex, globally updating policies are also
the ones that make it harder to train them. As such, the issues
cannot easily be circumvented. Fortunately, however, many
of these sides of policy training are well known and tackled
within the reinforcement learning community, with solutions
ripe for being incorporated into PGMC: It could, for instance,
be fruitful to use information acquired during the updates to
build value or action-value function models, either to support
the policy model training or as an alternative to the policy
models discussed in this work [15].

Finally, the stability and convergence speed of the training
stage can likely be improved by storing and reusing more of
previously obtained data in an offline, off-policy approach
(experience replay), as demonstrated in Ref. [48]. With a
slight modification, such a method could also benefit from
simulation data obtained with slightly different models (e.g.,
the model of interest, but at a different temperature), analo-
gous to what is achieved with reweighting techniques [49,50].

VI. CONCLUSION

In this paper, we have seen how reinforcement learn-
ing and Markov chain Monte Carlo simulations may be
combined in a general, unbiased, and powerful framework:
policy-guided Monte Carlo. The basic theory of PGMC has
been developed and subsequently scrutinized, with the aim
of advancing PGMC as a practical tool for both improving
and expanding the scope of MCMC sampling, as well as
automatizing the process of developing alternative, efficient
MCMC algorithms. Examples of increasing sophistication,
centered around a simple but challenging Ising model on the
kagome lattice, underlined the effort and showed how PGMC
may be done in practice. We also discussed PGMC’s relation
to other MCMC algorithms and where care has to be taken.

The gains of PGMC may span the entire spectrum, from
modest speedups in handling known problems to novel
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samplers tackling new ones. We therefore expect PGMC to
be widely beneficial in the realm of MCMC simulations.
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FIG. 13. (a) Inverse transform and (b) weighted binary tree se-
lection of an action based on some policy π . Each box represents
some action a, with the height being given by π (a). In (a), the action
space is sorted into feature categories. A category is chosen (colored)
according to the total marginal probability of the category by drawing
a uniform random number R1. Next, a specific action is selected
uniformly at random among the members of the category by random
number R2. The total number of operations is constant with respect
to the size of the action space NA. In (b), the probability (weights)
are arranged in a binary tree structure, with the weight of each parent
node being the sum of its children nodes. An action is selected by
traversing the tree from root to leaf, each time selecting the left or
the right child at random, proportionally to their relative weights.
This scheme comes at the (mild) expense of an O(log NA) scaling
in the number of operations needed. The advantage is that it can be
efficiently used even when the number of possible categories is large
or even infinite. Naturally, when an action has been applied to a state,
both the category groupings in (a) and the weights of the tree in (b)
will have to be updated. In cases with short-range feature maps (i.e.,
when the features only depend on a finite neighborhood of the degree
of freedom being updated by the action) this can also be done with
O(1) and O(log NA) numbers of operations, respectively.

APPENDIX: SIMULATION DETAILS

1. Implementation

All implementations were done in the JULIA [51] program-
ming language with the help of the FLUX machine learning
library [52] and its implementation of the ADAM stochastic
gradient descent algorithm [53].

Actions were efficiently chosen by first picking a feature
category using inverse transform sampling and then selecting
among the equally weighted members of the category. An
alternative approach of using a weighted binary tree was also
successfully tested, although not used in the test simulations
presented here. Both methods are illustrated in Fig. 13. Nat-
urally, the complete information about the actions had to be
temporarily stored, both for calculating the policy value of the
inverse action and for being able reconstruct the previous state
in case of rejection.

2. Simulation parameters used

In all the displayed simulation results, the system size
was set to L = 10 and the spins were initialized at random.
The policy parameters were set to θ = 0 before training. The

TABLE II. Simulation parameters used in each of the 16 inde-
pendent simulation series behind each data point presented in Fig. 8.
A thinning factor of x means that only one out of every x MCMC
iteration steps is sampled. (The timescale is still set by a single
iteration.)

Training Equilibration Thinning
(K, B ) Policies iterations iterations factor Samples

(Kc, 0) π1 5000N 50N 5000
π2–π4 100N 100N 50N 5000
π5–π7 100N 100N 10N 10000

π8 200N 100N 10N 10000
π9–π11 500N 1000 100 5000
π12–π15 100N 1000 100 5000

(0.5,1) π1 500N 1N 5000
π2–π4 100N 100N 15 5000
π5–π7 100N 100N 1 50000

π8 200N 100N 1 50000
π9–π11 100N 1000 1 10000
π12–π15 100N 1000 1 10000

(−4, 0) π1 100N 1N 2000
π2–π4 100N 100N 100 5000
π5–π7 100N 100N 20 5000

π8 200N 100N 20 5000
π9–π11 200N 1000 5 10000
π12–π15 200N 1000 1 10000

(−4, 0.5) π1 2000N 50N 2000
π2–π4 100N 1000N 2N 10000
π5–π7 100N 1000N N 5000

π8 200N 1000N N 5000
π9–π11 300N 1000 5 10000
π12–π15 200N 1000 5 10000

(−4, 2.5) π1 5000N 50N 2000
π2–π4 100N 2000N 500N 1000
π5–π7 100N 2000N 10N 5000

π8 200N 2000N 10N 5000
π9–π11 300N 1000 1 10000
π12–π15 200N 1000 1 10000
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other simulation parameters were chosen as to obtain reli-
able results, e.g., clear convergence and more-than-sufficient
equilibration. Figure 8 and 10 show averages and standard
deviations based on 16 completely independent simulation

runs. The simulation parameters of Fig. 8 are listed in Table II.
In Fig. 10, a simulation run consisted of 200N training
iterations, 1000N equilibration iterations, and 107 samples
(without thinning).
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