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We consider a class of systems where N identical particles with positions q1, . . . , qN and momenta p1, . . . , pN

are enclosed in a box of size L and exhibit the scaling U (Lr1, . . . , LrN ) = α(L)U (r1, . . . , rN ) for the associated
potential energy function U (q1, . . . , qN ). For these systems, we propose an efficient implementation of the
Wang-Landau algorithm for evaluating thermodynamic observables involving energy and volume fluctuations
in the microcanonical description and temperature and volume fluctuations in the canonical description. This
requires performing the Wang-Landau simulation in a scaled box of unit size and evaluating the density of states
corresponding to the potential energy part only. To demonstrate the efficacy of our approach as example systems,
we consider Padmanabhan’s binary star model and an ideal gas trapped in a harmonic potential within the box.
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I. INTRODUCTION

The Wang-Landau algorithm is a powerful Monte Carlo
technique that gives direct access to the density of states of
statistical models of interest [1,2]. It is based on performing a
random walk in the energy space and obtaining the density of
states, up to a multiplicative constant, in an iterative manner.
The Wang-Landau algorithm was originally used to study
systems exhibiting discrete energy levels. Owing to several
refinements and improvements [3–28], it has been gradually
implemented to study complicated systems with continuous
energy spectra as well. Examples include complex fluids
[3–5], atomic clusters [6,7], liquid crystals [8], biomolecules
[9–11], polymers [12–15], logarithmic gas in the context of
random matrix theory [29], etc.

Usually one obtains the density of states as a function
of energy alone by keeping the number of particles and
the volume of the system fixed. Consequently, the thermo-
dynamic observables that depend on particle number and
volume fluctuations cannot be evaluated. In Refs. [3,4] the
authors proposed an off-lattice generalization of the original
scheme that enables one to obtain the density of states as
a function of energy, number of particles, and volume. This
requires performing the Wang-Landau simulation in a three-
dimensional space. Subsequently, the extensions to this have
also been considered, see, for example, Refs. [18,23]. These
generalizations, however, come at the expense of increased
computational power and time.

In the present paper, we consider a system comprising a
fixed number of particles enclosed inside a box of arbitrary
volume. Within the box, the system exhibits a certain scaling
behavior for its potential energy function. We show how the
Wang-Landau algorithm can be used for this system to calcu-
late thermodynamic observables involving energy and volume
fluctuations in the microcanonical ensemble and temperature
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and volume fluctuations in the canonical ensemble. Interest-
ingly, this involves performing the Wang-Landau simulation
in a one-dimensional space only and obtaining the density
of states for potential energy for the case of a scaled box
of unit size. To demonstrate the efficacy of our approach,
as example systems, we consider Padmanabhan’s binary star
model [30] and a noninteracting gas trapped in a harmonic
potential within a container. The former exhibits peculiar
behavior, such as inequivalence of the statistical ensembles,
due to long-range interactions. The latter, being a system of
noninteracting particles, does not exhibit any peculiarities,
and the microcanonical and canonical descriptions agree.

The presentation scheme in this paper is as follows. In Sec.
II, we collect some standard results concerning the micro-
canonical and the canonical ensembles and the corresponding
thermodynamic observables. In Sec. III, we describe the scal-
ing behavior exhibited by the potential energy function, which
is essential for our approach to work. Moreover, based on this
scaling, we reexpress the results laid out in the preceding sec-
tion to forms suited for implementation of the Wang-Landau
simulation. Section IV deals with the two models described
above for validating our results. Finally, we conclude in Sec. V
with a brief summary of our proposed scheme and results.

II. STATISTICAL ENSEMBLES AND THERMODYNAMIC
OBSERVABLES

We consider a system of N identical particles of mass m

with positions qj and momenta pj , where j = 1, . . . , N . The
Hamiltonian for this system is given by

H(q1, . . . , qN ; p1, . . . , pN ) =
N∑

j=1

p2
j

2m
+ U (q1, . . . , qN ).

(1)
Here the first term on the right hand side is the kinetic energy
part, and the second term constitutes the potential energy.
Additionally, we constrain the position coordinates of the
particles by enclosing the system in a cubical box of edge
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length L or a spherical box of radius L. Effectively, this
amounts to introducing an infinite potential region outside the
box boundary and therefore adding another potential energy
term in the Hamiltonian above, which is zero inside the box
and infinity outside. For simplicity, we do not explicitly show
this term in the Hamiltonian.

The calculation of thermodynamic observables associated
with the system described by the Hamiltonian H requires
obtaining certain key quantities, such as entropy for the micro-
canonical ensemble and partition function for the canonical
ensemble [31,32]. In the evaluation of either of these, it is
possible to perform the integral over the momentum-space
variables analytically. Consequently, the analysis boils down
to the calculation of the density of states G(U,V ) for the
potential energy U ,

G(U,V ) =
∫

· · ·
∫ N∏

j=1

d3qj δ[U − U (q1, . . . , qN )]. (2)

Here δ(·) represents the Dirac δ function, and the integration
is over the volume V of the box. Since we are concerned with
fixed N , for simplicity of notation, we have suppressed its
appearance as an argument in G. We do the same for other
functions appearing below.

The Wang-Landau algorithm can be used to calculate
G(U,V ), albeit up to a multiplicative constant. This constant
is, however, inconsequential in calculating thermodynamic
quantities. In practice, numerical simulations aim to obtain the
logarithm of the density of states (up to an additive constant)
to prevent overflow in computation.

A. Microcanonical ensemble

In the microcanonical ensemble approach, the key quantity
is entropy of the system [31,32], given by

S(E,V ) = kB ln �(E,V ). (3)

Here, kB is the Boltzmann constant, h is Planck’s constant,
and �(E,V ) is the density of states, viz.,

�(E,V ) = 1

N !h3N

∫
· · ·

∫ N∏
j=1

d3pjd
3qj δ(E − H). (4)

It should be noted that, unlike G(U,V ) of Eq. (2), a direct
evaluation of �(E,V ) itself from algorithms, such as Wang-
Landau is impractical. This is because the random walk in
E space would require evaluations using the points from the
full phase space (positions as well as momenta). Moreover,
the momentum coordinates are unbounded. Therefore, typi-
cally, such simulation schemes are used for “conformational”
microcanonical ensembles which are defined solely using the
potential energy. For instance, classical spin systems where
the kinetic energy is usually not defined in the Hamiltonian.
However, here we are concerned with the “real” microcanon-
ical ensemble wherein the kinetic energy part is also consid-
ered [26,27].

The integration over the momentum variables can be per-
formed analytically in (4) and leads to

S(E,V ) = kB ln

(
(2πm)3N/2

N !�(3N/2)h3N

)
+ kB ln W (E,V ),

(5)

where, with �(·) being the Heaviside � function,

W (E,V ) =
∫

· · ·
∫ N∏

j=1

d3qj (E − U )3N/2−1�(E − U ),

=
∫

dU G(U,V )(E − U )3N/2−1�(E − U ). (6)

Within the microcanonical approach, the desired thermody-
namic quantities then follow through the standard relations.
For instance, temperature (T ) and pressure (P ) are obtained
using

1

T
=

(
∂S

∂E

)
V

,
P

T
=

(
∂S

∂V

)
E

. (7)

As discussed in the Introduction, in general, to calculate
quantities that involve number and volume fluctuations along
with energy fluctuations, we need to obtain G in its full
generality as a function of U, V , and N . In principle, the
Wang-Landau approach can be used to numerically obtain
the general density of states by performing a simulation in a
three-dimensional space [3,4]. However, its implementation is
often not possible for complex systems, and even if possible,
it is computationally very demanding. Typically, one performs
the simulation to explore the U space only by fixing V and N

and obtains the density of states g(U ) for the potential energy.
In such a situation, one can calculate the quantities which
involve energy fluctuations only, i.e., the ones that follow from
the partial derivative with respect to E, e.g., the temperature
T in Eq. (7).

B. Canonical ensemble

For the canonical ensemble, the central object is the parti-
tion function [31,32],

Z(T , V ) = 1

N !h3N

∫
· · ·

∫ N∏
j=1

d3pjd
3qj exp

(
− H

kBT

)
,

(8)
which can be interpreted as the Laplace transform of �(E,V )
from E to 1/(kBT ) space [32]. The momenta integrals can
again be performed using standard techniques, leading to

Z(T , V ) = (2πmkBT )3N/2

N !h3N

∫
· · ·

∫ N∏
j=1

d3qj exp

(
− U

kBT

)

= (2πmkBT )3N/2

N !h3N

∫
dU G(U,V ) exp

(
− U

kBT

)
≡ (2πmkBT )3N/2ZU (T , V ). (9)

We defined here ZU as the partition function corresponding to
the potential energy. The Helmholtz free energy, given by

F (T , V ) = −kBT ln Z(T , V ) (10)

leads to other thermodynamic quantities of interest. For in-
stance, the pressure and entropy are given, respectively, by

P = −
(

∂F

∂V

)
T

, S = −
(

∂F

∂T

)
V

. (11)

063301-2



EFFICIENT IMPLEMENTATION OF THE WANG-LANDAU … PHYSICAL REVIEW E 98, 063301 (2018)

The average energy is obtained using

E = kBT 2 ∂ ln Z

∂T
= 3

2
NkBT + kBT 2 ∂ ln ZU

∂T
, (12)

where the first term is the kinetic-energy contribution and
the second term gives the potential energy contribution. In
comparing the results from the microcanonical ensemble with
those of the canonical ensemble, we identify the constant
energy at which the former is defined with the mean energy
corresponding to the latter. Therefore, for simplicity of nota-
tion we use E for the average energy in a canonical ensemble
instead of a more appropriate notation of 〈E〉.

In a similar fashion to the microcanonical approach, to
obtain quantities that involve temperature, volume, and num-
ber fluctuations, we need G as function of U, V , and N .
However, in this case, calculation of quantities involving
partial derivatives with respect to T is straightforward, and for
these one needs to sample only the U space and obtain g(U ).

For the Hamiltonian given by Eq. (1), we suggest below a
methodology which enables us to calculate quantities which
involve partial derivative with respect to volume in addition to
energy or temperature for the microcanonical and canonical
ensembles, respectively. This requires performing the random
walk in potential energy space only. However, as we see
below, for this approach to work, the potential energy function
needs to exhibit a certain scaling behavior.

III. SCALING BEHAVIOR FOR THE POTENTIAL
ENERGY FUNCTION

We now focus on a class of systems where the potential
energy, within the box of size L, exhibits the scaling property,

U (Lr1, . . . , LrN ) = αU (r1, . . . , rN ), (13)

where α ≡ α(L) and rj are the scaled positions. Equivalently,
this scaling behavior can also be expressed in terms of the vol-
ume since V ∼ L3. Examples include noninteracting particles
in a power-law trap,

U (q1, . . . , qN ) ∼
∑

j

|qj |γ (14)

for which α = Lγ ∼ V γ/3; particles with van der Waals inter-
action involving a hard core,

U (q1, . . . , qN ) ∼
{−∑

j �=k
1

|qj −qk |6 , |qj − qk| > εL,

+∞, |qj − qk| < εL.

(15)
where ε is a small dimensionless constant, giving α = 1/L6 ∼
1/V 2; and the Newtonian-Coulombic potential energy,

U (q1, . . . , qN ) ∼ −
∑
j �=k

1

|qj − qk| (16)

for which α = 1/L ∼ 1/V 1/3. A small distance cutoff can be
introduced in this case also to prevent collapse [30].

Given the scaling property (13), it turns out that we need
to obtain only the density of states g̃(Ũ ) for the potential
energy Ũ = U/α with the system now confined to size 1,
i.e., a cubical box of edge-length 1 and hence volume 1, or
a spherical container of radius 1 and therefore volume 4π/3.

We have

g̃(Ũ ) =
∫

· · ·
∫ N∏

j=1

d3rj δ[Ũ − U (r1, . . . , rN )]. (17)

Although the simulation is performed with unit volume
(fixed), calculating the above would give access to quantities
that depend on volume fluctuations, i.e., involve derivatives
with respect to volume. We see this below separately for the
microcanonical and canonical ensembles.

A. Microcanonical ensemble

In this case, Eq. (6) leads to

W (E,V ) = L3Nα3N/2−1W̃

(
E

α

)
, (18)

with V = L3 for the cubical box and V = 4πL3/3 for the
spherical box. The scaling behavior of W may be written in
terms of V using the replacement L → (V/c)1/3. We defined
here, c = 1 for the cubical box and c = 4π/3 for the spherical
box. The function W̃ in the above equation is given by

W̃ (Ẽ) =
∫

dŨ g̃(Ũ )(Ẽ − Ũ )3N/2−1�(Ẽ − Ũ ), (19)

with Ẽ = E/α being the scaled total energy. It should be
noted that if U contains some constants, they may also be
included in the definition of Ẽ thereby making those constants
in the expression of U effectively unity. The temperature and
pressure can now be calculated as

1

T
= kB

α
φ

(
E

α

)
, (20)

and

P

T
= kB

3cL2

[
3N

L
+

(
3N

2
− 1

)
1

α

∂α

∂L
− E

α2

∂α

∂L
φ

(
E

α

)]
= kB

3cL2

[
3N

L
+

(
3N

2
− 1

)
1

α

∂α

∂L

]
− E

3cL2α

∂α

∂L

1

T
.

(21)

We have defined here

φ(Ẽ) = ∂ ln W̃

∂Ẽ
= 1

W̃

∂W̃

∂Ẽ

=
(

3N

2
− 1

)∫
dŨ g̃(Ũ )(Ẽ − Ũ )3N/2−2�(Ẽ − Ũ )∫
dŨ g̃(Ũ )(Ẽ − Ũ )3N/2−1�(Ẽ − Ũ )

.

(22)

We note that any multiplicative constant appearing with g̃(Ũ )
cancels from the numerator and the denominator and hence
does not alter the value of φ(Ẽ). Numerical simulations pro-
duce g̃(Ũ ) for discretized potential energy space, therefore we
need to replace integrals by summations in the above equation
and use instead,

φ(Ẽ) =
(

3N

2
− 1

)∑
j g̃(Ũj )(Ẽ − Ũj )3N/2−2�(Ẽ − Ũj )∑
j g̃(Ũj )(Ẽ − Ũj )3N/2−1�(Ẽ − Ũj )

.

(23)
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The common factor of �Ũ has been canceled from the sums
in the numerator and denominator in the above equation,
assuming that the investigated potential energy window is
divided into bins of equal size.

B. Canonical ensemble

We obtain, in this case,

Z(T , V ) = L3Nα3N/2Z̃

(
T

α

)
, (24)

where

Z̃(T̃ ) = (2πmkBT̃ )3N/2

N !h3N

∫
dŨ g̃(Ũ ) exp

(
− Ũ

kBT̃

)
, (25)

with T̃ = T/α being the scaled temperature. In this case also,
the scaling property can be expressed in terms of the volume.
The pressure and entropy follow as

P = kBT

3cL2

[
3N

L
+ 3N

2

1

α

∂α

∂L
− T

α2

∂α

∂L
ψ

(
T

α

)]
, (26)

S = kB ln

[
L3Nα3N/2Z̃

(
T

α

)]
+ kBT

α
ψ

(
T

α

)
. (27)

The average energy is

E = kBT 2

α
ψ

(
T

α

)
. (28)

The ψ function in the above equations is defined as

ψ (T̃ ) = ∂ ln Z̃

∂T̃
= 1

Z̃

∂Z̃

∂T̃

= 3N

2T̃
+ 1

kBT̃ 2

∫
dŨ g̃(Ũ )Ũ exp

(− Ũ

kB T̃

)
∫

dŨ g̃(Ũ ) exp
(− Ũ

kB T̃

) . (29)

Here, the first term corresponds to the kinetic energy contribu-
tion, and the second one corresponds to the potential energy.
Similar to Eq. (23), in practice, we need to use the discretized
version of the above equation, namely,

ψ (T̃ ) = 3N

2T̃
+ 1

kBT̃ 2

∑
j g̃(Ũj )Ũj exp

(− Ũj

kB T̃

)
∑

j g̃(Ũj ) exp
(− Ũj

kB T̃

) . (30)

IV. EXAMPLE SYSTEMS

In this section, we validate the results laid out in the
preceding section for two model systems. As the first system,
we consider Padmanabhan’s binary star model for which
analytical results are available [30]. The second system com-
prises noninteracting particles in a harmonic trap. For this
system, the Wang-Landau results are compared with those
from conventional Monte Carlo schemes. In both cases, the
system is confined within a box as described in Sec. II.

A. Self-gravitating binary star

It is well acknowledged that systems involving long-range
interactions exhibit inequivalence of statistical ensembles and
peculiar aspects, such as negative specific heat in the micro-
canonical description [30,33–40]. Padmanabhan has demon-
strated that even a toy model, such as the self-gravitating
system of two particles, exhibits several peculiarities that are
characteristic of self-gravitating systems [30]. Since exact
analytical results are available for this model, it serves as a
benchmark to test some of the results laid out in the preceding
sections.

We consider a system of two bodies (N = 2), each having
mass m and phase space coordinates q1, q2, p1, and p2,
respectively. They interact via the long-range gravitational
potential. Moreover, the system is enclosed in a spherical box
of radius L thereby setting a long distance cutoff. The center
of the sphere is chosen to coincide with q1, q2 = 0. Similarly,
a repulsive short distance cutoff is set at a separation εL 	 L,
where ε is a small dimensionless parameter. Therefore, the
two bodies can be considered as hard spheres of radius εL/2.
Consequently, the potential energy function defined within the
box is

U (q1, q2) =
{

− Gm2

|q1−q2| , |q1 − q2| > εL,

+∞, |q1 − q2| < εL.
(31)

Clearly, in this case, α = 1/L. Exact analytical results can be
derived for this two-body system [30]. In the microcanonical
approach, we obtain for Eq. (6),

W (E,V ) ∝
{−L4

ζ
(1 + εζ )3, − 1

ε
< ζ < −1,

−L4

ζ
(1 + εζ )3 + L4

ζ
(1 + ζ )3, ζ > −1,

(32)
where ζ = EL/(Gm2). Therefore, the temperature and pres-
sure expressions follow using Eq. (7):

T =
{

E
kB

(εζ + 1)(2εζ − 1)−1, − 1
ε

< ζ < −1,

Gm2

kBL
[(1 − ε3)ζ 2 + 3(1 − ε2)ζ + 3(1 − ε)][2(1 − ε3)ζ + 3(1 − ε2)]−1, ζ > −1,

(33)

P =
{ 3E

4πL3 (2εζ + 1)(2εζ − 1)−1, − 1
ε

< ζ < −1,

3Gm2

4πL4 [2(1 − ε3)ζ 2 + 5(1 − ε2)ζ + 4(1 − ε)][2(1 − ε3)ζ + 3(1 − ε2)]−1, ζ > −1.
(34)

For the canonical ensemble, an exact result for the partition function can be written in terms of exponential integral function
Ei(u) = − ∫ ∞

−u
dt e−t /t [41]. We obtain

Z(T , V ) ∝ L3

η3
[(η2 + η + 2) exp(η) − η3Ei(η)] − L3ε3

η3

[(
η2

ε2
+ η

ε
+ 2

)
exp

(η

ε

)
− η3

ε3
Ei

(η

ε

)]
, (35)

063301-4



EFFICIENT IMPLEMENTATION OF THE WANG-LANDAU … PHYSICAL REVIEW E 98, 063301 (2018)

where η = Gm2/(LkBT ). This can be used to calculate exact analytical results for pressure and average energy using Eqs. (11)
and (12),

P = 3kBT

4πL3

{
[(η2 + η + 4) exp(η) − η3Ei(η)] − ε3

[(
η2

ε2
+ η

ε
+ 4

)
exp

(η

ε

)
− η3

ε3
Ei

(η

ε

)]}

×
{

[(η2 + η + 2) exp(η) − η3Ei(η)] − ε3

[(
η2

ε2
+ η

ε
+ 2

)
exp

(η

ε

)
− η3

ε3
Ei

(η

ε

)]}−1

,

E = 6kBT
[
exp(η) − ε3 exp

(η

ε

)]{
[(η2 + η + 2) exp(η) − η3Ei(η)] − ε3

[(
η2

ε2
+ η

ε
+ 2

)
exp

(η

ε

)
− η3

ε3
Ei

(η

ε

)]}−1

.

To compare these analytical results with numerics, we
use Eqs. (20), (21) and (26), (28), with N = 2. Within the
microcanonical approach, we have

1

T
= kBLφ(LE), (36)

P

T
= kB

4πL2

(
4

L
+ Eφ(LE)

)
. (37)

The equation of state can be obtained from these two relations
as

PV = 4kBT

3
+ E

3
, (38)

where V = 4πL3/3. With the canonical approach, the pres-
sure is given by

P = kBT

4πL2

(
3

L
+ T ψ (LT )

)
, (39)

and the average energy is obtained as

E = kBT 2Lψ (LT ). (40)

The corresponding equation of state is

PV = kBT + E

3
. (41)

For this system, we considered the spherical box of unit
radius (L = 1) and short distance cutoff εL with ε = 10−3.

The Ũ -energy window to be explored in the simulation is
[−1000,−0.5] where we set G, kB , and m equal to unity.
The lowest potential energy is decided by the closest pos-
sible distance (=10−3) between the two particles, whereas
the largest is decided by the longest possible distance (=
2) in the unit sphere. We divided this energy window in
2000 bins and obtained the density of states g̃(Ũ ) using the
t-inverse variant of the Wang-Landau scheme [21,22] with
a final modification factor of value exp(5 × 10−7). For the
simulation, we started by randomly placing the two particles
inside the box. Subsequent configurations were generated
by randomly perturbing one of the particles by an amount
between −0.01 and 0.01, keeping in view the box boundary.
The corresponding potential energy values were used in the
Wang-Landau implementation. The simulation took about 15
min on a laptop with a 2.8 GHz Intel Core i5 processor.

In Fig. 1, we show the logarithm of g̃(Ũ ) up to an additive
constant. The actual value of ln g̃(Ũ ) obtained in the simula-
tion varied from 19 249 to 19 275 from which we subtracted
19 000 from each of the bin values. The resulting data have
been plotted in this figure.

With the numerical result for g̃(Ũ ) available, we can use
Eqs. (23) and (30) to evaluate the φ(Ẽ) and ψ (T̃ ) functions
and eventually the thermodynamic observables. In Fig. 2 we
show comparison between the analytical results obtained us-
ing Eqs. (32) and (35) and the results based on Wang-Landau
simulation. The subfigures include the temperature, pressure
as functions of energy in the microcanonical formalism, and
average energy, pressure as functions of temperature in the
canonical approach. The specific heat at constant volume can
be obtained using the relation Cv = (∂T /∂E)−1

V for the mi-
crocanonical ensemble and Cv = (∂E/∂T )V for the canonical
ensemble. A comparison between the analytical results and
the Wang-Landau simulation results are shown in Fig. 3. We
find excellent agreement in all these plots. The small devia-
tions observed in the insets of Figs. 2 and 3 can be attributed
to the discretization of the potential energy window and the
convergence threshold used in the Wang-Landau simulation.

In the plot of temperature versus energy in the microcanon-
ical ensemble, Fig. 2(a), for the lowest energy possible for the
system E0 = −E/ε = −1000, the temperature T vanishes.
We have introduced here E = Gm2/L. For E close to this
value, the system is in a low temperature tightly bound phase
with negligible random thermal motion [30]. By examining
the local extrema of the temperature function using Eq. (33)
we observe the following. With increasing energy, the temper-
ature increases until E hits E1 = −(

√
3 − 1)E/(2ε) ≈ −366

after which it starts to decrease until E2 = −[(3 + √
3)ε +

(3 − √
3)]E/[2(ε2 + ε + 1)] ≈ −0.636; see the inset. There-

fore, the system exhibits positive specific heat in the region

FIG. 1. Plot of the logarithm of density of states for the potential
energy Ũ corresponding to Eq. (31) for the binary star model.
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FIG. 2. Comparison between the Wang-Landau simulation and
the analytical results for the binary star model. Subfigures (a) and
(b) show temperature and pressure as functions of energy in the
microcanonical approach, and (c) and (d) illustrate the average
energy and pressure versus the temperature in canonical description.

E0 < E < E1 and negative specific heat in the region E1 <

E < E2 as also seen in Fig. 3(a). For E = E2 onward, the
temperature again starts to increase with an increase in energy,

−

−1000 −500 0 500 1000

−1
0

0
10

20

(a)

−0.80 −0.70 −0.60 −0.50

−1
00

0
10
0

−

0 20 40 60 80 100

0
50

10
0
15
0
20
0

(b)

FIG. 3. Behavior of the specific heat at constant volume (CV )
for the binary star system in (a) microcanonical description, and
(b) canonical description: Comparison between the Wang-Landau
simulation and the analytical results.

thus indicating another phase with positive specific heat. This
is the high temperature phase where thermal fluctuations dom-
inate [30]. From Eq. (34) we also see that the system exhibits
negative pressure for ζ < −1/(2ε), i.e., E < −E/(2ε) =
E0/2 = −500. This can be seen in Fig. 2(b). Consequently,
the system sucks on the walls and wants to contract. Moreover,
as E crosses E1 towards higher values, unlike the temper-
ature, the pressure keeps on increasing until E3 = −(

√
2 −

1)E/(2ε) ≈ −207. After this point, the pressure decreases
until E reaches E4 = −[(3 − √

2) + (3 + √
2)ε]E/[2(ε2 +

ε + 1) ≈ −0.794. Eventually, it increases indefinitely as E is
increased beyond this point. From the analytical expression,
we find that, if ε → 0, then E0, E1 → −∞, E2 → −(3 −√

3)E/2 ≈ −0.634 and therefore, as noted in Ref. [30], in
this limit there is no low temperature region with positive
specific heat. Moreover, there is no region of negative pressure
for ε → 0 since E0, E3 → −∞. Additionally, E4 moves to
−(3 − √

2)E/2 ≈ −0.793.
In the canonical description, in the plot of average energy

versus temperature, i.e., Fig. 2(c), as temperature is increased
from 0, the average energy increases from the ground state
value −E/ε. A phase transition occurs at temperature Tc, and
the energy of the system increases rapidly as it crosses this
point. Eventually, the system is pushed into the high temper-
ature phase. Moreover, the pressure changes from negative
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FIG. 4. Combined plot of energy (E), temperature (T ), and
pressure (P ) for the binary star system in both microcanonical and
canonical descriptions.

to positive while crossing the critical point as observed in
Fig. 2(d). In contrast to the microcanonical ensemble, the
specific heat is never negative in the canonical ensemble [30].
Instead we witness a phase transition depicted by a peak in
the specific heat curve as evident from Fig. 3(b). From the
analytical result, by locating the maximum of Cv , we find that
Tc ≈ 43.886. This is close to the value of −E/(3ε ln ε) ≈
48.255, which is predicted by an approximate analysis of the
partition function in Ref. [30].

From the above discussion, it is clear that peculiarities
associated with the long-range interaction show up in such
a simple system and sharply contrasting predictions are made
from the microcanonical and the canonical ensemble descrip-
tions [30,33]. An overall plot with E, T , and P together has
been shown in Fig. 4 for both ensembles. Although we have
considered here N = 2 and V = 4π/3, the disagreements
between the two statistical ensembles persist even in the
thermodynamic limit of N,V → ∞, with N/V 1/3 kept fixed
as shown in Refs. [36,37].

B. Gas in a harmonic trap

In this model we consider an ideal gas comprising N

identical noninteracting particles, each of mass m, confined
within a cubical box of edge length L and subjected to a
harmonic potential. The potential energy function defined
inside the box is

U (q1, . . . , qN ) = 1

2
m

∑
j

ω2|qj |2, (42)

where ω is the angular frequency. We observe here that
α(L) = L2. We position the box such that qj = 0 coincides
with one of the corners of the cubical box placed in the first
octant. We may generalize Eq. (42) by making ω dependent
on j .

We should emphasize that this system is distinct from that
of noninteracting particles trapped solely under the harmonic
trap and not enclosed in a container. In that particular case,
due to the absence of confining walls, the volume and pressure
associated with the particles are not well defined, and one
has to introduce more appropriate variables to express the
thermodynamic relations [42].

For our system, in the microcanonical description, the
inverse temperature and the pressure are obtained using
Eqs. (20) and (21), respectively, as follows:

1

T
= kB

L2
φ

(
E

L2

)
, (43)

P

T
= 2kB

3L3

[
3N − 1 − E

L2
φ

(
E

L2

)]
. (44)

Eliminating φ from the above two equations yields the equa-
tion of state as

PV = 2

3
(3N − 1)kBT − 2E

3
, (45)

with V = L3. On the other hand, in the canonical approach,
Eqs. (26) and (28) yield the pressure and the average energy
as follows:

P = 2kBT

3L3

[
3N − T

L2
ψ

(
T

L2

)]
, (46)

E = kB

T 2

L2
ψ

(
T

L2

)
. (47)

The equation of state is therefore given by

PV = 2NkBT − 2E

3
. (48)

We note that, for large N , Eqs. (45) and (48) are essentially
the same.

In the present system, since the particles are noninteracting
and there is no lower cutoff distance, the lowest possible
potential energy is 0 when all the particles accumulate at the
origin, i.e., qj = 0, which coincides with one of the corners
of the cubical box. Similarly, the highest potential energy of
3Nmω2L2/2 occurs when all the particles accumulate at the
diagonally opposite corner qj = L(x̂ + ŷ + ẑ). We examine
this system for N = 25 particles and box of edge length
L = 5. Moreover, we set m and ω equal to 1.

For the Wang-Landau simulation, we scale the edge lengths
and perform the simulation inside a cubical box of edge
length 1. Inside this scaled box, the energy window to be

0 5 10 15 20 25 30 35

0
10
0

20
0

30
0

40
0

g(
) +

FIG. 5. Plot of logarithm of density of states for the potential
energy Ũ corresponding to Eq. (42) for the ideal gas in a harmonic
trap within a box.
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FIG. 6. Comparison between results based on Wang-Landau and
conventional Monte Carlo simulations for the ideal gas in a harmonic
trap within a box. Subfigures (a) and (b) show temperature and
pressure as functions of energy in the microcanonical approach,
whereas (c) and (d) depict the average energy and pressure versus
the temperature in the canonical description.

explored is [0, 3Nmω2/2] = [0, 37.5]. Since the number of
microstates with potential energies close to the extremal val-
ues of 0 and 37.5 is very small, it becomes difficult to explore
the energy values close to the extremes if a small bin size
is used. For the simulation, we started with a random con-
figuration and subsequently generated new configurations by
perturbing a randomly selected particle by a random amount
between −0.05 and 0.05. The time taken for exploring the
window [0.5,37.0] with 500 bins was about 30 min, whereas
for the window [0.07,37.2] with 1000 bins it took about 60
min. In both cases, a final modification factor of exp(10−7)
was considered. We found that the former window with 500
bins was sufficient to produce satisfactory results for the
thermodynamic observables. However, we present the results
below for the latter. The logarithm of density of states is
shown in Fig. 5. The actual values obtained in the simulation
varied around 3 × 106 from which we have subtracted a
common value to obtain this plot. We note a sharp drop in
the ln g̃(Ũ ) curve towards the extremes, especially towards
the lower end, thereby indicating decreasing number of the
associated potential energy microstates.

The observables laid out in Eqs. (43), (44), (46), and (47)
can be obtained using g̃(Ũ ). For this system, the partition
function for the canonical description can be worked out
analytically as Z(T , V ) ∝ [T erf (

√
mω2L2/2kT )]3N , where

erf (·) represents the error function [41]. Consequently, the
associated thermodynamic observables can be calculated.
However, it does not seem feasible to obtain a closed form
analytical result for the entropy S(E,V ) within the micro-
canonical description. Therefore, we rely on conventional
Monte Carlo simulations to validate the Wang-Landau re-
sults. For the canonical ensemble, we use the Metropolis
algorithm with Boltzmann-Gibbs factor exp[−U/(kBT )] as
the statistical weight and perform the simulation in a box of
size L = 5; see Eq. (9). For the microcanonical ensemble,
Eq. (6) implies the weight (E − U )3N/2−1�(E − U ) to be
implemented in the Metropolis algorithm. Clearly, unlike the
Wang-Landau algorithm, we have to perform the simulations
individually for each desired energy and temperature values.
For the microcanonical ensemble, it took about 65 min for
simulation involving 11 energy values. In the case of the
canonical ensemble, the time taken was about 30 min for a
simulation comprising 13 temperature values. In Fig. 6, we

FIG. 7. Combined plot of energy (E), temperature (T ), and
pressure (P ) for the the ideal gas in a harmonic trap within a box.
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see the comparison between the Wang-Landau results and the
conventional Monte Carlo schemes as described above. An
excellent agreement is found in all cases. We note that the
pressure briefly becomes negative in both microcanonical and
canonical descriptions and therefore the system tries to con-
tract sucking on the walls of the box. This region corresponds
to the potential energy dominating over the kinetic energy.
Finally, Fig. 7 shows the Wang-Landau-simulation plots of
E, T , and P together for both microcanonical and canon-
ical ensembles. In this case, since there are no peculiarities
involved, the two descriptions agree quite well.

V. CONCLUSION

In this paper, we described an efficient way of apply-
ing the Wang-Landau algorithm to systems which satisfy
certain length (or equivalently volume) dependent scaling
behavior for their potential energy function defined within
the enclosing box. This scaling behavior is rather general
and is observed in several important statistical models. Our
method allows one to calculate thermodynamic observables
that involve energy, temperature, and volume fluctuations,

appropriate to the microcanonical or the canonical descrip-
tion. Interestingly, this requires obtaining the density of states
corresponding to the potential energy part only by performing
the Wang-Landau simulation in a one-dimensional space for a
scaled box of unit size. Our approach is quite advantageous
compared to the conventional Monte Carlo schemes where
one needs to perform simulation for individual energy and
temperature values or Wang-Landau scheme aimed to obtain
the density of states as a function of both energy and volume.
We applied our methodology to study Padmanabhan’s binary
star model and a noninteracting gas trapped in a harmonic
potential within a container and found excellent results in both
cases. It would be of interest to investigate how this approach
performs in more complicated systems where one lacks any
analytical solution.
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