
PHYSICAL REVIEW E 98, 063110 (2018)

Nuclear-magnetic-resonance relaxation rates for fluid confined to closed, channel, or planar pores

D. A. Faux and P. J. McDonald
Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom

(Received 2 August 2018; published 26 December 2018)

Fast-field-cycling nuclear-magnetic-resonance (FFC NMR) experimentation measures the spin-lattice relax-
ation rate T −1

1 = R1 as a function of NMR frequency f . It is a proven technique for probing the nanoscale
dynamics of 1H spins over multiple timescales. In many porous systems, fluid is confined to quasi-zero-
dimensional (closed), quasi-one-dimensional (channel), or quasi-two-dimensional (planar) pores. Expressions
are presented for R1(f ) providing simulated dispersion curves for closed, channel, and planar pores where
relaxation is associated with fluid movement relative to fixed relaxation centers in the solid. It is shown that fluid
confined to nanosized (1–5 nm) spaces can be identified by submillisecond relaxation times for any geometry.
The shape and magnitude of R1(f ) is shown to be sensitive to pore geometry at low frequency only if relaxation
is dominated by the motion of pore bulk fluid. Relaxation in most porous material is dominated by slow-moving
surface fluid. Here, the pore geometry can only be distinguished if the relaxation center density is known a
priori and then only at very low frequency. Systems containing mixtures of closed, channel, and planar pores of
similar characteristic dimension h would present as three peaks at low frequency with closed pores providing the
largest R1 and planar pores the smallest. Pore size and shape variability in real systems is shown to diminish the
ability to distinguish the three peaks. We show that the ratio T1/T2, where T2 is the spin-spin relaxation time, is
a complex function of h, the surface diffusion time constant τ�, and NMR frequency for f > 1 MHz. It is shown
that measurements of T1/T2 at 20 MHz in cement paste and hydrocarbon rock capture information on both τ�

and h.
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I. INTRODUCTION

There are diverse porous material systems with important
technological applications and properties dependent on the
presence of proton-bearing fluid in nanometer-sized spaces.
Examples include shales and mudstones which contain hy-
drocarbons and water mixtures, cement-based material for
construction, biological and polymeric systems, zeolites for
water desalination, purification, and catalysis, and wood and
clays for waste storage. While standard experiments can as-
sess the macroscopic behavior of confined fluid, for example
through fluid-flow measurements, the options for probing the
intrapore nanoconfined fluid directly and nondestructively are
limited. Small-angle x-ray scattering [1–4] and quasielastic or
small-angle neutron scattering [5–9] explore morphology and
proton diffusion but rely on large facilities. Proton nuclear
magnetic resonance (NMR) relaxation analysis is the most
effective laboratory-based technique for probing the nanody-
namics of spins in fluids, usually 1H, contained in porous
material. Nuclear magnetic resonance relaxometry measures
the nuclear spin-lattice (longitudinal) or spin-spin (transverse)
relaxation times of 1H nuclei, T1 or T2, respectively. T1 and T2

depend on fluctuations in magnetic dipole-dipole interactions
due to the relative motion of pairs of spins. Relaxation may
arise due to the relative motion of like spins in the fluid,
such as water or oil, the movement of fluid spins relative to
relaxation centers at or close to the pore surfaces (for exam-
ple, paramagnetic impurities), or motion relative to dissolved
electronic spins such as aqueous paramagnetic impurity
ions [6,10–28].

This article is concerned with fast-field-cycling NMR (FFC
NMR) measurements which measure T −1

1 = R1 as a function
of Larmor frequency ω = 2πf . Conventional NMR relax-
ation measurements, by contrast, use a fixed frequency nor-
mally in the range 1–40 MHz. The NMR frequency f is de-
termined by the strength of the magnet and a fast-field-cycling
NMR dispersion experiment adjusts the magnetic field and
hence f accessing frequencies ranging from kHz to MHz. The
broad frequency range accessible in a FFC NMR experiment
means that, in principle, measurements capture information
on the dynamical processes of fluid spins over timescales
of picoseconds to microseconds. An excellent summary of
methods and applications of FFC NMR is supplied by Steele
and co-workers [29].

One difficulty with FFC NMR however is that R1(f ) dis-
persion curves are difficult to interpret due to the complexity
of fluid movement in the bulk and at the surfaces of pores of
varied geometry and connectivity. The general strategy is to
devise a simplified model that captures the key physics of the
fluid dynamics in terms of a set of dynamical nanoscale time
constants, to transform the model to a theoretical prediction of
R1(f ), and, finally, to fit to the experimental FFC NMR data.
The process yields estimates of the chosen time constants
which serve both to characterize the porous material and to
provide insight into the dynamical processes at play.

Notable work by Korb, Kimmich, Levitz, and co-
workers [10–15,18–20,26] in particular has pinpointed the
dominant physical processes that lead to relaxation for a range
of systems. In general, however, the models are sensitive to
just a single nanoscale time constant when fitted to R1(f ).
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The time constant is normally τ� (alternatively labeled τm)
which is the average time for a spin adsorbed to a pore surface
to move a specified nanoscale reference distance δ (usually
δ = 0.27 nm—this being the “size” of a water molecule or the
thickness of a water “layer”). We refer to τ� as the surface fluid
diffusion time constant reflecting its simple relationship to the
diffusion coefficient. Conventionally, the three-dimensional
(3D) formula is employed for all diffusion time constants,
namely D = δ2/6τ . Separate measurement of the ratio T1/T2

at a spot frequency can be folded into a model to provide
an estimate of the surface desorption time constant, τd (alter-
natively labeled τs). The nanoscale time constants τd and τ�

provide a measure of fluid mobility at the surface and provide
insight into surface diffusion mechanisms.

In previous papers, we were able to build on earlier work
to develop a model that produces three time constants directly
from a single dispersion curve without the need for separate
measurements of T1/T2 [30,31]. These nanoscale time con-
stants are τ� and τd as previously plus the pore bulk diffusion
time constant τb. τb is conventionally defined as the time for
water in the bulk of the pore to move a distance δ = 0.27 nm
and is related to the bulk diffusion coefficient by Db = δ2/6τb.
τb provides the link to longer-range pore-to-pore transport.
The model, called the 3τ model, was validated against plaster
paste, synthetic clay, mortar, and oil-shale systems [30,31],
providing fresh understanding of the dynamical processes
which lead to spin relaxation. Simply, the 3τ model confirms
that the complex dynamics of spins in pore spaces can be char-
acterized by three time constants: one for the motion of spins
across the surface, one for motion away from the surface, and
one for the bulk fluid. Each of the three time constants is
sensitive to different parts of the R1(f ) dispersion curve.

The introduction of the 3τ model constituted an important
step forward in the characterization of fluid-filled porous
material because the three physical quantities τ�, τd , and τb

characterize the fluid component of the system and are ob-
tained from a single FFC NMR experiment. At the nanoscale
τ�, τd , and τb may differ from pore to pore due to varia-
tions in pore surface chemistry, surface crystal orientation,
surface steps, and the presence of impurities, to list but a few.
Nonetheless, the time constants obtained from the 3τ model
provide valuable average characteristic information for the
fluid component of the porous system.

The 3τ model presented in Refs. [30] was developed for
the restricted case of a fluid confined to a planar (quasi-
two-dimensional or slab) pore of thickness h. Two important
conclusions were reached. First, the ratio τ�/τd indicated that
surface spins typically make less than 3 hops on the surface
prior to desorption for all systems studied. Therefore surfaces
need only be flat over distances 1 nm or so in order for
the 3τ model to be valid. Second, the computed relaxation
rates R1(f ) for either the surface adsorbed fluid or the bulk
fluid were found to be independent of h if h > 5 nm. The
dipolar interaction between pairs of spins is short-range,
decaying as a function of the spin-pair separation r as r−6.
Mobile spins farther than 5 nm from the surface containing
relaxation centers collectively make a negligible contribution
to the relaxation rate. This result effectively defines what is
meant by “nanoscale thickness” in the context of a FFC NMR
experiment.

However, while the 3τ model predicts that the separate
relaxation rates R1(f ) calculated for each of the surface ad-
sorbed and bulk fluid components of a pore are independent of
the planar pore thickness if h > 5 nm, the measured relaxation
rates are sensitive to h through the surface-to-volume ratio.
Over the timescale of a T1 or T2 measurement where T1, T2 �
τ�, τd, τb (the so-called biphasic regime, fast-diffusion region,
or fast-exchange limit [32]) the spins in each fluid ensemble
mix so that spins sample both environments. The measured
relaxation rates are therefore the sum of the two separate
relaxation rates weighted by the fraction xi of spins in the
ith environment. The relaxation rates associated with each
of the surface and bulk environments are sensitive to that
environment and so the measured relaxation rates are sensitive
to x and hence to the characteristic dimension h for the pore.
If, on the other hand, the two spin ensembles do not mix
over the timescale of T1 or T2 (the slow exchange regime),
the measurement will identify two separate relaxation rates.
Thus FFC NMR can potentially identify both the character-
istic dimension h for the porous material and identify fluid
components in nonmixing environments.

In porous systems, fluid may occupy a range of physical
environments each with distinctive diffusive properties offer-
ing differing R1(f ) responses. This is especially true of two
important classes of porous material: oil-bearing rock and
cementitious material. The complexity of tight-oil systems
was demonstrated by Ma and co-workers [33] using nanores-
olution x-ray tomography on a mudstone. These researchers
noted structures over length scales from nanometers to mi-
crons. Water is known to be located in a variety of environ-
ments in cement-based material where the development of
more durable, greener cement-based products has driven the
need to understand the nanoscale water environment. Water
may be trapped by quasicrystal layers in interlayer spaces
of about 1 nm, in so-called gel pores typically 3–5 nm, and
capillary spaces of up to microns in size.

In this article, we calculate the frequency-dependent R1

and R2 relaxation rates for closed, channel, and planar pores,
for pores of characteristic dimension h<5 nm. The sensitivity
of dispersion curves to the pore geometry and to h is examined
in detail. We explore whether, in principle and in practice,
a FFC NMR experiment can distinguish pore geometry. Ex-
perimentally, it is found that T1/T2 is approximately 4 for
cementitious systems (for example [23]) and in the range
5–10 for oil-bearing rock (see [26,28] and references therein).
These results are not fully understood. Here we show that
T1/T2 is a complex function of NMR frequency f , pore
dimension h, and the surface diffusion time constant τ�.

Section II describes the calculation of R1 and R2 for
cuboidal closed pores, channel pores of rectangular cross
section, and planar pores. The results are presented in Sec. III
in which the dipolar correlation function R1 and the ratio
T1/T2 are presented. The conclusions are presented in Sec. IV.

II. THEORY

The spin-lattice and spin-spin relaxation rates, R1 = T −1
1

and R2 = T −1
2 , respectively, are calculated for mobile fluid

proton spins confined to Q0D (closed) and Q1D (channel)
spaces. The expressions yielding R1 and R2 for a Q2D (slab
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or planar pore) space were presented in Refs. [30,31] and
are reproduced for completeness in Sec. II D. Here we use
the notational convention that the dimensionality n in QnD
refers to the number of non-nanoscale dimensions. Thus a
Q0D space is nanosized in all three directions.

The analysis adopts the procedure established in standard
texts [34–36] and developed in later works [30,31,37,38]. In
this work, the relaxation is assumed to be dominated by the
dipolar interaction of the confined mobile 1H protons with
fixed rare electronic paramagnetic impurity spins present in
the pore matrix. The equations are equally applicable to sys-
tems where paramagnetic impurities are absent and relaxation
is due to surface relaxation centers such as bonded hydrogen
or F centers.

The relaxation rates are [23,34]

T −1
1 = R1 = 1

3βIS[7J (ωS ) + 3J (ωI )], (1)

T −1
2 = R2 = 1

6βIS[4J (0) + 13J (ωS ) + 3J (ωI )], (2)

where βIS = (μ0/4π )2γ 2
I γ 2

S h̄2S(S + 1); γS (γI ) is the gyro-
magnetic ratio for the paramagnetic impurity (I spin) with
S = 5

2 for the common paramagnetic impurities Fe3+ and
Mn2+. The Larmor angular frequency of the impurity spin in
the applied static field is ωS =658.21ωI and ω = 2πf . The
powder-average spectral density functions J (ω) are obtained
from the cosine Fourier transformation of the powder-average
dipolar correlation function G(t ) which in turn is found from
the expression [30,31,34,39]

G(t ) = 4π

5

∫
R3

∫
R3

0

[
2∑

M=−2

Y2M(x0, y0, z0) Y ∗
2M(x, y, z)

r3
0 r3

]

×P (r, t ∩ r0) d3r0 d3r. (3)

Here P (r, t ∩ r0) is the probability density function describ-
ing the probability distribution of pairs of spins separated by
r0 at t = 0 and by r at time t . The subscript 0 on all quantities
indicates the value at t = 0.

Equation (3) incorporates powder averaging assuming a
uniform distribution of randomly orientated pores reflect-
ing the usual experimental practice of using powdered sam-
ples [39] or accepting that unpowdered samples comprise
large numbers of pores assumed to be randomly orientated
within. The Y are the spherical harmonic functions of de-
gree 2 (where the asterisk superscript represents the complex
conjugate) expressed in terms of the Cartesian coordinates
of the spin-pair vectors, d3r ≡ dx dy dz and r3 = (x2 + y2 +
z2)3/2. Cartesian coordinates are used because the Q0D pore
is cuboidal and the Q1D pore is a channel with a rectangular
cross section. Alternative geometries (cylindrical for instance)
lead to a significant increase in mathematical complexity
associated with describing the spin-pair vector constraints,
reiterating that the vectors r represent spin-pair vectors and
not the coordinates of points in the pore space.

The distribution of relaxation centers, usually paramag-
netic impurity spins located in the crystal, is represented as a
single effective layer located close to the pore-crystal interface
at a distance d from the front face of the pore fluid. The use of
an effective layer of paramagnetic impurity spins aligns with

FIG. 1. A schematic diagram is presented of a cuboidal closed
pore in which the fluid is contained in a region h1 × h2 × h3. The
upper and lower panels show the projections of the spin-pair vectors
in the (x, z) and (y, z) planes, respectively, at t = 0 (r0) and at
time t (r). The dashed lines (red) represent the effective layer of
paramagnetic spin density of size 3h1 × 3h2 placed a distance d from
the fluid volume. The cross (red) indicates a paramagnetic impurity
and acts as the origin of the spin-pair coordinate system (x, y, z) for
the particular spin pair illustrated.

previous practice (for example, [13,26,31]). The underlying
assumption is of a uniform distribution of relaxation centers
characterized by Nf , the number of relaxation centers per unit
volume. Nf acts as a linear scaling parameter in executing
fits of a model to experimental data. But, at high relaxation
center densities, the measured relaxation rates may not scale
linearly with Nf due to clustering of relaxation centers in the
solid. Consequently, the value of Nf emerging from a fit to
an experimental dispersion curve may or may not align with a
measured value of Nf .

The extent of the effective layer is the minimum size that
ensures a uniform a priori probability of a time-zero spin-pair
vector. With reference to the top diagram in Fig. 1 where
the cuboidal pore has dimension h1 in the x direction, this
criterion is achieved if the extent of the centrally placed
effective layer of paramagnetic impurity spins indicated by
the dashed red line is 3h1 in the x direction (and 3h2 in the y

direction). This requirement allows the conditional probability
density function P (r, t ∩ r0) to be written

P (r, t ∩ r0) = P (r0)P (r, t | r0)

= Nf P (x, t | x0) P (y, t | y0) P (z, t | z0) (4)

for each system where P (x, t | x0), for example, is the time-
dependent probability density function describing a pair of
spins separated by distance x at time t given that the pair were
separated by x0 at t = 0. The particular choice of effective
paramagnetic layer described in the sections below ensures
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that the a priori probability density describing the probability
per unit volume of finding a pair of spins, P (r0) = Nf , is
constant, where Nf is the number of fixed paramagnetic
impurity spins per unit volume within the solid. The effective
paramagnetic layer in Fig. 1, for example, is therefore exactly
as presented as a plane of size 3h1 × 3h2.

The spherical harmonic functions in Eq. (3) are expressed
in Cartesian coordinates and simplified to yield

G(t ) = Nf

2

∫
R3

∫
R3

0

F (x0i , xi )

r5
0 r5

3∏
i=1

P (xi, t | x0i ) dx0i dxi,

(5)

where

F (x0i , xi ) = 6
3∑

i, j = 1
j > i

x0ixix0j xj

+ 2
3∑

i=1

x2
0ix

2
i −

3∑
i, j = 1
i �= j

x2
0ix

2
j , (6)

and where the alternative notation x1 ≡ x, x2 ≡ y, x3 ≡ z is
used temporarily for succinctness.

The task is therefore to identify, for each pore system,
the three probability density functions P (xi, t | x0i ), substitute
these expressions into Eq. (5), compute G(t ), and execute the
Fourier transform, before, finally, determining the relaxation
rates through Eqs. (1) and (2). For each of the closed, channel,
and planar pores considered in Secs. II A–II D below, the
probability density functions are fully defined by five param-
eters: the volume h1 × h2 × h3 of pore space occupied by the
mobile spins, the distance d of the volume from the effective
layer of fixed paramagnetic relaxation centers contained in the
solid, and the diffusion coefficient of the spins characterized
by a time constant τ .

A. The closed (Q0D) pore

The geometry of the closed pore is illustrated in Fig. 1.
The pore is cuboidal with dimensions h1 × h2 × h3. The
effective layer of paramagnetic impurities is centrally placed
at a distance d below the pore face with dimensions 3h1 ×
3h2 as previously justified. The probability density function
P (z, t | z0) is found by a standard solution to the diffusion
equation with reflective boundaries [31,40] as

P (z, t | z0) = 1

h3

⎡
⎣1 + 2

∞∑
p=1

e−Dp2π2t/h2
3

× cos
pπ (z − d )

h3
cos

pπ (z0 − d )

h3

⎤
⎦, (7)

where the Einstein diffusion coefficient D = δ2/6τ and other
quantities are defined in Fig. 1. Note that, here as elsewhere,
it is assumed that the rotation of molecular protons on a single
molecule with respect to the magnetic field is captured within

the overall translational motion of the molecules characterized
by the diffusion coefficient D.

The probability density function for P (y, t | y0) is

P (y, t | y0)= 1

h2

⎡
⎣1

2
+

∞∑
p=1

e−Dp2π2t/h2
2 cos

pπy

h2
cos

pπy0

h2

⎤
⎦,

(8)

with the expression for P (x, t | x0) obtained by replacing y

with x and h2 with h1. These equations may be substituted
into Eq. (5) and the dipolar correlation function GQ0D(t )
computed. We can find no helpful alternative to a brute force
numerical integration of the six-dimensional integrations of
Eq. (5). Note that we use the notation GQ0D(t ) to describe the
dipolar correlation function for a volume of fluid in a closed
pore associated with a single layer of paramagnetic impurities
exactly as illustrated in Fig. 1.

It is useful to determine the short-time (t → 0) limit of
GQ0D(t ) as a check of the numerical integration. The limit
may be obtained by setting P (xi, t | x0i ) = δ(xi − x0i ) in
Eq. (5) yielding

GQ0D(0) = Nf

∫
R3

0

r−6
0 d3r0, (9)

a result that is self-evident once obtained. The low-frequency
regime of a FFC NMR dispersion curve is dependent on
the long-time behavior of G(t ). GQ0D(t → ∞) is found by
making the substitutions

P (x, t → ∞ | x0) → 1

2h1
, P (y, t → ∞ | y0) → 1

2h2
,

P (z, t → ∞ | z0) → 1

h3
, (10)

so that

GQ0D(t → ∞) = Nf

8h1h2h3

∫
R3

∫
R3

0

F (x0i , xi )

r5
0 r5

d3r0 d3r.

(11)

Again, the values of GQ0D(0) and GQ0D(t → ∞) are best
obtained by executing the integrations numerically. The im-
portant physics emerges from Eq. (11) where it can be seen
that GQ0D(t → ∞) becomes constant, independent of time,
at long times. This arises because the pore is closed, fluid
cannot escape (in this model), and the spin-pair probability
density functions become time independent. This is akin to
the rigid-ion limit and leads to a frequency-independent R1 at
low frequencies. A good example is seen in the low-frequency
portion of the R1 FFC NMR curve in Ref. [13].

The dipolar correlation function GQ0D(t ) is computed sep-
arately for bulk fluid spins and for the fluid spins at the
pore surface. The relaxation rate may then be obtained in
each case using Eq. (1). GQ0D(t ) is a function of parameters
(h1, h2, h3, d, τ ) for a cuboidal volume of fluid (surface or
pore bulk) of dimensions h1 × h2 × h3 at distance d from the
paramagnetic layer moving with a diffusion time constant τ .
Care is required in combining contributions to the relaxation
rates within the fast-exchange approximation [32]. Figure 2
presents the model used here. The bulk fluid is contained in a
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3

bulk fluid ( )

ℎ3

ℎ1

FIG. 2. A schematic diagram of a cuboidal closed pore of dimen-
sions h1 × h2 × h3 is presented showing the bulk fluid environment.
The diagram shows the x − z plane. The darker dashed line (red)
represents the effective layer of paramagnetic spin density and has
dimensions 3h1 × 3h2 as justified in the text. Equivalent paramag-
netic layers are shown as lighter dashed lines (pink).

single volume with dimensions h1 × h2 × h3. The calculation
of GQ0D(t ) via Eqs. (5), (7), and (8) is for a single layer
of relaxation centers as illustrated in Figs. 1 and 2 but the
identical ensemble of bulk spins interacts with each of the six
layers of relaxation centers surrounding the cuboidal pore as
illustrated in Fig. 2. Therefore

Rb = 2RQ0D(h1, h2, h3, 3δ, τb ) + 2RQ0D(h3, h1, h2, 3δ, τb )

+ 2RQ0D(h2, h3, h1, 3δ, τb ), (12)

where Rb is the relaxation rate due to the fluid in the bulk of
the pore.

The dipolar correlation function for the fluid at the pore
surfaces is calculated by considering the relaxation associated
with each of three surface ensembles A, B, and C with re-
spect to a single effective layer of paramagnetic impurities as
illustrated in Fig. 3. The surface fluid is assumed to comprise

ℎ1

surface fluid ( ℓ)
ℎ3

A

B

C

FIG. 3. A schematic diagram of a cuboidal closed pore of di-
mensions h1 × h2 × h3 is presented showing the surface fluid en-
vironments. The diagram shows the x − z plane. The three assumed
non-mixing surface layer ensembles are labelled A, B and C. The
dashed line (red) represents the effective layer of paramagnetic spin
density and has dimensions 3(h1 + 2δ) × 3(h2 + 2δ).

FIG. 4. A schematic diagram of a channel pore of infinite length
in x and with a rectangular cross section of dimensions h2 × h3

is presented. The upper and lower figures show the projections on
the spin-pair vectors in the (x, z) and (y, z) planes, respectively, at
t = 0 (r0) and at time t (r). The cross (red) indicates a paramagnetic
impurity and dashed lines (red) represent the effective layer of
paramagnetic spin density placed a distance d from the pore.

a layer of thickness δ = 0.27 nm, a distance large enough
to accommodate a single water layer. The fluid adhered to
the surfaces is assumed to comprise distinct, nonmixing en-
sembles. One ensemble, labeled A, is the layer closest to the
effective layer of paramagnetic impurities and, with reference
to Fig. 3, RA = RQ0D(h1, h2, δ, 2δ, τ�). Ensemble B is a layer
of fluid at the surface of the closed cuboidal pore at the side
of the pore. For the specific ensemble B illustrated in Fig. 3,
RB = RQ0D(δ, h2, h3, 3δ, τ�). Four similar B ensembles exist
for the closed cuboidal pore. Finally, ensemble C is the layer
at the opposite face of the cuboidal pore to the layer of para-
magnetic impurities considered in the calculation. Thus (see
Fig. 3) RC = RQ0D(h1, h2, δ, 3δ + h3, τ�), and the relaxation
rate for all six surface fluid components combined gives

R� = RQ0D(h1, h2, δ, 2δ, τ�) + 2RQ0D(δ, h2, h3, 3δ, τ�)

+ 2RQ0D(h1, δ, h3, 3δ, τ�)

+RQ0D(h1, h2, δ, 3δ + h3, τ�). (13)

B. The channel (Q1D) pore

A schematic diagram of the model channel pore is pre-
sented in Fig. 4. The channel pore has a rectangular cross
section of dimensions h2 × h3 and is infinite in extent in
the x direction. The probability density functions P (z, t | z0)
and P (y, t | y0) are given by Eqs. (7) and (8), respectively.
The probability density function describing a pair of spins
separated by distance x at time t given that the pair were
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separated by x0 at t = 0 is

P (x, t | x0) = e−|x−x0|2/4Dt

(4πDt )1/2
. (14)

Transformation of Eq. (14) into an integral equation via

P (x, t | x0) = 1

2π

∫ ∞

−∞
e−Dtk2

e−ikx0eikx dk (15)

enables the integrations over x0 and x to be undertaken
analytically. This leads to

GQ1D(t )= Nf

2π

∫ ∞

0
e−Dtk2

dk

[∫
R2

∫
R2

0

P (y, t | y0) P (z, t | z0)

× X(y0, y, z0, z) d2r0 d2r
]
, (16)

where

X(y0, y, z0, z) = 8

3
k2K ′

1(kw0)K ′
1(kw)

[
1 + k2(y0y + z0z)

− 2(y0z − z0y)2

w2
0w

2

]

+ 8

3
k4K0(kw0)K0(kw)

[
1 − (y0z − z0y)2

2w2
0w

2

]

+ 8

3
k3[K0(kw0)K ′

1(kw)+K0(kw)K ′
1(kw0)]

×
[

1

2
− (y0z − z0y)2

w2
0w

2

]
, (17)

where w2 = y2 + z2, K ′
1(kw) = K1(kw)/w, and K0 and K1

are modified Bessel functions of the second kind. Equa-
tion (16) has reduced two triple integrals to two double
integrals at the cost of an integration over the Fourier variable
k. The primary advantage of this approach, however, is that
two troublesome numerical integrations over x0 and x over
the range −∞ to +∞ are avoided. All remaining integrations
are evaluated numerically.

It is again useful to determine the dipolar correlation
function GQ1D(t ) in the limits of t = 0 and t → ∞. As before,
setting P (xi, t | x0i ) = δ(xi − x0i ) yields

GQ1D(0) = Nf

∫
R3

0

1

r6
0

d3r0, (18)

but this time the integrations can be completed analytically.
The final result is

GQ1D(0) = πNf

12 h3
2

[H (d ) − H (d + h3)], (19)

where

H (z) = 2z4 + z2h2
2 + 2h4

2

z3
√

z2 + h2
2

. (20)

The long-time limit of GQ1D(t → ∞) is proportional to t−1/2

and found by taking the appropriate limits in real or Fourier
space. Making the substitutions

P (x, t → ∞ | x0) → (4πDt )−1/2,

P (y, t → ∞ | y0) → 1

2h2
, P (z, t → ∞ | z0) → 1

h3
(21)

into Eq. (5) followed by analytical integrations yields

GQ1D(t → ∞) = 4Nf

√
6τ

3
√

π h2h3δ

[
tan−1

(
d

h2

)

− tan−1

(
d + h3

h2

)]2

t−1/2. (22)

The procedure for finding the separate relaxation rates associ-
ated with the bulk fluid (Rb) and the surface fluid (R�) follows
that presented in Sec. II A with reference to Fig. 3. For the
channel pore, which is infinite in extent in the x direction,
GQ1D(t ) for the bulk contribution is defined by the parameter
set (h2, h3, d, τ ) and so

Rb = 2RQ1D(h2, h3, 3δ, τb ) + 2RQ1D(h3, h2, 3δ, τb ).

(23)

For the surface fluid,

R� = RQ1D(h2, δ, 2δ, τ�) + 2RQ1D(δ, h3, 3δ, τ�)

+RQ1D(h2, δ, 3δ + h3, τ�). (24)

C. The line channel

It is useful to affirm the results emerging for the Q1D
channel pore presented in Sec. II B with a simplified system.
The line channel is unbounded in x (as for the Q1D channel)
but has a square cross section sufficiently small so that the
probability density function is uniform at all times in the y-z
cross section. Thus it is sufficient to place h2 = h3 = δ. In
addition, the layer of paramagnetic impurities is infinite in
extent in the y direction, rather than of dimension 3h2 for the
full channel pore in Sec. II B. The benefits of exploring the
line channel are that most integrations now become analytic,
the key physics is clarified, and the solution serves as a check
of the Q1D channel pore results in the limit of a narrow pore.

For the line channel,

P (z, t | z0) = 1

δ
, where z = z0 = d, (25)

P (y, t | y0) = δ(y − y0), (26)

P (x, t | x0) = (4πDt )−1/2 e|x−x0|2/4Dt . (27)

Equation (25) arises because there is only one value of z0, d,
regardless of the location of a paramagnetic impurity spin in
the effective layer as can be seen in Fig. 4. The probability
density is uniform across the nominal thickness δ of the line
channel in the z direction. The expression for P (y, t | y0) in
Eq. (26) arises because the y coordinate of spin-pair vectors
will always be the same as y0 regardless of how the spin moves
along the line channel. However, the value of y0 changes with
the position of the paramagnetic impurity spin in the effective
layer and so integration over y0 is still required. P (x, t | x0)
in Eq. (27) is the standard solution to the diffusion equation
in 1D.

The equations (25)–(27) are substituted into Eq. (5)
and simplified. The replacement of the real-space form of
P (x, t | x0) of Eq. (27) using Eq. (15), executing the integrals
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TABLE I. List of parameters.

Parameter Value Comments

βIS 1.468 × 10−21 m6/s−2 Constant in Eqs. (1) and (2)
δ 0.27 nm Nanoscale reference length
dσb 3δ Distance from effective paramagnetic layer to bulk fluid
dσ� 2δ Distance from effective paramagnetic layer to surface fluid
Nf 1 spin/nm3 Value chosen for presentation of G(t ) results
Nf 0.01 spins/nm3 Value chosen for presentation of R1 (typical for mortar/shale [13,26])
τb 20 ps Diffusion time constant for bulk fluid [31]
τ� 0.1 μs Diffusion time constant for surface fluid (except for Fig. 13)
τd = τ� Surface fluid desorption time constant

where possible, and simplifications yield

Glc(t ) = 4Nf δ

3π

∫ ∞

0
e−Dtk2

k2dk

×
∫ ∞

−∞

[
k2 K2

0 (kw0) + k K0(kw0)K ′
1(kw0)

+ K ′ 2
1 (kw0) (1 + w2

0k
2)

]
dy0, (28)

where w2
0 = y2

0 + d2 and, as before, K ′
1(kw0) = K1(kw0)/w0

and K0 and K1 are modified Bessel functions of the second
kind.

The limits of G(t ) at t = 0 and t → ∞ are found to be

Glc(0) = πNf δ

2d4
(29)

and

Glc(t → ∞) = Nf

√
6πτ

3d3
t−1/2. (30)

D. The planar (Q2D) pore

The dipolar correlation function for mobile spins con-
fined to an infinite plane of thickness h3 was determined in
Ref. [31]. The result is

GQ2D(t )= 4Nf

5δ3�

∫ ∞

0
e−tκ2/6τ κ

⎡
⎣H (κ )+2

∞∑
p=1

Ep(t ) Cp(κ )

⎤
⎦dκ,

(31)

where κ = kδ is the dimensionless Fourier variable and � =
h3/δ is the thickness of the Q2D fluid in units of δ. The
functions are

Ep(t ) = e−p2π2t/6�2τ , (32)

H (κ ) = 5π

3
(eκ� − 1)2e−2κ (�+�), (33)

Cp(κ ) = 5πκ4�4[eκ� − (−1)p]2e−2κ (�+�f Y )

3 (κ2�2 + p2π2)2
,

(34)

where � = d/δ is the distance between the fixed spins and the
fluid in units of δ. Note the minor correction in the numerator
of Eq. (31) compared to Eq. (17) of Ref. [31].

The dipolar correlation function GQ2D(t ) is determined by
the parameter set (h3, d, τ ) and so, for the contribution due to
the bulk fluid, we have

Rb = 2RQ2D(h3, 3δ, τb ) (35)

and, for the surface fluid,

R� = RQ2D(δ, 2δ, τ�) + RQ2D(δ, 3δ + h3, τ�). (36)

III. RESULTS

The expressions presented in Sec. II permit the compu-
tation of R1(f ) = T −1

1 (f ) and R2(f ) = T −1
2 (f ) at NMR

frequency f for Q0D (closed), Q1D (channel), and Q2D
(planar) pores. Quantitative results are presented for relax-
ation due to the interaction of the mobile pore fluid with
rare fixed paramagnetic impurities of spin S = 5

2 contained
in the solid. The calculations are easily adapted for surface
relaxation centers, such as bound OH groups or F centers, by
placing d ≈ δ and changing βIS as appropriate. Values of the
parameters used in the present work are presented in Table I.

In the results that follow, the number of fixed paramagnetic
spins per unit volume, Nf , is set to 1 for the purpose of
generating results for the dipolar correlation function, G(t ),
but Nf = 0.01 spins/nm3 is assumed for the calculation of
the relaxation rates so as to obtain quantitative estimates of the
relaxation rates for systems in which relaxation is dominated
by the presence of paramagnetic impurities. The latter is
similar to both the effective density of Mn2+ paramagnetics
in an oil shale sample [26] and also to the Fe3+ density in
mortar [13]. The bulk diffusion correlation time τb = 20 ps
for all systems studied. In all applications of the 3τ model, τb

was found to lie in the range 10–40 ps for water and 10–20 ps
for light liquid alkanes [31]. Similarly, the range of values of
τ� is chosen to be consistent with those emerging from fits to
experimental data for a variety of porous systems [31].

Fluid contained in a pore with a dimension in excess of
5 nm yields relaxation times similar to that at 5 nm [30,31].
This is true whether or not a system is relaxed via the presence
of paramagnetic impurities. Consequently, nanoscale dimen-
sions, which are labeled by the symbol h, are set to values in
the range 1–5 nm. The smallest dimension (1 nm) comprises
about 4 “layers” of water. Thus a planar pore is characterized
by a single nanoscale dimension h<5 nm with the remaining
two dimensions infinite in extent. The channel and closed
pores have two and three nanoscale dimensions, respectively.
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(a) (b) (c)

FIG. 5. Schematic diagram illustrating random orientation of identically sized (a) closed cubic pores, (b) channel pores with square cross
section, and (c) planar pores.

A. R1( f ) for bulk fluid in systems containing
identical pore geometry

The first study explores the behavior of the dipolar cor-
relation function G(t ) and spin-lattice relaxation rate R1(f )
associated with the fast-moving bulk fluid confined to closed,
channel, or planar pores. The contribution to G(t ) and
R1(f ) due to adsorbed slow-moving fluid at the pore sur-
faces is postponed until Sec. III B. The results presented in
Figs 6–11 are therefore directly applicable to systems in
which the surface and bulk fluid have a similar diffusion
coefficient (τ� ≈ τb), or when the surface layer is bound to
the pore surface for timescales exceeding either T1 or T2

(τ� > T1, T2). The objective here is to establish the general
characteristics of the dipolar correlation function G(t ) and
the spin-lattice relaxation rate dispersion R1b(f ) for each
pore geometry and to check the computations against known
limits.

The systems are illustrated in Fig. 5. Each system may con-
tain pores which are differently oriented but are all identical
in size. First, cubic closed pores are considered. The dipolar
correlation function G(t ) was obtained by direct numerical
integration of Eq. (5) using the probability density functions
presented in Sec. II A. G(t ) is presented in Fig. 6(a) for cube
side lengths of h = 1, 3, or 5 nm. G(t ) decays as t increases
tending towards G(t ) ∝ t−3/2 consistent with unconstrained
3D motion. The reflective boundary conditions come into play
and in the long-time limit G(t ) is constant as expected for
a closed pore. Vertical lines in Fig. 6(a) are placed at the
point where the magnitude of the gradient of G(t ) is greatest.
This provides an indicative time for the transition from 3D
diffusion to 0D diffusion and is consistent with the time it
takes, on average, for a spin to cross the pore, that is, to move
a distance h.

The Fourier transform of G(t ) yields J (ω) and the relax-
ation rates are obtained via Eq. (1) as described in Sec. II A.
The Fourier transform is calculated numerically for an integer
number of cosine cycles such that the final cosine cycle ter-
minates in the region where G(t ) is constant (to 3 significant
figures over a time decade). The spin-lattice relaxation rate
R1b is presented as a function of frequency f in Fig. 6(b). The
flattening of R1b at low frequencies consistent with trapped
fluid is clearly visible for cubic pores with dimensions h <

2 nm or less.

We now turn our attention to channel (Q1D) pore systems.
The channels have square cross sections with side lengths
of h = 1, 2, 3, 4, or 5 nm and are infinite in length. The
dipolar correlation function G(t ) was evaluated by numerical
computation of Eqs. (16) and (17) presented in Sec. II B. The
dipolar correlation function G(t ) is presented in Fig. 7(a). At
long times G(t ) ∝ t−1/2 for channel pores, characteristic of
1D diffusion, but despite the rapid motion of the bulk fluid
with a diffusion correlation time of τb = 20 ps, the t−1/2
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FIG. 6. (a) The dipolar correlation function G(t ) and (b) the
spin-lattice relaxation rate R1b are presented for a system of fluid-
filled cubic closed pores. In (a), the vertical lines indicate the
maximum magnitude of the gradient.
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FIG. 7. (a) The dipolar correlation function G(t ) is presented for
a system of fluid-filled channel pores with a square cross section.
Guide slopes labeled t−3/2 and t−1/2 are provided as G(t → ∞) for
3D and 1D motion, respectively. Results for the line channel are
also presented. The corresponding spin-lattice relaxation rate R1b is
presented in (b). The ω−1/2 form at low frequencies is shown for
comparison. Parameters are indicated in Table I.

long-time limit is not reached until about 100 000 ps for
the channel pores with 1 × 1 nm cross section. This result
emphasizes the danger of taking a known long-time limit for
G(t ) as a basis for a simplified diffusion model to yield G(t ).
For comparison, the long-time limit G(t ) ∝ t−3/2 for 3D bulk
diffusion is shown as the red line in Fig. 7(a). The thickest
pore, with cross section 5 × 5 nm, almost attains this limit
before the effect of the pore walls is felt.

The equations for G(t ) for a simplified geometry, the line
channel, were presented in Sec. II C and are also shown
in Fig. 7(a) for comparison. Here, the cross section has
dimensions δ × δ and the fluid is assumed to be uniformly
distributed in the cross section at all times. The dipolar corre-
lation function for the line channel has the same functional
form as for the Q1D channels but is larger because the
integrations in the y direction are executed analytically in
Sec. II C over the range −∞ < y, y0 < ∞ in contrast to the
range −h2 < y, y0 < h2 for the channel pore in Sec. II B.

The spin-lattice relaxation rate R1b for the square cross-
section channel pores is calculated from G(t ) as described
in Sec. II B and presented in Fig. 7(b). The frequency de-
pendence of R1b is different from that of the closed pore
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0.001

0.01

0.1

1

10

0.1 10 1000 100000t (ps)
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FIG. 8. (a) The dipolar correlation function G(t ) is presented for
a system of fluid-filled planar pores of thickness h. Other parameters
are indicated in Table I. A guide slope labeled t−2 is provided
representing the long-time limit of G(t ). In (b), the corresponding
spin-lattice relaxation rate R1b is presented.

and the relaxation rates are higher. The dispersion curves are
insensitive to channel pore size h at frequencies greater than 1
MHz. R1b increases rapidly for the narrower pores at the lower
frequencies because the probability of return of a spin to its
position at t = 0 increases as the pore dimensions decrease.
The low-frequency limit of the dispersion curve is determined
by the long-time behavior of G(t ). For channel pores, G(t ) ∝
t−1/2 as shown in Fig. 7(a) which leads to a ω−1/2 dependence
of R1b at low frequencies [41]. Sample ω−1/2 lines are drawn
for h = 1, 2, and 3 nm pores in Fig. 7(b) and matched to
the dispersion curve in each case. The dispersion curves are
clearly tending to the ω−1/2 form at low frequencies but
only at very low frequency. The larger channel pores will
only reach this limiting form at frequencies f  20 kHz.
Figure 7 therefore highlights the danger of associating the
functional form of the decay of a dispersion curve obtained
from a FFC NMR experiment with a diffusion mechanism.
The characteristic low-frequency behavior may only be seen
outside the frequency range of the experiment.

The dipolar correlation function for planar pores is ob-
tained from Eqs. (31)–(33) in Sec. II D and presented in
Fig. 8(a). These calculations were originally produced in
reference [31] and are presented here for ease of comparison.
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FIG. 9. (a) The dipolar correlation function G(t ) is presented for
bulk fluid contained in a closed (orange dotted), channel (red dashed)
and planar (green solid) pores of characteristic dimension h = 3 nm.
In (b), the corresponding spin-lattice relaxation rate R1b is presented.

For the planar pores, G(t ) ∝ t−2 at long times as shown in
Ref. [38] and proved in [31]. The reduced impact of the
single boundary results in dipolar correlation functions which
are only weakly dependent on h. Figure 8 presents the R1b

dispersion which correspondingly shows a weak pore-size
dependence.

We now contrast and compare on the low-frequency limits
of the R1b dispersions for each pore geometry. Referring back
to the closed pore, Fig. 6 clearly shows that R1b is constant
in the frequency range of a FFC NMR measurement for
cubic closed pores of h = 3 nm or less. In the case of the
channel pore, the expected constant low-frequency limit is
only seen for the narrowest channels, that is, with a square
cross section of h � 2 nm. For the planar pore, the expectation
is that R1b tends to a constant as f → 0, as first demonstrated
by Avogadro [42], but this is not apparent in Fig. 8. We
have checked by calculating R1b for very low frequencies
and confirmed that the relaxation rate does indeed tend to a
constant but that the flattening of the dispersion curve occurs
only at frequencies less than about 10 kHz. Note that these
rates are combined using Eq. (38) to find R1. R2 is found
separately by the same method but using Eq. (2), and T1/T2

always tends to 1 at low frequency.

The effect of pore dimension is starkly revealed in Fig. 9.
Figure 9(a) presents the dipolar correlation function for pores
of different geometry but with a single characteristic dimen-
sion of 3 nm. Thus, a system of 3 × 3 × 3 nm cubic pores is
compared with a system of 3 × 3 nm channel pores and planar
pores of thickness 3 nm. The initial G(t ) is similar for the
closed, channel, and planar pores as spins decorrelate as for
a 3D fluid. The impact of the 3 nm confining dimension(s) is
not apparent at short times. The curves diverge at t ≈ 10 000
ps to adopt the long-time t0, t−1/2, and t−2 forms for closed,
channel, and planar pores, respectively. The long-time behav-
ior is clear in Fig. 9(b) which shows that the R1b dispersion
is similar at frequencies f > 10 MHz but has a strong depen-
dence on geometry at low frequencies, especially for f < 0.1
MHz. This result suggests that measurements of R1 at spot
frequencies of order 10 MHz would not distinguish pore type
even with the idealized systems represented in Fig. 9(a) but
that FFC NMR can, in principle, make the distinction at
frequencies less than 0.1 MHz where the dispersion shapes
differ.

B. R1( f ) for “real” systems

The dipolar correlation function G(t ) and the spin-lattice
relaxation rate R1(f ) for ideal closed, channel, and planar
pores were presented Sec. III A assuming that relaxation was
due to the interaction of the bulk fluid with a density of
paramagnetic impurity spins contained in the pore walls.
The numerical calculations were completed for a volume of
fast-moving bulk fluid with a characteristic diffusion time
constant τb = 20 ps. The key physics responsible for the form
of G(t ) and hence R1(f ) for each pore type was explained
and the numerical computations of the equations presented
in Sec. II were checked against known limits. Having vali-
dated the equations presented in Sec. II and the subsequent
computations, we now execute calculations using parameters
typical of those obtained from the application of the 3τ model
to FFC NMR dispersion curves from mortar and oil-bearing
rock [13,26,30,31]. In these systems, it is known that the
interaction of mobile 1H spins with paramagnetic impurities
dominates the relaxation rate.

The objectives are to establish whether it is possible in
principle for a FFC NMR experiment to distinguish between
pore geometry, to estimate the sensitivity of R1(f ) to pore
size and shape variation, and to demonstrate the dependence
of the relaxation time ratio T1/T2 on NMR frequency f ,
surface diffusion time constant τ�, and characteristic pore size
h. In doing so we acknowledge that real nanoporous systems
contain fluid in pores with distributions of geometric shapes
and sizes.

A system is presented schematically in Fig. 10(a). Relax-
ation is associated with the motion of spins in each of two
environments. One contribution to the relaxation rate, labeled
R1b, is due to the interaction of the fixed relaxation centers in
the solid and the fast-moving bulk fluid. The second, R1�, is
due to the interaction of the fixed relaxation centers with the
fluid at the solid surfaces. The contribution due to surface fluid
and bulk fluid spin interactions are negligible in comparison.

The contribution R1b is calculated as described in
Sec. II with results presented in Sec. III A. The relaxation
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FIG. 10. (a) A schematic diagram of the system used to calcu-
late R1 comprising a combination of surface and bulk fluid. This
schematic example is for a closed or channel pore of square cross
section. Presented in (b) is a representation of a model pore with a
mean dimension of 3 nm and a standard deviation of 1 nm.

associated with the interaction of the surface fluid of thickness
δ = 0.27 nm with the layer of paramagnetic impurities is
calculated via G�(t, τ�) which is a function of the surface
diffusion time constant τ� as described in Sec. II. The desorp-
tion time constant τd is introduced via an exponential decay
term exp(−t/τd ) which describes the decay of the number of
spins contained in the surface layer. A schematic diagram is
provided in Fig. 10(a). Therefore

G�(t, τ�, τd ) = G�(t, τ�) exp(−t/τd ) (37)

by assumption which excludes the possibility of desorbed
spins returning to the surface at a later time. This approach
was fully justified in previous work with planar pores [30,31]
because the pore thickness h was very large and the proba-
bility of return was negligible, but becomes less satisfactory
for nanosized pores, especially for closed pores containing
trapped fluid. The exponential in Eq. (37) decays to zero
whereas of course it should decay to x, the fraction of spins at
the surface. However, bearing in mind a number of other more
significant uncertainties, particularly the choice of values for
τ�, τd , δ, and d embedded in the 3τ model, this approximation
is of little consequence.

In the analysis that follows τb = 20 ps (as previously)
which is typical of water and hydrocarbons, and τ� = τd =
100 ns typical of values seen in previous work [31]. Note
that τ� = τd � τb. The relaxation rate, in accordance with the
fast-diffusion approximation [32], is then given by

R1 = xR1� + (1 − x)R1b, (38)

where x is the fraction of spins in the surface layer (equivalent
to the surface-to-volume ratio) and where R1� and R1b are the
rates associated with the surface layer and bulk fluid respec-
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FIG. 11. The spin-lattice relaxation rate R1 dispersion is pre-
sented for closed cubic pores (green curves with the largest R1),
channel pores with square cross-section (red curves) and planar pores
(blue curves with the smallest R1). In each case, the short dash
(upper) and long dash (lower) curves are for nano-sized dimensions
of 2 nm and 4 nm respectively. The solid lines (almost coincident) are
for a nano-sized dimension of 3 nm but where the dispersion curves
for the channel and closed pores assume different paramagnetic
impurity densities as described in the text.

tively. An identical expression applies for R2. All parameters
are presented in Table I.

Figure 9(b) demonstrates that the shape of the R1b disper-
sion is most sensitive to the pore shape at low frequencies (1
MHz or less). We now examine the sensitivity of R1(f ) to
pore geometry including the contribution from both bulk and
surface fluid in accordance with Eq. (38). In addition, we de-
termine the spread of R1 for each pore type taking into account
a reasonable pore-size variability by assuming that a sample
contains pores with characteristic dimension h as a Gaussian
distribution with a mean of 3 nm and a standard deviation of
1 nm as illustrated in Fig. 10(b). Thus, for closed pores h1 =
h2 = h3 = 3 nm with a standard deviation of 1 nm, similarly
for the channel and planar pores. Taking the closed pore as an
illustration, it is found that the relaxation rates for combina-
tions of pore size for each of the three sides (h1, h2, h3) are
contained within the envelope formed by the minimum and
maximum cube. Thus the relaxation rates formed of the cubes
(2,2,2) and (4,4,4) contain (2,2,4), (2,3,4), (3,4,4) and so forth
for all combinations. Figure 11 therefore presents R1(f ) for
each of the closed, channel, and planar pores via two curves
for h = 2 nm and 4 nm representing the range of relaxation
rate for pores of characteristic dimension h = 3 nm with one
standard deviation variation in pore dimension.

The results presented in Figs. 11 and 12 are computed for
cubic closed pores, channel pores with square cross section,
and planar pores. The variation of geometry for cuboidal
pores, for instance, has been shown to be contained with the
extremes of 2 × 2 × 2 nm and 4 × 4 × 4 nm pores. We argue
that these results are also applicable to the wide range of
pore geometries anticipated in real systems, such as cylinders,
spheres, and ellipsoids, provided the maximum and minimum
dimensions of the pore lie in the range 2–4 nm. Since τ� ≈
τd , the vast majority of spins at the surface of a pore will
only execute 0, 1, or 2 hops within the surface (at most
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FIG. 12. The figure provides a simulated spin-lattice relaxation
rate R1 response from a system containing equal volumes of fluid
in closed, channel and planar pores at a frequency f =100 kHz.
The Gaussian curves are estimated for h = 3 ± 1 nm pores for
closed cubic pores (green and at right), channel pores of square
cross-section (red and central) and planar pores (blue and at left) with
the combined response (black).

0.5 nm) before desorption. Few spins will explore a jagged
or curved surface prior to desorption and so the relaxation
physics pertaining to alternative geometries will be captured
by Figs. 11 and 12.

Figure 11 shows that the relaxation rates are high and the
relaxation times are short, for all pore types. The dispersions
are dominated by the contribution due to the surface spins.
This is because these spins are closest to the paramagnetic
spins located in the pore walls and because the diffusion and
desorption of the surface mobile spins are slow compared to
the movement of the bulk spins. Further, referring to Fig. 3,
for closed and channel pores, RA � RB � RC , and for planar
pores RA � RC . Not only is R1� � R1b but x, the surface-
to-volume ratio, is larger for nanosized pores compared to
thicker pores. Submillisecond relaxation times are indicative
of nanoconfined fluid. Such short relaxation times are not
easily accessible in FFC NMR measurements. However, the
rates are proportional to the paramagnetic relaxation center
density assumed here to be Nf = 0.01 spins/nm3. R1 is
proportional to Nf and so a FFC NMR measurement might
signal nanosized pores at low frequency if the density of
paramagnetic relaxation centers is low.

The importance to the analysis of a supplementary mea-
surement of the paramagnetic spin density is clearly evident
for systems in which relaxation is dominated by this mecha-
nism. The relaxation rates are also proportional to βIS which
in turn is proportional to the square of the gyromagnetic
ratio and to the product S(S + 1) where S is the spin of the
relaxation center. The analysis presented here is easily adapted
to systems without paramagnetic impurities, such as synthetic
clays, plaster, biomaterials, and others where relaxation is
dominated by surface relaxation centers including chemically
bound protons at the pore surface, for example as OH groups.

The similarity of the shape of the dispersion curves in
Fig. 11 is due to the dominance of R1� to the measured re-
laxation rate. The interaction of the slow-moving surface fluid
with the layer of paramagnetic impurities is nearly indepen-

dent of pore geometry. To illustrate the point, three additional
curves are presented: a 3 nm planar pore with paramagnetic
spin density Nf = 0.01 spins/nm3, a 3 nm channel pore with
Nf = 0.0054 spins/nm3, and a 3 nm closed pore with Nf =
0.0034 spins/nm3. The three curves almost coincide.

In summary, the presence of nanosized pores is indicated
by the high values of relaxation rate. Collectively, these results
suggest that a system containing a mixture of fluid-filled cubic
pores, channel pores of square cross section, and planar pores
each with a characteristic nanodimension h will present in a
FFC NMR experiment as three distinct peaks at low NMR
frequencies with the highest, middle, and lowest R1 associated
with the closed, channel, and planar pores, respectively. If, on
the other hand, a system contains pores of a single geometry,
it would not be possible to identify the pore geometry (closed,
channel, or planar) unless the paramagnetic spin density was
known a priori (for instance by electron spin resonance mea-
surement). As a note of caution, even if the paramagnetic spin
density were measured, clustering in the solid or desorption
of surface spins into the fluid may provide a different effective
density of relaxation centers.

We now suppose that a sample contains a mixture of closed
pores, channel pores, and planar pores each with a Gaussian
distribution of the nanoscale dimension h with mean 3 nm and
standard deviation of 1 nm. In principle, Fig. 11 shows that a
FFC NMR measurement could identify the fluid in each pore
type provided there was no movement of the fluid between
pores types over the timescale of T1 or T2. Under these
circumstances, three characteristic relaxation rates would be
observed at low frequency with the highest rate associated
with the closed pores, the second highest with the channel
pores, and the smallest rate by the planar pores. The intensity
of each peak would be proportional to the number of spins in
each pore geometry.

Simulated measurement at a frequency of 100 kHz is
presented in Fig. 12 for a mixed system with equal numbers
of spins in planar, channel, and closed pores. Each peak is
represented as a Gaussian distribution which approximates
the spread of relaxation rate indicated in Fig. 11 for each
geometry. The spread of R1 is broad and it becomes difficult
to distinguish the contributions from the separate pore type.
Thus, variability of nanoscale pore size diminishes the ability
of a FFC NMR experiment to identify pore type at low
frequency.

C. The relaxation time ratio T1/T2

We now turn our attention to the ratio T1/T2 which is found
from T1-T2 exchange measurements to be approximately 4 for
white cement paste [23] and in the range 5–10 for oil-bearing
rock (see [26,28] and references therein) at f = 20 MHz. The
planar pore was used successfully within the 3τ model to fit
to dispersion curves of mortar [13] and oil-bearing rock [26]
and justified in Ref. [31]. We therefore calculate the frequency
dependence of T1/T2 for a planar pore only for thicknesses
h = 3, 30, and 100 nm and for surface diffusion time constants
τ� of 100 ns, 200 ns, and 400 ns. Once again, τb = 20 ps with
τd = τ�.

The ratio T1/T2 is presented in Fig. 13 and found to be a
complex function of three variables: NMR frequency f , pore
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FIG. 13. The ratio T1/T2 is presented as a function of frequency
for a selection of values of τ� and h for a planar pore. The vertical
bars are at a spot frequency of 20 MHz and represent the range of
T1/T2 ratio observed in cement pastes (lower bar) and hydrocarbon
rock (upper bar).

thickness through x in Eq. (38) (the surface-to-volume ratio),
and τ�. Figure 13 shows that T1/T2 is nearly 1 at frequencies
below about 500 kHz but changes rapidly in the range f > 1
MHz typical of T1-T2 experiments. T1/T2 may be determined
experimentally from T1-T2 exchange measurements under-
taken at a spot frequency. The vertical bars at 20 MHz reflect
the ranges of T1/T2 found in cement material and hydrocarbon
rock. Each bar straddles a significant region of (τ�, h) space.
T1-T2 exchange measurements at two or more spot frequencies
would provide the critical information needed to characterize
h and τ� for the material.

The ratio T1/T2 ≈ 4 is approximately constant for various
types of cement paste. Figure 13 shows that T1/T2 is least
sensitive to h and to τ� at large values of h and long τ�. It has
been suggested that the large values of T1/T2 observed from
oil-bearing rock are due to the bulk diffusion of hydrocarbons
within pores of reduced dimensionality [26,28]. The results
presented here show that this is not the case. We have shown
that regardless of pore geometry, the relaxation rate response
is dominated by the monolayer of surface fluid. This is true
regardless of pore geometry as demonstrated in Fig. 11.

T1/T2 is also cited as being linked to “surface affinity.”
Surface affinity is defined in terms of energy and is a property
of the energy of interaction of a droplet of fluid with both
the solid surface and the fluid that surrounds it. We find that
T1/T2 is strongly dependent on τ�. τ� is a measure of surface
mobility which is most certainly related to surface affinity.
Consequently, we agree that T1/T2 is linked to surface affinity
through τ� but not in a simple way due to the additional
complex dependence on h and f . It is not the case that T1/T2

can be used as a measure of surface affinity but a direct
measure of surface mobility can be obtained from FFC NMR
measurement analyzed using the 3τ model to find τ�.

IV. CONCLUSIONS

The equations allowing computation of the dipolar corre-
lation function G(t ) and hence the spin lattice (longitudinal)
and spin-spin (transverse) NMR relaxation rates, R1 and R2,
are presented for closed and channel pores. The frequency

dependence of R1 and R2 is computed for 1H-bearing fluid
contained in nanosized closed, channel, and planar pores
for relaxation associated with spin motion relative to fixed
relaxation centers contained in the solid. The computations are
validated against known limiting forms for the bulk fluid com-
ponent of filled pores. The results for R1(f ) for cubic closed
pores of dimension h = 1–5 nm containing only bulk fluid
exhibit high pore-size dependence and flattening of the dis-
persion curve at low frequencies consistent with the presence
of spins confined to a volume of space for a time period longer
than T1 or T2. The R1(f ) dispersions curves for channel pores
of square cross section containing bulk fluid with h in the
range 1–5 nm show sensitivity to h at frequencies less than
100 kHz. Planar pores have a weak sensitivity to pore size.

The relaxation rates for a surface layer of fluid using
the same expressions derived in Sec. II are calculated and
combined with the contribution due to the bulk fluid to provide
simulated R1(f ) dispersion for realistic closed, channel, and
planar pores. The presence of fluid in nanosized pores is
characterized by very high rates at low frequencies. Relax-
ation times would be submillisecond at frequencies less than
about 1 MHz. The largest rates to emerge from published R1

dispersion curves across a range of material are to the best of
our knowledge less than 1000 s−1. These results confirm that
FFC NMR may detect fluid in nanosized pores.

The shape and magnitude of R1(f ) is shown to be sensitive
to pore geometry at low frequency if relaxation is dominated
by the motion of bulk fluid alone. The relaxation in most
porous systems, however, is dominated by the surface fluid
component. We complete calculations on realistic systems
including the influence of pore-size variability. We find that, in
principle, a FFC NMR measurement on a system containing
a mixture of closed, channel, and planar pores would be
characterized by three relaxation rate peaks at low frequency
with closed pores yielding the highest rate and planar pores
the lowest rate. However, due to the dominance of the surface
fluid to the overall relaxation rate due to its proximity to
relaxation centers and long diffusion time constant, the
shapes of the dispersion curves are shown to be similar for
each geometry. Therefore, if a system contained pores of a
single geometry, it is concluded that it would not be possible to
identify the pore geometry unless a reliable effective density
of fixed relaxation centers was known a priori. Furthermore,
it is shown that porous material containing a distribution of
pore sizes leads to broad peaks in the R1(f ) response.

The ratio T1/T2 is calculated for planar pores of thickness
h = 3 nm, 30 nm, and 100 nm. T1/T2 exhibits a complex
dependence on pore size h, surface mobility characterized by
the surface diffusion time constant τ�, and NMR frequency f .
T1/T2 tends to unity at low frequencies but is sensitive to f , h,
and τ� at high frequency including the range 1–40 MHz nor-
mally employed in the conventional NMR experiments. It is
shown that measurements of T1/T2 at 20 MHz in cement paste
and hydrocarbon rock are consistent with a range of values of
pore size h and τ� and therefore capture information on both
characteristic pore size and surface mobility. Measurements
of T1/T2 and distributions obtained from T1-T2 correlation
measurements at different spot frequencies could potentially
reveal both values and spread of characteristic pore size and
surface diffusion time constant.
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