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Electrostatic energy and phonon properties of Yukawa crystals
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We study electrostatic and phonon properties of Yukawa crystals. It is shown that in the harmonic approx-
imation these systems which are used in the theory of dusty plasma can be described analytically by the
model from the theory of neutron stars and white dwarfs. Using this approximation, we consider properties of
body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and MgB2 lattices. Studies
of MgB2 and hcp lattices in the context of Yukawa systems are lacking. It is shown that they never possess the
smallest potential energy and the phase diagram of stable Yukawa crystals contains bcc and fcc lattices only.
However, corrections to the charge density proportional to (κa)4 can noticeably change the structural diagram
of Yukawa systems. The analytical model developed also allows us to describe low-temperature effects where
numerical simulations are difficult.
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I. INTRODUCTION

A Yukawa system is a system of pointlike charged particles
immersed in a neutralizing background. Usually it is assumed
that all these particles are identical and have the electric
charge −Ze and mass M , where e is the electron charge
absolute value. The background in the Yukawa systems is
nonuniform and can be described by the inverse screening
length κ . For instance, if the background consists of electrons,
κ ≡

√
4πe2∂ne/∂μe, where ne and μe are electron mean

number density and chemical potential, respectively. Systems
with a uniform background are called Coulomb systems.
These systems are widely used in various branches of physics.

It is believed that the matter in degenerate stars, namely,
in white dwarf cores and neutron star crusts at not too low
densities, consists of atomic nuclei (ions) immersed in a
neutralizing background of electrons [1]. As a star cools,
ions crystallize (see, e.g., [2,3]). According to Ref. [4], this
crystallization process has been inferred from observations
of oscillations of a white dwarf, while observations of tran-
sients indicate that the neutron star crust is solid [5–7]. In
degenerate stars electrons are mostly strongly degenerate and
can be characterized by the Thomas-Fermi wave vector κTF ≈
0.185Z1/3(1 + x2

r )1/4/x
1/2
r , where xr ≡ pF /mec is the elec-

tron relativity parameter, pF is the electron Fermi momentum,
and me is the electron mass (see, e.g., [8]). Notice that the
ordered structures can form in red giants and brown dwarfs
[9].

Yukawa systems are also widely used in dusty plasma
physics (see, e.g., [10]). In the simplest model the dusty
plasmas consist of charged dust grains and the background
which is formed by nondegenerate ions and electrons (here we
follow the model which was developed in [11,12]). For nonde-
generate electrons ∂ne/∂μe = ne/kBT and similarly for ions.
Hence, in this situation κ is the inverse Debye D length κ2

D =

*kozhberov@gmail.com

κ2
De + κ2

Di ≡ 4πe2ne/kBT + 4πe2Z2
i ni/kBT , where Zi and

ni are the charge number and mean number density of back-
ground ions, respectively, T is the temperature of the system
(the temperature of background ions is taken to be equal to
the temperature of dust particles), and kB is the Boltzmann
constant.

Both such different systems can be described by a simple
model called a Yukawa crystal, in which pointlike charged
particles are arranged into a lattice and neutralizing back-
ground characterized by the parameter κ . In this paper we
show that the results of molecular-dynamics simulations of
Yukawa crystals [13,14] can be verified by the theoretical
model which was developed in [8] for the degenerate stars
(in [8] they are called Coulomb crystals with polarizable
background).

Only the body-centered-cubic (bcc) and face-centered-
cubic (fcc) lattices were considered in [8,14], as well as in
some other theoretical parers (e.g., [15–18]) which, using
different approaches, qualitatively and/or quantitatively prove
the results of simulations from [14]. The three-dimensional
(3D) hexagonal Yukawa crystals were studied by molecular-
dynamics simulations in [14] for the bcc and fcc lattices.
In contrast, it is known that the ground state of 2D crystals
has hexagonal symmetry (see, e.g., [19]). Also laboratory
experiments (in many experiments dusty plasmas are not a
bulk 3D system because of the presence of different forces
such as gravity, shadow forces, thermal forces, and some
others and cannot be described by the model of the Yukawa
crystal) show that the strongly coupled dusty plasma forms a
complicated crystal structure (see, e.g., [10,20–25]). Analysis
of experiments carried out on board the International Space
Station under microgravity conditions shows that plasma
crystals have a structure which contains numerous bcc, fcc,
and hexagonal-close-packed (hcp) clusters with the prevailing
contribution of the latter two [26,27]. Similar results give
different computer simulations (see, e.g., [28–30]). Hence
the formation of the hexagonal Yukawa crystals is quite
probable.
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Despite the interest in the dusty systems, the structural
diagram of Yukawa crystals has received relatively little at-
tention. The transition between the bcc and fcc lattices was
obtained from molecular-dynamics simulations in Ref. [31],
developed in Ref. [14], and later was proved in a few papers
(see, e.g., [16]). Transitions between other lattices have not
been considered and the structural diagram has not been
studied analytically. In the present work we study the prop-
erties of the hcp Yukawa crystal. In the harmonic lattice
approximation we calculate its total potential energy as a sum
of electrostatic energy, the energy of zero-point vibration,
and phonon free energy. This total potential energy is used
to study the structural transitions between the hcp and cubic
(bcc and fcc) lattices in dusty plasmas. One of the advantages
of the harmonic lattice approximation is the ability to take
into account the low-temperature effects where numerical
simulations are difficult to provide. The importance of high-
order corrections to the charge density is also discussed.

II. ELECTROSTATIC ENERGY

Yukawa crystals were investigated in [12] via molecular-
dynamics simulations in a cubical domain with the side length
L and periodic boundary conditions. Its volume is V ≡ L3

and N is the number of charged pointlike particles in the
crystal. The total potential energy U of such systems is given
by [Eq. (29) from [12]]

U =N
Z2e2

2

⎡
⎣∑

j ′ �=j

�(rj −rj ′ ) − 4πn

κ2
D

− κD +
∑
m�=0

e−κDmL

mL

⎤
⎦,

(1)

where

�(r) =
∑
m�=0

exp(−κD|r − mL|)
|r − mL| , (2)

m = (m1,m2,m3) denotes an integer triplet, and n ≡ N/V

is the mean number density of charged pointlike particles.
According to the electroneutrality condition, Zn = Zini −
ne. The position of the j th particle in the crystal is given
by the radius vector rj = Xj + uj , where Xj is the particle
equilibrium position and uj is the displacement. Equation (1)
was obtained from the Poisson equation

��(r) = −4πρ(r), (3)

where the charge density

ρ(r) = −Z
∑

j

δ(r − rj ) + Zn − κ2
D

4π
[�(r) − �], (4)

where

� ≡ 1

V

∫
V

�(r)dr. (5)

In this approach, the variation of the potential �(r) over V

should be much smaller than the thermal energy. The next-
order correction to the charge density is proportional κ4

D .

If all particles are fixed in their equilibrium positions, U

reduces to the electrostatic (Madelung) energy UM . For a
lattice with Ncell particles in the elementary cell, equilibrium
positions are given by Xj = Xlp = Rl + χp, where Rl is the
lattice vector, χp is the basis vector of the p particle (p =
1, . . . , Ncell) in the elementary cell, and l = (l1, l2, l3) is the
integer triplet. The reciprocal lattice is formed by vectors Gb,
where b = (b1, b2, b3) is the integer triplet.

The Madelung energy UM can be found analytically at
fixed n and L → ∞. Using the Ewald transformation, it is
possible to derive a rapidly converging expression for the
Madelung energy of the Yukawa lattice [8]

UM

NZ2e2
≡ ζ

a
= 1

Ncell

∑
l,p,p′

(1 − δl0δpp′ )
E− + E+

4Yl

+ 1

N2
cell

∑
b,p,p′

2πn

G2
b + κ2

e−(G2
b+κ2 )/4A2

e−iGb (χp−χp′ )

− κ

2
erf

(
κ2

2A

)
− A√

π
e−κ2/4A2 − 2πn

κ2
, (6)

where E± = e±κYl [1 − erf (AYl ± κ/2A)], erf (z) is the error
function, Yl = Rl + χp − χp′ , and a ≡ (4πn/3)−1/3 is the
Wigner-Seitz radius. The parameter A is chosen in such a way
that the summation over direct and reciprocal lattice vectors
converges equally rapidly. For lattices in consideration, Aa ≈
2. The parameter ζ is called the Madelung constant. It depends
on the type of lattice and κa. Equation (6) for UM has the
same form for κD and κTF. For this reason the subscript in κ

is omitted.
For lattices with Ncell = 1 Eq. (6) was derived in [8] and

was used for the bcc and fcc lattices. For lattices with Ncell >

1, the expression for UM is given here. In [13] the electrostatic
energy was calculated from the molecular-dynamics simula-
tions as a limiting value of U at T → 0. Madelung constants
for the bcc lattice obtained in [13] are given in Table I as ζHF.
Our results based on Eq. (6) are given as ζ in Table I. For the
bcc lattice they coincide with the results of [13,31], but more
significant digits are given. For the fcc lattice both calculations
are also consistent. Equation (6) allows us to calculate the
Madelung energy for any lattice much more accurately and
faster than molecular-dynamics simulations.

Usually (see, e.g., [32]), for the hcp lattice the distance
between hexagonal layers h in the elementary cell is assumed
to be h0 ≡ √

8/3alat ≈ 1.632 993alat , where alat is the lattice
constant. This value comes from the problem of close packing
of equal spheres. However, in Yukawa crystals charged par-
ticles are pointlike and it is not obvious that the electrostatic
energy of the hcp lattice achieves a minimum at h = h0 in
this case. It is more correct to consider the hcp lattice with
h = hmin that corresponds to the minimum of UM . The hmin

values obtained for several κa are also presented in Table I.
At κa = 0 (uniform background) the Madelung energy of
the hcp lattice reaches a minimum at hmin ≈ 1.635 639alat >

h0. A similar situation is found at 0 < κa < 5: hmin/alat is
always slightly greater than

√
8/3 and decreases when κa

increases. This small difference does not lead to a significant
change of UM . In Table I, ζmin corresponds to the minimum
of the Madelung energy while ζ corresponds to the energy
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TABLE I. Madelung constants of the bcc, fcc, hcp, and MgB2 lattices.

bcc lattice fcc lattice hcp lattice MgB2 lattice

κa −ζHF −ζ −ζHF −ζ hmin/alat −ζmin −ζ hmin/alat −ζ

0.0 0.895929 0.895929256 0.895873 0.895873616 1.635639 0.895838451 0.895838120 0.593936 0.894505630
0.2 0.900074 0.900073612 0.900020 0.900020482 1.635630 0.899985873 0.899985549 0.593958 0.898663839
0.5 0.921671 0.921671339 0.921631 0.921630646 1.635543 0.921598798 0.921598509 0.594074 0.920331769
1.0 0.996706 0.996706468 0.996701 0.996701309 1.635278 0.996677534 0.996677339 0.594458 0.995586492
2.0 1.269026 1.269025941 1.269079 1.269079142 1.634495 1.269071279 1.269071235 0.595636 1.268452721
3.0 1.651144 1.651143676 1.651194 1.651193657 1.633786 1.651192170 1.651192165 0.596801 1.650930425
4.0 2.091283 2.091283389 2.091309 2.091308661 1.633349 2.091308471 2.091308471 0.597578 2.091219086

at h = h0. Previously such investigations were performed by
Nagai and Fukuyama in [33] but for the Coulomb crystal only
(κa = 0). They obtained hmin = 1.633alat and suggested that
hmin = √

8/3alat .
In addition to the hcp lattice, we considered another lattice

with hexagonal symmetry. We call it the MgB2 lattice be-
cause it is the lattice of magnesium diboride under terrestrial
conditions (space group P 6/mmm). The MgB2 lattice is a
sequence of layers of magnesium and boron. The distance
between adjacent layers is h/2, while alat is the distance
between the nearest magnesium ions in the layer. The number
of ions in the elementary cell is Ncell = 3. Here we consider
only the one-component Yukawa MgB2 lattice formed by
identical charged particles. The parameter h is not fixed and
is determined by the minimum of the Madelung energy. There
is no experimental evidence that the MgB2 lattice forms in
Yukawa systems. However, this lattice possesses the fourth
smallest Madelung constant after the bcc, fcc, and hcp lattices
(among those known in the literature [34,35]). At κa = 0,
the Madelung constant of the one-component MgB2 lattice is
equal to −0.894 505 630 008. In the MgB2 lattice hmin slightly

depends on κa (see Table I). As in the hcp lattice, this depen-
dence does not affect the computations noticeably and can be
neglected. Further, we consider that h = √

8/3alat in the hcp
lattice and h ≈ 0.593 936alat in the MgB2 lattice. Notice that
the hexagonal lattice is not discussed because it is not stable in
the harmonic lattice approximation [35], while the possibility
of formation of this lattice was indicated in [36].

Madelung constants of the hcp and MgB2 lattices are
always larger than the Madelung constant of the fcc lattice
(see Table I). At κa < 1.065 714 the bcc lattice has the
lowest UM among all lattices in consideration, while at
κa > 1.065 714 the fcc lattice has the lowest UM . This result
agrees with Ref. [13].

In [13] the electrostatic energy of the bcc Yukawa lattice
was obtained by molecular-dynamics simulations and fitted
for κa < 1 by a polynomial [Eq. (15) from Ref. [13]]. Our
investigations allow us to improve this approximation. An
equation for the electrostatic energy at small κa can be
obtained analytically from the expansion of Eq. (6). It is clear
from Eq. (6) that this approximation should contain only even
powers of κa, while the fit from Ref. [13] keeps all powers:

U bcc
M = −N

Z2e2

a
[0.895 929 255 7 + 0.103 732 333 7(κa)2 − 0.003 091 327 0(κa)4 + 0.000 143 040 0(κa)6

−7.1863 × 10−6(κa)8]. (7)

This equation represents UM with an accuracy of eight signifi-
cant digits for κa < 0.5. A similar equation can be written for
the fcc, hcp, and MgB2 lattices,

UM = −N
Z2e2

a
[ζ0 + ζ2(κa)2 + ζ4(κa)4 + ζ6(κa)6

+ ζ8(κa)8], (8)

where the parameters ζi are given in Table II.
Equation (1) gives the correct expression for the terms in

the potential energy proportional to (κa)0 and (κa)2. Correc-
tions to the charge density of the order of (κa)4 make the
same order changes to the potential energy. At the same time,
the differences between the energies are extremely small and
corrections of the order of (κa)4 and higher can radically
change the structural diagram of the Yukawa crystals. The
importance of these corrections is easy to illustrate by a
comparison of the first two terms in Eq. (8). Let us define the

reduced electrostatic energy as

UM2 ≡ −N
Z2e2

a
[ζ0 + ζ2(κa)2]. (9)

Retention of only the first two terms in UM leads to transfor-
mations of structural transitions. Indeed, at low κa the lowest
UM2 has the bcc lattice, at 0.937 15 < κa < 1.583 01 the fcc

TABLE II. Parameters ζi for the Madelung energy of the fcc, hcp,
and MgB2 lattices.

ζi fcc hcp MgB2

ζ0 0.8958736152 0.8958381205 0.8945056294
ζ2 0.1037956875 0.1040806163 0.1038098518
ζ4 − 0.0031060725 − 0.0031410914 − 0.0031091345
ζ6 0.0001451182 0.0001485484 0.0001455958
ζ8 − 7.4104×10−6 − 7.4708×10−6 − 7.7141×10−6
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lattice, at 1.583 01 < κa < 2.218 38 the hcp lattice, and at
κa > 2.218 38 the MgB2 lattice.

III. ZERO-POINT ENERGY

Pointlike charged particles in the crystal are not fixed and
actually oscillate around their equilibrium positions even at
T = 0 due to the quantum zero-point vibrations. The frequen-
cies of these oscillations, ων , can be found from the dispersion
equation

det
{
D

αβ

pp′ (k) − ω2
ν (k)δαβδpp′

} = 0, (10)

where the indices α and β denote Cartesian components,
p and p′ run over the charged pointlike particles in the
elementary cell, ν enumerates the oscillation modes (ν =
1, . . . , 3Ncell) at a given wave vector k, and D

αβ

pp′ (k) is the
dynamic matrix. The dynamic matrix of the Yukawa crystal
with Ncell = 1 was derived in [8]. An equation for the dynamic
matrix with arbitrary Ncell is given by Eq. (A1) from [37],
where the phonon properties were discussed in detail. It is
instructive to compare the phonon spectrum obtained in [37]
with the results of molecular-dynamics simulations directly
and it will be done separately. Here we consider only the
average over the volume phonon properties.

The dispersion Eq. (10) allows to calculate the phonon
spectrum at any wave vector k. Due to the periodicity of the
crystal lattice, it is sufficient to calculate ων (k) only in the first
Brillouin zone. Let us define the average of any function f (ω)
of phonon frequencies over the volume of the first Brillouin
zone VBZ = (2π )3n/Ncell,

〈f (ω)〉 = 1

3Ncell

3Ncell∑
ν=1

1

VBZ

∫
BZ

f (ων (k))dk. (11)

Then the zero-point energy of the crystal is

E0 ≡ 1.5Nh̄〈ω〉 = 1.5Nh̄ωpu1, (12)

where u1 = 〈ω/ωp〉 is the first frequency moment, ωp =√
4πnZ2e2/M is the plasma frequency, and h̄ is the Plank

constant.
In the Yukawa crystal, u1 depends on the lattice type

and κa. In [8] the first moments of the bcc and fcc lattices
were investigated and approximated for κa � 1. The u1 value
of the hcp lattice is considered here. The one-component
MgB2 lattice is found to be unstable. At some k, modes
with ω2

ν (k) < 0 appear in its phonon spectrum. Therefore, the
phonon properties of the one-component MgB2 lattice are not
considered. It is interesting to note that at κa = 0 the MgB2
lattice with two different ions in the elementary cell (their
charges are Z1 and Z2 �= Z1) is stable at some values of h and
Z2/Z1. The bcc lattice is unstable at κa > 4.76, in accordance
with previous studies [31]. The fcc and hcp lattices are stable
until κa = 5 and we do not study these lattices at higher κa.

The ratios ufcc
1 /ubcc

1 − 1, u
hcp
1 /ubcc

1 − 1, and u
hcp
1 /ufcc

1 − 1
are plotted in Fig. 1. At κa = 0, ubcc

1 = 0.511 387 7, ufcc
1 =

0.513 194, and u
hcp
1 = 0.513 336 9. The relation u

hcp
1 > ufcc

1 >

ubcc
1 holds for any value of κa � 0. In other words, the bcc

lattice possesses the smallest zero-point energy at any κa. At
T = 0, the total energy of the Yukawa crystal is

U0 ≡ UM + E0 = NTp(�pζ + 1.5u1), (13)

FIG. 1. Ratios of lattice moments u1 of the bcc, fcc, and hcp
lattices.

where Tp = h̄ωp is the plasma temperature. At T = 0, the
total energy is a function of two parameters, κa and �p ≡
Z2e2/ah̄ωp. In Fig. 2 we plot the dependence of �p on κa

for which the total energy of the bcc lattice (U bcc
0 ) is equal to

the total energy of the fcc lattice (U fcc
0 ). Above this curve, the

energy of the fcc lattice is smaller than the energy of the fcc
lattice. At �p → ∞ the energy of the zero-point vibrations
can be neglected and κa tends to 1.066.

The dynamic matrix of the Yukawa crystals was derived
from the same equation for the potential energy as the elec-
trostatic energy, therefore UM and E0 have similar precision.
At the same time, |ufcc

1 − ubcc
1 | � |ζ fcc − ζ bcc|. Hence correc-

tions to the zero-point energy proportional to (κa)4 do not
influence significantly the transitions between lattices.

fcc

bcc

FIG. 2. Dependence of �p on κa under the condition U bcc
0 =

U fcc
0 . The curve shows the structural transition between the bcc

and fcc Yukawa lattices at T = 0 if the electrostatic and zero-point
energies are taken into account.

063205-4



ELECTROSTATIC ENERGY AND PHONON PROPERTIES OF … PHYSICAL REVIEW E 98, 063205 (2018)

IV. THERMAL CONTRIBUTION TO THE POTENTIAL
ENERGY

The phonon thermal contribution Fth to the total potential
energy (thermal free energy) is equal to

Fth = 3NT 〈ln(1 − e−w )〉, (14)

where w ≡ h̄ων (k)/T (see, e.g., [32]). For the bcc Yukawa
lattice it was considered in [8]. Here we extend this study
to other lattice types. In Fig. 3 we plot the ratios F fcc

th /F bcc
th

and F
hcp
th /F bcc

th as functions of t ≡ T/Tp for various values
of κa. These ratios were discussed in [38] for crystals with a
uniform background (κa = 0). At κa = 1 and κa = 0.5 they
have the same features as at κa = 0. For instance, at high and
medium temperatures (T � 10−2Tp) and any κa, F

hcp
th and

F fcc
th are greater than F bcc

th (Fth is negative). At κa = 1, the
ratio F

hcp
th /F bcc

th reaches a minimum of approximately 0.7425
at t ≈ 0.034 83, while a minimum of F fcc

th /F bcc
th is approxi-

mately 0.8072 at t ≈ 0.039 26. In the quantum limit, F
hcp
th <

F fcc
th < F bcc

th for any κa. At T � Tp, the ratios F
hcp
th /F bcc

th and
F

hcp
th /F fcc

th decrease with an increase of κa. At κa = 1 they
reach 1.066 and 1.0104, respectively. Figure 3 shows that
phonon thermodynamic properties of different lattices at fixed
κa and t may vary from each other by tens of percent.

V. TOTAL POTENTIAL ENERGY

In the harmonic approximation the total potential energy
U (which would more accurately be called free energy but we
use the same notation as in [14]) at any T consists of three
parts: the electrostatic (Madelung) energy UM , the zero-point
energy E0, and the thermal contribution Fth. At T � 5 ×
10−3Tp, the thermal contribution does not play a noticeable
role and can be neglected. At these low temperatures it is
enough to use Eq. (13).

At high temperatures (T � Tp)

Fth ≈ 3NT [uln − ln t] − 1.5Nωpu1, (15)

FIG. 3. Ratios of Fth of the bcc, fcc, and hcp lattices.

bcc

fcc

fccbcc

FIG. 4. Phase diagram of Yukawa systems at T � Tp . Squares
and circles are the results of molecular-dynamics simulations from
[14] and the solid line is the result of the harmonic lattice
approximation.

where uln = 〈ln (ω/ωp )〉. At κa = 0, ubcc
ln = −0.831 295,

which is less than ufcc
ln = −0.817 908 5 and u

hcp
ln =

−0.816 031. This situation holds at κa > 0. For instance,
at κa = 1, ubcc

ln = −0.994 814, ufcc
ln = −0.978 198, and

u
hcp
ln = −0.976 292. At any κa, the bcc lattice possesses the

smallest uln. The total potential energy U is

U

NT
= �ζ + 1.5u1

t
+ Fth

NT
= �ζ + 3[uln − ln t], (16)

where � ≡ Z2e2/aT = �p/t is the Coulomb coupling pa-
rameter. Hence, at high temperatures, the difference between
the total potential energy of different lattices is independent of
t and can be considered as a function of � and κa only.

The structural transition curve between the bcc and fcc
lattices at T � Tp is plotted in Fig. 4. The solid line shows
the result of our analytical calculations. It is similar to Fig. 2,
but now the high-temperature limit is used. In the harmonic
approximation U bcc = U fcc at

�b = 3
ufcc

ln − ubcc
ln

ζ bcc − ζ fcc
. (17)

The parameter �b is given in Table III for several κa. Values
of �b obtained from the molecular-dynamics simulations in

TABLE III. Values of �FHD
b and �b for some κa.

κa �FHD
b �b �an

b

1.2 5070 5201 5094
1.4 2325 2369 2334
2.0 1228 1422 1232
2.6 1273 1688 1274
3.6 2884 3827 2882
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hcp

bcc

FIG. 5. Structural transition curve between the bcc and hcp
Yukawa lattices at T � Tp in the harmonic lattice approximation.

[14] are shown with points in Fig. 4 and given in the �FHD
b

column in Table III. At κa < 2 and far from the melting
curve (dash-dotted line in Fig. 4), the difference between �b

and �FHD
b is small. At higher κa the discrepancy between our

results and those of [14] can be explained by the absence
of anharmonic corrections in our calculations. Analytically,
the first-order anharmonic correction to the energy of the
Coulomb crystal was calculated in Ref. [39]; for crystals with
κa > 0 no comparison is available. In Ref. [14] the correction
was approximated from numerical results as A1/� + A2/�

2.
Notice that |A1| � |A2|. If we add them to our calculations
we obtain a different �b. In Table III this �b is denoted by
�an

b and it agrees better with �FHD
b . The remaining differences,

fcc fccbcc

bcc

FIG. 6. Phase diagram of Yukawa systems at different T � Tp .
Squares are the results of molecular-dynamics simulations from [14]
and lines are the results of the harmonic lattice approximation.

especially at κa = 1.2 and 1.4, can be explained by the
insufficient accuracy of previous computations. Near κa =
1.066, �b grows very fast, so high-precision calculations are
needed.

The total energy of the hcp lattice is always higher than the
total energy of the fcc lattice, but a transition between the bcc
and hcp lattices can occur. It is plotted in Fig. 5. Typical values
of �b for this transition are an order of magnitude higher that
the typical values of �b for the bcc-fcc transition and for the
phase transition between solid and liquid. In addition, U bcc <

U hcp at any � if κa < 1.307 20.
In contrast to classical molecular-dynamics simulations,

the harmonic approximation allows us to calculate the total
energy of Yukawa crystals at T � Tp. At such T , precise
calculations of Fth should be used. According to Eq. (14), the
difference between the energies of the lattices is a function
of κa, t , and �. In Fig. 6 we plot the dependence of �b on
κa for t = 10, 0.05, 0.01, and 0.003. The solid curve for
t = 10 coincides with the solid curve in Fig. 4. A decrease of
temperature leads to an increase in �b. At low temperatures,
the thermal contribution can be neglected and �b ∝ 1/t .

VI. CONCLUSION

The model of a crystal formed by pointlike ions in the
polarized electron background is widely used in the theory
of neutron stars and white dwarfs (see, e.g., [8]). It turns out
that this model is similar to the model of a dusty strongly
coupled Yukawa crystal (see, e.g., [12]). It is shown that the
electrostatic energy in both models is described by the same
analytical equation.

The electrostatic and thermodynamical properties of
Yukawa crystals at T � Tp were widely investigated in
[11–14] by molecular-dynamics simulations. In this paper we
used the harmonic lattice approximation to calculate the total
potential energy of such crystals and to verify the results from
Ref. [14] independently. In the harmonic approximation the
total potential energy is the sum of electrostatic (Madelung),
zero-point, and thermal free energies where the latter two
contributions can be obtained from the phonon spectrum of
the lattice. This approximation is successfully used to study
the properties of crystals far from the melting point. There-
fore, at κa < 2 the structural transition between the bcc and
fcc lattices, which was obtained from molecular-dynamics
simulations in Ref. [14], is analytically proved by our model
(at T � Tp the structural transition between lattices depends
on κa and �). At higher κa the structural transition between
the bcc and fcc lattices takes place near the melting curve
(transition between the bcc lattice and the Yukawa liquid),
where the anharmonically correct ions need to be taken into
account.

Analytical harmonic calculations allow us to consider other
Yukawa lattices. In addition to the bcc and fcc lattices we
considered the hcp and MgB2 lattices. It was shown that the
MgB2 lattice is unstable. In contrast, the total potential energy
of the hcp lattice is always greater than the total potential
energy of the fcc lattice, so the structural transition studied
herein does not appear. Note that the difference between the
energies of the bcc and fcc lattices is too small and next-order
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corrections to the charge density can in principle lead to the
appearance the transition.

The harmonic model allows us to consider low-temperature
effects which are difficult to examine by numerical simula-
tions. At T � Tp the total potential energy depends on κa, �,
and t .
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