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Fundamental solution of unsteady Stokes equations and force on an oscillating sphere near a wall
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We derive the Green’s function of unsteady Stokes equations near a plane boundary with no-slip boundary
conditions. This provides flow due to an oscillating point force acting on fluid bounded by a wall. Our
derivation is different from previous theories and resolves the apparent discrepancies of the reported results.
Two-dimensional Fourier transform of the solution with respect to horizontal coordinates is given via elementary
functions in a more compact form than by the previous theories. The tensorial Green’s function in real space is
reduced to two Hankel transforms of order zero. We derive a simple form for the real-space solution in the two
limiting cases of a distance to the wall much larger and much smaller than the viscous penetration depth. We
demonstrate the applicability of this form by obtaining results for the force exerted on a sphere oscillating near
the wall. Using the integral equation on surface traction whose kernel is the fundamental solution, we derive the
force in the limits of a distant wall and low frequency. The wall correction to the force decays as the inverse
third power of the source to the wall separation distance, much faster than the inverse first power of the classical
Lorentz solution for the time-independent problem. Our results significantly extend the range of parameters
for which the force admits a simple closed-form solution. Small biological swimmers propelled by inherently
unsteady swimming gait generate flows driven by derivatives of the point source and we provide an example of
a wall-bounded solution of this type. We demonstrate that frequency expansion is an efficient way of studying
the Green’s functions in confined geometry that gives the complete series solution for channel geometry.
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I. INTRODUCTION

Fundamental solutions or Green’s functions are the main
tool of study of linear problems. The particularly important
example is viscous hydrodynamics, where the flow equations
become linear in the limit of low Reynolds number. One
may distinguish the (steady) Stokes equations, where the
nonlinear and the unsteady terms of the Navier-Stokes equa-
tions are both negligible, and the time-dependent or unsteady
Stokes equations, where the time-derivative term must be
retained [1]. The unsteady Stokes equations are applied to
study time-dependent hydrodynamics, such as fast oscillatory
or transient flows. In both steady and unsteady problems the
fundamental solution is defined as flow created by a δ-function
source, or the point force. The most familiar of these solutions
is due to the Oseen tensor occurring in many applications and
describing quasisteady low-Reynolds-number flow due to a
point force acting on unbounded fluid [1,2]. Green’s functions
can also be constructed in other problems of low-Reynolds-
number hydrodynamics, e.g., the flow due to a point-force in a
fluid bounded by a wall [3] and the problem of time-dependent
Stokes flow due to a point force in an infinite fluid [1].

The history of Green’s function applications in Stokes
flows is long. Fundamental solutions allow one to repre-
sent flows created by the motion of (or past) bodies as the
superposition of flows induced by sources distributed over
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the bodies’ surfaces [1]. Using this representation, one can
readily provide a multipole expansion of an arbitrary solution.
The expansion gives the far-field asymptotic form taken by
flow far from the body as a derivative of the fundamental
solution. This in turn can be used to derive the hydrodynamic
interactions of well-separated particles in the flow. Green’s
functions can also be used to recast the flow partial differential
equations as boundary integral equations on surface traction
and velocity [1,4,5]. Superposition of fundamental solutions
and their generalizations with the source given by a derivative
of a δ function can provide much more complex solutions
(an arbitrary flow is the superposition of an infinite number
of these solutions). A familiar example is the superposition
of the fundamental solution and its Laplacian providing the
flow due to a sphere oscillating in infinite space (this includes
steady translational motion of the sphere as a limiting case).
For a further list of applications see [1] and references therein.
Finally, the fundamental solutions are of great help in nu-
merical computations. Here the boundary integral equation
formulation can greatly simplify numerical simulations. In the
method of fundamental solutions one attempts to construct
the solution of unsteady Stokes equations as a superposition
of fundamental solutions with an unknown distribution of
sources [6–9]. These two numerical methods may greatly ben-
efit from having a fundamental solution of the time-dependent
Stokes equations in confined geometries, since boundaries
are inherently present in many relevant applications (e.g.,
microfluidics). The boundaries can bring qualitative changes
in the familiar time-dependent phenomena; see, e.g., the case
of Brownian motion in [10]. Already the simplest case of the
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boundaries provided by the infinite plane introduces consid-
erable theoretical difficulties. For instance, the problem of a
sphere oscillating near a wall is not separable (see, e.g., [11]).

The literature on flow due to a point force oscillating
near a wall (the Green’s function of unsteady Stokes equa-
tions with a plane boundary) requires a short review, since
some results seem to disagree with each other (quantitative
description can be found in Secs. VI and VII). This funda-
mental solution bridges between the fundamental solution of
time-independent Stokes equations near a wall [3] and the
solution of unsteady Stokes equations in infinite space [1].
The solution in terms of three Hankel transforms of order
zero (equivalent to two-dimensional Fourier transform of a
radially symmetric function) was provided without derivation
by Pozrikidis in [12]. It was claimed that the derivation
procedure that had been used by Blake for a similar problem
for steady Stokes equations can be generalized to the unsteady
case. The book by Pozrikidis [8] mentioned this solution,
referring to Ref. [12] and noting that there is “a considerable
amount of algebra” (which is not provided in either reference).
The two-dimensional Fourier transform of the solution was
provided again, in a different form, by Felderhof [10], who
seemingly was not aware of [12]. The paper contained a brief
description of the derivation using a method developed by
Jones for the time-independent problem [13] (below we refer
to it as the Felderhof-Jones method; the details can be found
in Sec. VII). Only diagonal elements of the Green’s function
tensor were provided, also in the form of a two-dimensional
Fourier transform in the plane parallel to the wall. In a later pa-
per [14] Felderhof acknowledged that [12] derived the Green’s
function in a form similar to those derived by Sommerfeld
and Renner [15,16] for the electromagnetic analog, however,
no comparison of the solutions was provided. Reference [14]
derived the remaining components of the Green’s-function
tensor using Jones’ method used earlier in [10]. This paper
claims that the final result can be obtained as the incompress-
ible limit of [17]. The study in [17] considers the Green’s
function for the problem of hydrodynamic fluctuations near
a single plane boundary (other boundaries are considered as
well, however a full treatment is only given for the plane).
In the incompressible limit the problem reduces to that con-
sidered here. However, the reduction itself is not provided
in [14] and, as before, no comparison with the solution in [12]
is given. Finally, in the recent effort of Simha et al. [11],
who studied the force on a sphere oscillating near a wall, it
was acknowledged that if the Green’s function were available,
the performed calculations would simplify. This paper refers
to [10], but does not cite [12]. The current situation demands
a comparison of different forms of the solution, establishing
their equivalence and determining the simplest possible form
for prospective theoretical and numerical applications.

In what follows we perform an independent derivation of
the solution in the way proposed in [12]. The main difficulty
of this approach to the problem, which differs from the
Felderhof-Jones method, is that it results in several integrals
that cannot be resolved analytically. We have found, however,
that a combination of these integrals can be evaluated using a
transformation.

The obtained Green’s function agrees with the result in [12]
up to a constant factor. We demonstrate that our answer, in

contrast to that of [12], gives the correct zero-frequency limit
in [3]. We also demonstrate that our solution reproduces the
boundary conditions and correct force on a sphere oscillating
near a wall in the high-frequency limit. We provide a possible
explanation for the discrepancy in [12].

We show that our expression for the Green’s function,
after cumbersome transformations, agrees with that derived
by the Felderhof-Jones method in [10,14] except for one
of the components of the Green’s function tensor. For that
component the expression provided in [14] is lacking a factor
of the wave number and as a result has wrong dimensions. Our
derivation resolves this discrepancy.

The form of Green’s function derived in this paper is more
compact than that in previous studies (cf. the more cumber-
some expression in [10]). We demonstrate that the Green’s
function in real space reduces to numerical integration of two
Hankel transforms of zeroth order (vs three integrals in [12])
and provide reasons why further reduction is impossible. In
the high- and low-frequency limits they can be written in
terms of elementary functions even in real space. We further
demonstrate the applicability of these limiting forms by com-
puting the force acting on the sphere oscillating near a plane
rigid boundary.

The problem of a sphere oscillating in unbounded fluid was
resolved by Stokes [1,18]. However, the problem of sphere
oscillating near a plane boundary is still unresolved. The
most recent effort in [11] uses an approximation introduced
in [10]. The authors mentioned that the solution procedure
is not completely rigorous and that, as mentioned above, it
might simplify if the Green’s function were available. Here
we use the integral equation for the surface traction [1,5],
which resembles the method exploited in [11]. That relates the
traction and the boundary condition on the particle’s surface
via the kernel of the integral operator given by the funda-
mental solution. We provide a shorter version of the integral
representation of solutions of unsteady Stokes equations in
comparison to that in [1] and the corresponding equation on
surface traction. Analytical progress can be made in the limit
of a distant wall (whose zeroth-order approximation is the
analytically tractable problem of a sphere oscillating in an
unbounded liquid [1]) and the limit of low frequencies (whose
zeroth-order approximation is the analytically tractable case
of quasisteady motion of a sphere near a wall [19,20]). Using
the simplified limiting forms of the derived Green’s function,
the corresponding asymptotic form of the force can be found.
There are distinct asymptotic limits corresponding to different
hierarchies of the three characteristic length scales of the
problem: the radius of the sphere a, the distance H from the
sphere center to the wall, and the viscous penetration depth δ.
The penetration depth δ gives the characteristic length scale
of decay of the flow created by an oscillating plane with given
frequency [18]. We derive the expression for the force in the
limit of a distant wall, H � a and H � δ with an unspecified
ratio between H and a. An extra requirement δ � a repro-
duces the high-frequency result obtained in [11,21]. We revisit
this limit showing that, in fact, it materializes under rather
strict asymptotic conditions. Our general result, however, is
of much wider validity. We also solve the low-frequency limit
of δ � H, a and provide a detailed derivation for the case
of H � a. The case of a � H is not simple even at zero
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frequency [19,20] and one could only provide the solution as
an integral of known functions. Another analytically tractable
limit corresponds to the case of a sphere close to the wall,
where progress can be made using the lubrication theory [1].
Reference [11] considered the limit of H ∼ δ � a. These
cases are beyond the scope of the present paper.

We also introduce a different approach to the solution
based on frequency expansion. This expansion is useless in
infinite space, since corrections of all orders to the solution
at zero frequency diverge at large distances. However, bound-
aries regularize the far-field divergence, making the expansion
more applicable. We show that the leading-order correction is
linear in frequency and that the higher-order corrections are
nonanalytic. Moreover, in the problem where the point force is
confined between two parallel walls the frequency expansion
gives regular series whereas all coefficients are finite.

In infinite space translational invariance implies that
derivatives of the fundamental solution with respect to the
position of the source generate other solutions of (steady or
unsteady) Stokes equations. These are solutions with higher-
order singularities of the source where the force acting on the
fluid is given by the corresponding derivative of the δ func-
tion. This is not so in general for problems with boundaries.
Derivatives of our solution with respect to lateral coordinates
of the source generate new solutions, while the derivatives
with respect to transverse (to the boundary) coordinates do
not, because they fail to obey the boundary condition on the
wall. The solutions with higher-order singularities are of some
interest, because they can represent, e.g., force- and torque-
free microswimmers, which can exhibit new phenomena in
confinement [22]. As an example, we provide the derivation
of such a solution driven by the Laplacian of the δ function.

II. PROBLEM FORMULATION

In this section we introduce the fundamental solution start-
ing from the problem of a finite sphere oscillating near the
plane wall at z = 0. We assume that the Reynolds number is
small so that the flow u(x, t ) can be described by the unsteady
Stokes equations [1]

∂t u = −∇p + ν∇2u, u(∞) = 0,

u(r = a) = V exp(−iωt ), u(z = 0) = 0, (1)

where p is pressure divided by the density, ν is the kine-
matic viscosity, and ω and V are the frequency and the
amplitude of the oscillation, respectively. Here r = x − x0,
where x0 = (0, 0,H ) is the coordinate of the center of the
sphere. The formulation neglects the sphere’s displacements
that are assumed to be much smaller than other lengths in the
problem (cf. Stokes’s formulation in an infinite fluid [1]). The
solution can be written in the form

u(x, t ) = V ũ
( x

a

)
exp(−iωt )

p(x, t ) = νV

a
p̃
( x

a

)
exp(−iωt ). (2)

The dimensionless fields ũ and p̃ obey

λ2ũ = −∇p̃ + ∇2ũ, ũ(∞) = 0,

ũ(r = 1) = V̂ , ũ(z = 0) = 0, (3)

where V̂ = V/V and λ2 = −ia2/δ2 with δ2 ≡ ν/ω. Here and
below the square root of a complex number is defined so that
the real part is non-negative, e.g., λ = (1 − i)a/δ

√
2.

In this work we will consider the force applied on the
sphere. We remark that there is no lift force due to linearity
of the equations, as in the steady motion of a sphere near
the wall [2]. Indeed, the reversal of sign of the flow and the
pressure produces another solution of the equations with the
reverse direction of motion of the sphere. The requirement
of invariance of the force under this transformation for the
sphere’s motion parallel to the plane implies that there is no
lift force.

We introduce the integral representation with the help
of the fundamental solution. This fundamental solution is
introduced similarly to that in an unbounded fluid [1],

−∇pk + ∇2uk − λ2uk = −x̂kδ(x − x′), ∇ · uk = 0,

uk (z = 0) = uk (r → ∞) = 0, (4)

where x̂k is unit vector in the kth direction. We will occasion-
ally refer to this solution as an unsteady Stokeslet near the
wall or the Green’s function. The inverse Laplace transform
with respect to λ2 or ω produces the Green’s function of
time-dependent Stokes equations with the source proportional
to δ(t )δ(x − x′). The solution can be written as

uk
i (x) = Gik (x, x′)

8π
, pk = P k (x, x′)

8π
, (5)

which is useful for considering the solution as a function of
both the spatial coordinate x and the coordinate of the point
x′ at which the force is applied. The solution for infinite
space is obtained by taking the limit z′ → ∞ where x′ =
(x ′, y ′, z′). We can use the reciprocal theorem to demonstrate
the symmetry

Gik (x, x′) = Gki (x′, x). (6)

The derivation proceeds as for unbounded fluid [8] (see
Appendix A). This relation has the same form as in infinite
space [1], however it has more implications because the
plane breaks translational and rotational symmetries. Thus the
flow Gi3(x, x′) has axial symmetry around the line defined
by the perpendicular from x′ to the plane. Correspondingly,
Gα3(x, x′) [and G33(x, x′)], where here and below α = 1, 2,
can be derived from the stream function. The symmetry
relation then gives us G3α (x′, x), which is the component of
the flow that is already not axially symmetric. This remarkable
reduction will be used below.

The integral representation of the solution of Eqs. (3) is
derived as for unbounded fluid [8],

ũi (x) = λ2V̂k

8π

∫
|x′−x̃0|<1

Gik (x, x′)dV ′

− 1

8π

∫
|x′−x̃0|=1

Gil (x, x′)σ̃lk (x′)dS ′
k (7)

(see Appendix B). This representation is identical to that
in infinite space [1]. It is obtained in the standard way by
integration of a Lorentz-type identity of unsteady Stokes flows
over the volume of the flow. The wall boundary does not
contribute to the result of the integration due to the no-slip
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boundary condition that holds there for both the flow and the
fundamental solution (see details in Appendix B).

We observe that it is not necessary to use in the integral
representation the volume integration besides the surface in-
tegration. We have∫

|x′−x̃0|=1
Gil (x, x′)x ′

kdS ′
l =

∫
|x′−x̃0|<1

Gik (x, x′)dV ′, (8)

where we used ∇′
lGil (x, x′) = 0 (we designate derivatives

with respect to x′ by prime), which holds by incompressibility
and the symmetry relation given by Eq. (6). Thus we can
rewrite Eq. (7) as

ũi (x) =
∫

|x′−x̃0|=1
Gil (x, x′)(λ2δlk (V̂ · x′) − σ̃lk (x′))

dS ′
k

8π
,

(9)

which can have some advantages for both theoretical and
numerical studies.

We take in Eq. (9) the limit of x approaching the surface
of the sphere |x − x̃0| = 1, which is a regular limiting pro-
cess [8]. We find, using the boundary conditions, that

V̂i =
∫

|x′−x̃0|=1
Gil (x, x′)[λ2δlk (V̂ · x′) − σ̃lk (x′)]

dS ′
k

8π
.

(10)

This (Fredholm-type [8]) integral equation must hold for all x
on the sphere, |x − x̃0| = 1. It gives the boundary condition
on the sphere as an integral transform of the unknown surface
traction σ̃lr (x′) with the kernel Gik (x, x′). The equation de-
fines the traction uniquely [1,8] and is the main tool of our
study of the force F(λ) applied by the fluid on the sphere. We
remark that the first term in brackets on the right-hand side
(RHS) is missing in Eq. (2.7.21) of [8], where apparently finite
divergence of the stress tensor was disregarded. Similarly
to the case of an unbounded fluid [5], the integral becomes
one dimensional in the axially symmetric case. A somewhat
different integral equation was used for this problem in [11].

We observe that besides determining the motion of the
sphere, the force also governs the flow at large distances
from it, r � a. We can readily derive the multipole expansion
starting from the representation given by Eq. (7). The leading-
order term at large distances r � a is

ũi (x) ≈ Gik (x, x̃0)

(
λ2V̂k

6
− Fk (λ)

8π

)
. (11)

This result was obtained for a sphere in [11] by a more
complicated procedure [see Eq. (2.20) therein]. This paper
conjectured that the result possibly holds for a body of an
arbitrary shape. This can be readily shown from our approach.
All formulas of this section [apart from Eq. (11)] hold also for
a rigid particle of an arbitrary shape with velocity V̂ at the
surface (with an obvious change of integration domains; rigid
rotation can also be included). Designating the volume of the
particle by Vp, we find from Eq. (7) that at large distances
from the particle,

ũi (x) ≈ [λ2VpV̂k − Fk (λ)]
Gik (x, x̃0)

8π
. (12)

This generalizes Eq. (11) to a particle of arbitrary shape and
proves the conjecture (2.20) in [11]. The first term in brackets
is of added mass form. We conclude that the properties of the
fundamental solution can be used for the study of the flow due
to the motion of a finite-size sphere.

III. FREQUENCY EXPANSION

In this section we construct the solution of Eqs. (4) as a
series in λ2. This series can be used for the asymptotic study
of the limit of low frequency. The coefficients diverge starting
from a certain order, however, resummation of the formally
divergent series gives a regular solution.

It is instructive to consider first the Green’s function
G0

ik (x, x′) of the infinite fluid. The solution at zero frequency
is the Oseen tensor Yik (r ),

G0
ik (x, x′, λ = 0) ≡ Yik (r ) = δik

r
+ rirk

r3
, (13)

where r = x − x′ (see, e.g., [1]). One can look for the solu-
tion at finite frequency as a series in λ2 which starts with Yik

as the zeroth-order approximation

G0
ik (x, x′, λ) =

∞∑
n=0

λ2nG0
n,ik (r ), G0

0,ik = Yik, (14)

where we use the translational invariance. Substituting this
series in Eqs. (4), we find

−∇iP
k
n + ∇2G0

n,ik = G0
n−1,ik, G0

n,ik (r → ∞) = 0, (15)

where P k = ∑∞
n=0 λ2nP k

n . The solution can be written by
introducing a linear integral operator Ŷ whose kernel is minus
the Oseen tensor divided by 8π ,

G0
n = ŶG0

n−1 = −
∫

Yil (x − x′′)G0
n−1,lk (x′′ − x′)

dx′′

8π
.

(16)

This gives

G0
n,ik (x, x′) = (Ŷ nY )ik = (−1)n

∫
Yii1 (x − x1)

×Yi1i2 (x1 − x2) · · · Yink (xn − x′)
n∏

k=1

dxk

8π
.

(17)

The resulting series G0 = ∑∞
n=0 λ2nL̂nY is readily resummed,

giving

G0
ik (x, x′) =

∫
(1 − λ2Ŷ )−1

il (x − x′′)Ylk (x′′ − x′)dx′′,

(18)

reducing the problem to finding the kernel of the operator
(1 − λ2Ŷ )−1 and integration. One might hope that at low
frequency the truncation of the infinite series would produce
successive approximations to the solution. However, in fact,
all terms of the series (besides n = 0) diverge. We have for
the leading-order correction

G0
1,ik = −

∫
Yil (x − x′′)Ylk (x′′ − x′)

dx′′

8π
, (19)
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which is divergent at large x ′′. The divergence signals that
the leading-order correction in frequency is of o(λ2). In fact,
we can compare the above with the well-known closed-form
solution [1]

G0
ik (x, x′) ≡ G0

ik (r ) = 4[1 − (1 + λr ) exp(−λr )]

λ2r3

rirk

r2

+ 2

λ2r3
[(1 + λr + λ2r2) exp(−λr ) − 1]

×
(
δik − rirk

r2

)
, (20)

where the corresponding pressure is frequency independent,
p0k = 2rk/r3 (thus in the time domain it is proportional to the
δ function, which corresponds to instantaneous establishment
of pressure by incompressibility [14]). The low-frequency
limit of |λ|r � 1 is described by

G0
ik (r ) ≈ Yik (r ) − 4λδik

3
+ rλ2

4

(
3δik − rirk

r2

)
. (21)

The leading-order correction is linear in λ in accord with
the conclusion from the study of the series. This correction
is coordinate independent, a fact that has further implica-
tions [1,5]. We also observe that λr is independent of a in
dimensional units as it must be, since G0

ik is independent of a.
The parameter λr is the ratio of the coordinate and δ times a
numerical constant [18].

Thus the series solution in infinite space indicates that the
correction is of o(λ2), the result of the resummation given
by Eq. (18) is a valid form of the solution. The series is
rather useful in the presence of the wall. The λ = 0 solution
of Eq. (4) is the steady Stokeslet in the vicinity of a no-slip
boundary G̃ik (x, x′) reported in [3]. The wall produces image
sources at (x′)∗ = (x ′, y ′,−z′) that compensate for the action
of the point force at x′ so that G̃ik decays at large x as x−2

and not x−1 as in infinite space. This faster decay renders the
leading-order correction in the frequency

G1,ik (x, x′) = −
∫

z′′>0
G̃li (x′′, x)G̃lk (x′′, x′)

dx′′

8π
(22)

finite due to x ′′−4 decay of the integrand at large x ′′. This
form of the correction is found from the series solution Gik =∑∞

n=0 λ2nGn,ik as in the infinite fluid [cf. Eq. (19); we can
also write the solution in a form similar to Eq. (18)]. We
used the symmetry given by Eq. (6). Thus, with the wall the
leading-order correction in frequency is quadratic in λ and
linear in frequency. However, the next-order term

G2 =
∫

G̃i1i (x1, x)G̃i2i1 (x2, x1)G̃i2k (x2, x′)
dx1dx2

(8π )2

already diverges logarithmically at large distances. We con-
clude that (we occasionally write the frequency argument of
the Green’s function to emphasize the dependence)

Gik (x, x′, λ) = G̃ik (x, x′) − λ2
∫

z′′>0
G̃li (x′′, x)

× G̃lk (x′′, x′)
dx′′

8π
+ O(λ2+�), (23)

where the exponent obeys 0 < � < 2. This asymptotic low-
frequency form of the Green’s function is confirmed below

by the expansion of the full solution in frequency that also
gives the explicit form of the integral in the λ2 term (direct
calculation of the integral is formidable).

IV. DERIVATION OF THE SOLUTION

In this section we derive the two-dimensional Fourier
transform of the fundamental solution with respect to the
horizontal coordinates. We proceed similarly to the solution
for the steady Stokeslet near the wall [3]. We consider the flow
as a superposition of the flow due to an unsteady Stokeslet in
the unbounded fluid, an image of that flow with respect to
z = 0, and a correction. The unsteady Stokeslet flow in the
unbounded fluid is given by uk

i = G0
ik (x, x′)/8π , where G0

ik

is given by Eq. (20).
We introduce the correction flow w,

uk
i (x, x′) = G0

ik (x − x′) − G0
ik (x − x′∗)

8π
+ wk

i (x − x′∗, x ′
3),

pk = rk

4πr3
− Rk

4πR3
+ sk. (24)

Here and in the following the asterisk superscript stands
for reflection with respect to the plane z = 0, so x′∗ =
(x ′

1, x
′
2,−x ′

3), and R = x − x′∗. In this section the vector
components are designated by numbers. Notice the transla-
tional invariance in the plane: The correction depends on x −
x′∗ and x ′

3 and is independent of x ′
α . The domain of definition

of wk (R, h) is R3 � h, where h > 0 is the dimensionless
height of the source above the plane and R3 is the positive
vertical component of x plus h. The symmetry relation given
by Eq. (6) implies

G0
ik (x − y) − G0

ik (x − y∗) + 8πwk
i (x − y∗, y3)

= G0
ki ( y − x) − G0

ki ( y − x∗) + 8πwi
k ( y − x∗, x3),

which must hold for any x and y. We observe that
x − y∗ = (x1 − y1, x2 − y2, x3 + y3) and y − x∗ = (y1 −
x1, y2 − x2, x3 + y3). Introducing x = x1 − y1 and y = x2 −
y2, we have

wk
i (x, y, x3 + y3, y3) − wi

k (−x,−y, x3 + y3, x3)

= G0
ik (x, y, x3 + y3) − G0

ki (−x,−y, x3 + y3)

8π
,

which must hold for all x and y and all positive x3 and y3.
Using Eq. (20), this implies that for all X = (x, y, z1 + z2)
with positive zα we have

wk
i (x, y, z1 + z2, z1) − wi

k (−x,−y, z1 + z2, z2)

= (δiαδk3 + δi3δkα )Xα (z1 + z2)f (X), (25)

where X = |X| and

f (X ) = 3 − (3 + 3λX + λ2X2) exp(−λX)

2πλ2X5
. (26)

Below, unless stated otherwise, we consider the fixed position
of the source, x′ = (0, 0, h), and do not write explicitly the
dependence of w on h using wk (R) instead of wk (R, h). We
solve at R3 � h the equation

−∇Rsk + ∇2
Rwk − λ2wk = 0, ∇R · wk = 0, (27)
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where ∇R is derivative over Ri (cf. [3]). The boundary condi-
tion at R3 = h is found using Eqs. (20) and (24),

wk
i (R1, R2, h) = G0

ik (R) − G0
ik (r )

8π

∣∣∣∣
z=0

= (δkαδi3 + δiαδk3)

×hRαf (R1, R2, h). (28)

(Throughout the text the greek letters α and β assume the
values 1 or 2 only.) The small λ expansion

f = 1

4πX3
− λ2

16πX
+ o(λ2) (29)

reproduces the boundary condition of [3] at λ = 0. The ab-
sence of the linear term in λ is required to reproduce the result
of preceding section showing that the leading-order correction
in frequency is quadratic. We perform the Fourier transform

ŵk
i =

∫
wk

i (R1, R2, R3) exp(−iq1R1 − iq2R2)dR1dR2,

where the circumflex stands for the Fourier transformed field.
We further find that (q2 = q2

1 + q2
2 )

λ2ŵk
i + iqαδαi ŝ

k + δi3
∂ŝk

∂R3
=

(
∂2

∂R2
3

− q2

)
ŵk

i ,

iqαŵk
α + ∂ŵk

3

∂R3
= 0,

(
∂2

∂R2
3

− q2

)
ŝk = 0. (30)

The pressure is a harmonic function that decays at infinity,

ŝk = −Bk exp(−qR3), (31)

where Bk is independent of R3. We find(
∂2

∂R2
3

− q2 − λ2

)
ŵk

i = qδi3B
k exp(−qR3)

− iqαδαiB
k exp(−qR3).

The solution reads

ŵk
i = iqαδαiB

k exp(−qR3) − qδi3B
k exp(−qR3)

λ2

+Bk
i exp(−kR3), k ≡

√
q2 + λ2.

The coefficients Bk and Bk
i are fixed from the incompress-

ibility condition and the Fourier transform of the boundary
condition on wk at R3 = h, which is given by Eq. (28). The
former gives

0 = ∂ŵk
3

∂R3
+ iqαŵk

α ∝ iqαBk
α − kBk

3 .

Thus we can write

ŵk
α = iqαBk exp(−qR3)

λ2
+ Bk

α exp(−kR3),

ŵk
3 = iqαBk

α exp(−kR3)

k
− qBk exp(−qR3)

λ2
. (32)

The boundary conditions are obtained from Eq. (28),

ŵk
α (R3 = h) = ihδk3

∂f̂ (q )

∂qα

= ihδk3qα

q

∂f̂

∂q
,

ŵk
3 (R3 = h) = ihδkα

∂f̂ (q )

∂qα

= ihδkαqα

q

∂f̂

∂q
, (33)

where f̂ is the Fourier transform

f̂ (q ) =
∫

f (R1, R2, h) exp(−iq1R1 − iq2R2)dR1dR2

= 2π

∫ ∞

0
f (R)J0(qρ)ρdρ, (34)

where ρ2 = R2
1 + R2

2 and R2 = ρ2 + h2. We find, from
Eqs. (32),

Bk = λ2 exp(qh)

q(q − k)

(
ŵk

3k − iqαŵk
α

)

= ihλ2 exp(qh)

q − k

(
kδkαqα

q2
− iδk3

)
∂f̂

∂q
, (35)

where in the first line the velocity must be taken at R3 = h.
Similarly,

Bk
α = exp(kh)

(
ŵk

α − iqαBk exp(−qh)

λ2

)

= iqαkh exp(kh)

q2(k − q )
(qδk3 + iδkβqβ )

∂f̂

∂q
. (36)

We conclude that the flow in Fourier space is

ŵk
α = hqαf̂ ′

q2(k − q )
{exp[q(h − R3)](kδkβqβ − iq2δk3)

− k exp[k(h − R3)](δkβqβ − iqδk3)},

ŵk
3 = hf̂ ′

q(k − q )
{exp[q(h − R3)](q2δk3 + ikδkαqα )

− exp[k(h − R3)](q2δk3 + iqδkαqα )}. (37)

Thus, to complete the calculation in Fourier space we must
find f̂ ′(q ). The cumbersome and nontrivial calculation (see
Appendix C for details) finally gives

f̂ ′(q ) = q[exp(−kh) − exp(−qh)]

λ2h
. (38)

Thus the velocity in Fourier space is (z = R3 − h)

ŵβ
α = kqαqβ (e−kh − e−qh)(e−qz − e−kz)

λ2q(k − q )
,

ŵα
3 = iqα (e−kh − e−qh)(ke−qz − qe−kz)

λ2(k − q )
. (39)

We have, for the rest of the components,

ŵ3
α = iqα (e−kh − e−qh)(ke−kz − qe−qz)

λ2(k − q )

ŵ3
3 = q2(e−kh − e−qh)(e−qz − e−kz)

λ2(k − q )
. (40)
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These closed-form expressions for wk
i and their real space

form in Eqs. (42) and (43) are one of the main results of
the present paper. It is demonstrated in Appendix A that the
solution obeys the symmetry of the Green’s function.

The last component of the solution, the pressure, is inferred
from Eqs. (31), (35), and (38),

ŝ3 = q(e−qz−kh − e−q(z+h) )

k − q
,

ŝα = iqαk(e−qz−kh − e−q(z+h) )

q(k − q )
. (41)

This expression seems to be the simplest for the theoretical
study. We demonstrate in Appendix D that even pressure
produced on the wall by the vertically moving source along
the symmetry axis, s3(z = 0, ρ = 0), can only be written in
quadratures (as an integral). This gives a strong indication
that the solution in real space, except at the position of the
source [10], can only be written in quadratures. Thus, the use
of the solution in real space involves numerical integration.
We provide a compact representation of the solution for this
purpose.

V. SOLUTION IN REAL SPACE

In this section we consider the solution in real space, which
reads

uk
i (x, x′) = G0

ik (x − x′) − G0
ik (x − x′∗)

8π

+
∫

dq1dq2

(2π )2
ŵk

i (z, q, h = x ′
3)

× exp[iq1(x1 − x ′
1) + iq2(x2 − x ′

2)], (42)

where ŵk
i are given by Eqs. (39) and (40) and we used the

definition in Eq. (24). The corresponding formula for the
pressure is

pk = rk

4πr3
− Rk

4πR3
+

∫
sk (z, q, h = x ′

3)

× exp[iq1(x1 − x ′
1) + iq2(x2 − x ′

2)]
dq1dq2

(2π )2
. (43)

The solution contains a number of integrals that are not
tabulated. The integrals can be found at z = 0, where we have
from Eqs. (39) and (40) that wβ

α (z = 0) = w3
3 (z = 0) = 0 and

wα
3 (z = 0) = w3

α (z = 0) with (r = x − x′)

wα
3 (z = 0)=∇α

∫
q dq

2π

e−kh − e−qh

λ2
J0(qr ) = hRαf (R).

Here f (R) is defined in Eq. (26) and we used [23]∫
q dq e−khJ0(qr ) = h(1 + λR) exp(−λR)

R3
, (44)

with R = (r1, r2, h) taken at the wall. This confirms that the
solution obeys the boundary conditions at the wall given by
Eq. (28).

We further demonstrate that the integrals in Eqs. (42)
and (43) can be reduced to two Hankel transforms of order
zero. We start from the axially symmetric component of the

Stokeslet, ŵ3
i . This is described using the stream function ψ

defined by

w3
3 = 1

ρ

∂ψ

∂ρ
, w3

ρ = − 1

ρ

∂ψ

∂z
, ψ =

∫ ρ

0
ρ ′w3

3 (ρ ′, R3)dρ ′,

(45)

where w3
α = ραw3

ρ/ρ. Using Bessel function Jn of order n,
these formulas give

ŵ3
3 = 2π

∫ ∞

0
w3

3J0(qρ)ρ dρ

= 2π

∫ ∞

0
J0(qρ)

∂ψ

∂ρ
dρ

= 2πq

∫ ∞

0
J1(qρ)ψ (ρ,R3)dρ,

where J1 = −J ′
0 and ψ (0) = 0. Thus ψ can be obtained from

ŵ3
3 as the inverse Hankel transform of first order,

ψ = ρ

∫ ∞

0
ŵ3

3
J1(qρ)dq

2π
.

Using Eq. (40), we can write

ψ = ρ
∂

∂ρ

∫ ∞

0

q(e−qz − e−kz)(e−qh − e−kh)J0(qρ)dq

2πλ2(k − q )
.

(46)

This gives a compact representation of the solution for forcing
perpendicular to the plane.

The components wα
3 can then be obtained from w3

α using
the symmetry given by Eqs. (25) and (26). The remaining
components of the solution can be obtained using Eq. (39),

wβ
α = ∇α∇β

∫ ∞

0

k(e−qz − e−kz)(e−qh − e−kh)J0(qρ)dq

2πλ2(k − q )
.

(47)

Thus the full tensorial Green’s function depends on two inte-
grals in Eqs. (46) and (47). These two integrals are similar, but
they cannot be reduced to a single integral. The main technical
difficulty is an irreducible integral of the type

∫ ∞
0 exp(−qz −

kh)J0(qρ)dq. For instance, writing k in the numerator of
Eq. (47) as (k − q ) + q and taking one of the derivatives
yields

wβ
α = −∇α∇β

∫
(e−kh − e−qh)(e−qz − e−kz)J0(qρ)dq

2πλ2

+∇α

(
ρβψ

ρ2

)
.

Given that the integral in the first line can be taken in terms
of special or elementary functions, this formula would reduce
the calculation of the full Green’s-function tensor to one
numerical integral in Eq. (46) or (47). Even though the integral
cannot be taken analytically, its numerical evaluation would
present no difficulty.

An alternative approach to the numerical integration can
start from the observation that Eq. (47) implies that the
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dependence of wβ
α on the indices obeys

wβ
α = δαβw + ραρβ∂ρw

ρ
, ∇αwβ

α = −∇zw
β

3 ,

where the last condition describes incompressibility and

w ≡ 1

ρ

∂

∂ρ

∫ ∞

0

k(e−qz − e−kz)(e−qh − e−kh)J0(qρ)dq

2πλ2(k − q )
.

Considering w
β

3 to be derived from ψ , the function w can
be fixed from the resulting ordinary differential equation of
second order.

VI. COMPARISON WITH RESULTS OF POZRIKIDIS

In this section we compare our results obtained in the
preceding section with those of [12]. This reference (using
somewhat confusing notation, whereas the spatial variable
serves as a dummy variable for R) provided, without deriva-
tion, the result which in our notation has the form

8πw3
i = − 1

2πλ4

(
δi3∇2 − ∂2

∂xi∂z

)
F1, (48)

where the function F1 is defined by the integral

F1 =
∫ ∞

0
J0(ρq )(k + q )q dq[(1 − e(k−q )h)e−k(z+h)

+ (1 − e(q−k)h)e−q(z+h)]. (49)

This result corresponds to the stream function

−8πψ = ρ
∂

∂ρ

∫ ∞

0
(e−k(z+h) − e−kz−qh

+ e−q(z+h) − e−qz−kh)
J0(qρ)q dq

2πλ2(k − q )
, (50)

where the RHS coincides with Eq. (46). We see that there is a
difference of a multiplicative factor −8π between our solution
and the solution of [12]. Since we have confirmed in the
preceding section that our solution reproduces correctly the
boundary condition, we believe that our result is the correct
one. We cannot point out the origin of the mistake in [12] as
the detailed derivation was not provided. However, [12] tested
the result in the limit of λ → 0, where Blake’s expression
for the Stokeslet near a wall [3] must be reproduced. It can
observed from Eq. (49) that

lim
λ→0

F1

λ4
= hz

2

∫ ∞

0
J0(ρq )e−q(z+h)dq = hz

2
√

(z + h)2 + ρ2
.

Reference [12] claimed that this formula reproduces correctly
the result of [3]. However, using Eq. (48), this formula gives

lim
λ→0

(−8π )w3
3 = lim

λ→0

1

2πλ4ρ

∂

∂ρ

(
ρ

∂F1

∂ρ

)

= hz

4πR3

(
3ρ2

R2
− 2

)
, (51)

where the last line is just w3
3 of [3]. Therefore, there is a dis-

crepancy (missing multiplicative factor of −8π ) between [12]
and [3]. This also confirms that our result reduces to that in [3]
in the limit of λ → 0.

We compare our derivations with the remaining compo-
nents of the flow provided in [12]. This reference gives

8πwα
i = − 1

2πλ4

∂

∂xα

[
∂G1

∂xi

+
(

δi3∇2 − ∂2

∂xi∂z

)
G2

]
,

where the functions Gi are

G1 =
∫ ∞

0
J0(ρq )(k + q )k dq e−q(z+h)(1 − e(q−k)h),

G2 =
∫ ∞

0
J0(ρq )(k + q )dq e−k(z+h)(1 − e(k−q )h). (52)

Since wα
i can be obtained from the symmetry of Green’s

function, we then focus on wβ
α , which obeys

8πwβ
α = − 1

2πλ4

∂2

∂xβ∂xα

(
G1 − ∂G2

∂z

)
. (53)

We observe that

G1 − ∂G2

∂z
=

∫ ∞

0
J0(ρq )(k + q )k dq[e−q(z+h)(1 − e(q−k)h)

+ e−k(z+h)(1 − e(k−q )h)]. (54)

We see that again the result in Eqs. (53) and (54) deviates from
the expressions in Eq. (47) by a multiplicative factor of −8π .
Since we show that our formula agrees with [3] in the low-
frequency limit [see Eq. (120)], we believe that our derivation
is the correct one.

VII. GREEN’S FUNCTION AND FELDERHOF’S RESULT

In this section we compare our results with those in
Ref. [10]. The calculation of [10] exploited the Green’s func-
tion rather than the correction flow defined by Eq. (24). The
Fourier transform of Eq. (4) with respect to x and y gives(

d2

dz2
− k2

)
ûk

i −
(

iqαδαi + d

dz
δi3

)
p̂k = −δikδ(z − z′),

(55)

where without loss of generality we assumed that x′ is at the z

axis using translational invariance in the plane. This represen-
tation via the ordinary differential equation was introduced by
Jones for the steady Stokes problem [13]. The equation can
be readily solved [10]. Since the solution was provided in the
form of a Green’s function, for comparison with our solution
we rewrite our result via the Green’s function.

The Fourier transform of the Green’s function is

Ĝik = Ĝ0
ik (q, z − h) − Ĝ0

ik (q, z + h) + 8πŵk
i (q, z, h)

[see Eqs. (5) and (24)]. We introduced the two-dimensional
Fourier transform of the Green’s function for the unbounded
fluid given by Eq. (20). This is found by rewriting G0 as [10]

G0
ik = 2 exp(−λr )δik

r
+ 2

λ2
∇i∇k

1 − exp(−λr )

r
(56)

and using [ρ = (r1, r2)] [23]

∫ exp
( − iq · ρ − λ

√
ρ2 + r2

3

)
dρ

2π

√
ρ2 + r2

3

= exp(−k|r3|)
k

.
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We obtain, for the components of Ĝ0
ik (q, r3),

Ĝ0
αβ = 4π

λ2

(
e−k|r3|(λ2δαβ + qαqβ )

k
− qαqβe−q|r3|

q

)
,

Ĝ0
α3 = 4πiqαsgn(r3)

λ2
[exp(−k|r3|) − exp(−q|r3|)],

Ĝ0
33 = 4πq

λ2k
[k exp(−q|r3|) − q exp(−k|r3|)]. (57)

The component Ĝ0
α3, in contrast to the rest of the components,

is proportional to sgn(r3) and has a discontinuity at r3 = 0.
Combining this with Eqs. (39) and (40), we find

Ĝαβ = 4πδαβ (e−k|z−h| − e−k(z+h) )

k
+ 4πqαqβ

λ2

×
(

e−q(z+h) − e−q|z−h|

q
+ e−k|z−h| − e−k(z+h)

k

)

+8πkqαqβ (e−kh − e−qh)(e−qz − e−kz)

λ2q(k − q )
.

A straightforward, albeit tedious, comparison demonstrates
the agreement of this result for α = β with that in [10] [up
to a multiplicative factor of 32π3 due to the difference of the
respective definitions: 8π comes from the passage between
the Green’s function and the velocity and (2π )2 from different
factors in the definition of the Fourier transform]. For α �= β

we find

Ĝ12 = Ĝ21 = 4πqxqy

λ2qk(q − k)
[k(q + k)e−q(z+h)

− k(q − k)e−q|z−h| + q(q − k)e−k|z−h| − 2k2e−qh−kz

− 2k2e−kh−qz − (q2 − 2k2 − qk)e−k(z+h)], (58)

which is written in a form that simplifies the comparison
with Eq. (4.7) in [14]. Notice a missing factor of k in the
denominator on the RHS of Eq. (4.7) [14]. This is apparently
a typo, since without this factor the dimensions are wrong
and do not agree with the other components of the Green’s
function.

We find, for Ĝ33,

Ĝ33 = 4πq

λ2

(
q(e−k(z+h) − e−k|z−h|)

k
+ e−q|z−h|

−e−q(z+h) + 2q(e−kh − e−qh)(e−qz − e−kz)

k − q

)
, (59)

which agrees with [10]. For the remaining vertical force com-
ponent of the components of the axially symmetric component
we have (we use the fact that z > 0 in the physical domain)

Ĝα3 = 4iπqα

λ2

(
e−q(z+h) − e−k(z+h) ± e−k|z−h|

∓ e−q|z−h| + 2(e−kh − e−qh)(ke−kz − qe−qz)

k − q

)
, (60)

which agrees with [14]. In contrast to the components consid-
ered previously, these have a discontinuity: The upper sign
is for z > h and the lower sign for z < h. Finally, since
we proved that the solution obeys the symmetry constraint,

we may use Ĝ3α (q, z, h) = Ĝα3(−q, h, z) for the remaining
component Ĝ3α , which reads

Ĝ3α = −4iπqα

λ2

(
e−q(z+h) − e−k(z+h) ∓ e−k|z−h|

± e−q|z−h| + 2(e−kz − e−qz)(ke−kh − qe−qh)

k − q

)
, (61)

where the upper and lower signs correspond to z>h and z<h,
respectively.

We conclude that our results agree with those of Felderhof
up to a typo in [14]. Below we consider limiting cases where
closed-form solutions in real space can be obtained.

VIII. DISTANT WALL LIMIT

The fundamental solution of the steady Stokes equations
near a wall is characterized by a single intrinsic scale: the
distance from the source to the wall, h. A time dependence
introduces a scale δ, which introduces two different asymp-
totic regimes H � δ and H � δ. Here we consider the distant
wall limit of H � δ or |λ|h � 1. Note that this limiting case
does not exist at λ = 0. The limit of H � δ is considered in
Sec. XII.

We provide the Green’s function in the distant wall limit
through elementary functions. We start from the components
derivable from the stream function in Eq. (46). We can assume
that |λ| � qc, where qc is the characteristic value of q that
dominates the integral. Then Eq. (46) becomes

ψ = ρ
∂

∂ρ

∫ ∞

0

qJ0(qρ)dq

2πλ2

exp(−R3q )

k − q
, (62)

which holds with exponential accuracy. We see that due to
R3 � h the exponential factor imposes qc � 1/h, confirming
the self-consistency of the assumption |λ| � qc at |λ|h � 1.
Considering the leading-order term in the expansion of the
denominator in |λ|/qc, we find

ψ ≈ ρ
∂

∂ρ

∫ ∞

0

qJ0(qρ) exp(−R3q )dq

2πλ3

= −ρ
∂2

∂ρ∂R3

∫ ∞

0

J0(qρ) exp(−R3q )dq

2πλ3

= − 3ρ2R3

2πλ3R5
, (63)

where R2 = ρ2 + R2
3 . The correction has power-law small-

ness in |λ|h. The corresponding velocity components read

w3
3 = 3R3

(
3ρ2 − 2R2

3

)
2πλ3

(
ρ2 + R2

3

)7/2 , (64)

w3
ρ = 3ρ

(
ρ2 − 4R3

3

)
2πλ3

(
ρ2 + R2

3

)7/2 . (65)

We can consider similarly the high-frequency limit of the rest
of the components of wk

i . We have, from Eq. (39),

wβ
α = −∇α∇β

∫
k(e−kh − e−qh)(e−qz − e−kz)J0(qρ)dq

2πλ2(k − q )
.
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Assuming |λ|h � 1, we obtain that

wβ
α (R) ≈ ∇α∇β

∫
exp(iq · ρ − R3q )dq

(2πλ)2q

= 1

2πλ2
∇α∇β

1(
ρ2 + R2

3

)1/2

= 3RαRβ − R2δαβ

2πλ2R5
.

Finally, we have for wα
3 (that can also be derived from w3

α

using the symmetry), from Eq. (39),

wα
3 = ∇α

∫
exp(−kh) − exp(−hq )

λ2(k − q )

eiq·ρdq
(2π )2

× [k exp(−qz) − q exp(−kz)]. (66)

This gives, at λh � 1, that

wα
3 ≈ −∇α

∫
exp(iq · ρ − R3q )dq

(2πλ)2
= 3R3Rα

2πλ2R5
. (67)

We observe that at λx ′
3 � 1 (where x ′

3 corresponds to h above)
the value of |x − x′∗| in the definition

Gik (x, x′) = G0
ik (x − x′) − G0

ik (x − x′∗) + 8πwk
i (x − x′∗)

obeys λ|x − x′∗| � 1 in the domain of definition z > 0. Thus
we can use the large λr asymptotic form of Eq. (20) given by

G0
ik (r ) = − 2

λ2r3

(
δik − 3rirk

r2

)
+ O(exp(−λr )) (68)

to approximate G0
ik (x − x′∗). We can also use the formulas of

this section to approximate wk
i (x − x′∗, x ′

3). We find that the
leading-order correction to G0

ik (x − x′) due to the wall at a
large distance is given by

Gi3(x, x′) − G0
i3(x − x′) ≈ 2

λ2R3

(
δi3 − 3RiR3

R2

)
,

Gαβ (x, x′) − G0
αβ (x − x′) ≈ 2

λ2R3

(
3RαRβ

R2
− δαβ

)
,

G3α (x, x′) − G0
3α (x − x′) ≈ 6RαR3

λ2R5
. (69)

Thus the magnitude of the correction to the Green’s function
in the infinite fluid at an indefinitely large distance to the
wall decays as the inverse of the third power of the distance
to the source’s image. It is proportional to the square of the
oscillatory penetration length (which is assumed to be much
smaller than the distance to the wall). The decay law is the
same as for a simple image flow [see Eq. (68)], however, the
correction flow w modifies the decay coefficients.

We compare Eqs. (69) with the result for the Green’s
function of the steady Stokes equations,

Gik (x, x′, λ = 0) − G0
i3(x − x′, λ = 0) = O

(
1

R

)
. (70)

In this case also the order of the correction Gik − G0
ik can be

obtained from the flow of the simple image where R−1 is the
law of decay of the Oseen tensor [3]. We see that the decay
is much slower: The limits of zero frequency and infinite
separation to the wall do not commute.

The result in Eqs. (69) becomes transparent upon compar-
ison with the analogous result for the perfect slip boundary
condition in the next section.

IX. COMPARISON WITH PERFECT SLIP
BOUNDARY CONDITION

The calculation of the Green’s function G
slip
ik (x, x′) for the

case of perfect slip boundary condition is much simpler than
for the no-slip boundary condition. The result is found using
the image point force [14] (the Green’s function of infinite
fluid is defined there without the factor of 2; cf. [24]),

G
slip
iα (x, x′) = G0

iα (r ) + G0
iα (R),

G
slip
i3 (x, x′) = G0

i3(r ) − G0
i3(R). (71)

Indeed, it can be readily seen from Eq. (20) that the normal
component of the velocity vanishes, G

slip
3α (z = 0) = G

slip
33 (z =

0) = 0, at the wall by rα = Rα and r3 = −R3. The remaining
stress condition ∇αG

slip
3k + ∇3G

slip
αk = 0 holds by observing

that all components ∇αG
slip
3β , ∇αG

slip
33 , ∇3G

slip
αβ , and ∇3G

slip
α3

vanish at the wall separately. We find then readily that the
leading-order correction to G0

ik (x − x′) because of the wall
at a large distance is given by

G
slip
i3 (x, x′) − G0

i3(x − x′) ≈ 2

λ2R3

(
δi3 − 3RiR3

R2

)
,

G
slip
αβ (x, x′) − G0

αβ (x − x′) ≈ 2

λ2R3

(
3RαRβ

R2
− δαβ

)
,

G
slip
3α (x, x′) − G0

3α (x − x′) ≈ 6RαR3

λ2R5
, (72)

where we used Eq. (68). We see that the leading correction
to G

slip
ik is the same as that for Gik as given by Eq. (69).

The details of the boundary conditions at the wall become
irrelevant at large distances.

X. FORCE ON AN OSCILLATING SPHERE
FAR FROM A WALL

In this section we demonstrate how the asymptotic proper-
ties of the Green’s function derived in the preceding section
can be used to find the force on the sphere oscillating far from
a rigid wall. We recall that the force on the sphere that moves
at constant velocity at a large distance h from the wall is given
by the famous result by Lorentz,

F⊥(λ = 0)

FSt

= 1 + 9

8h
,

F‖(λ = 0)

FSt

= 1 + 9

16h
, (73)

with corrections of O(h−3) (see [1,2,25]). Here FSt is the
Stokes force on a sphere translating in an unbounded fluid
and F⊥ and F‖ are force components for motion perpendicular
and parallel to the wall, respectively (this notation differs
from that in [1]). This result, which can be derived using
images, can also be obtained from the integral equation,
which we use extensively in this work (see Appendix E for
the derivation). In this section we use the integral equation
on the surface traction to derive the counterpart of this result
for the case of H � δ and H � a (the relation between δ and
a is unconstrained).
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We consider the integral equation on the surface traction
given by Eq. (10). In the limit of large distances |λ|h � 1 and
h � 1 all points in the integrand of Eq. (10) obey |λ|x ′

3 � 1.
Thus we can use the approximation given by Eq. (69). On
using Ri ≈ 2hδi3 we find in the leading order that δGik (x, x′),
defined by

δGik (x, x′) = Gik (x, x′) − G0
ik (x − x′), (74)

obeys

δGi3(x, x′) ≈ − δi3

2λ2h3
, δGαβ (x, x′) ≈ − δαβ

4λ2h3
, (75)

with δG3α of higher order in h−1. Thus, in the leading order
δGik (x, x′) is a constant diagonal matrix, two of whose
eigenvalues are equal because of the planar symmetry. Using
Eqs. (74) and (75) in Eq. (10), we find that the equation on the
surface traction takes the form

V̂i + V̂3δi3

12h3
+ V̂αδiα

24h3
− δi3F3

16πλ2h3
− δiαFα

32πλ2h3

=
∫

|x′−x̃0|=1
G0

il (x, x′)[λ2x ′
l (V̂ · x′) − σ̃lr (x′)]

dS ′

8π
. (76)

In the leading order we can use on the left-hand side (LHS)
F = F∞, where F∞ is the force on a sphere oscillating in
infinite space [1],

F∞ = −6π

(
1 + λ + λ2

9

)
V̂ . (77)

Thus Eq. (76) becomes

V̂i + V̂3δi3

12h3
+ V̂αδiα

24h3
+

(
3δi3V̂3

8λ2h3
+ 3δiαV̂α

16λ2h3

)(
1 + λ + λ2

9

)

=
∫

|x′−x̃0|=1
G0

il (x, x′)[λ2x ′
l (V̂ · x′) − σ̃lr (x′)]

dS ′

8π
. (78)

The solution of this equation at h = ∞ is [1]

σ̃lr (x)(h = ∞) = −3

2

(
(1 + λ)δli + λ2

3
xlxi

)
V̂i , (79)

where we used |x| = 1. Integration of σ̃lr (x)(h = ∞) over the
particle surface reproduces Eq. (77). Insertion of this solution
in Eq. (78) with h = ∞ gives a useful identity∫

|x′−x̃0|=1
G0

il (x − x′)[(1 + λ)δlk + λ2x ′
l x

′
k]

3dS ′

16π
= δik.

(80)

We look for the solution of Eq. (78) in the form

σ̃lr (x) = σ̃lr (x)(h = ∞) + δσlr

4h3
, (81)

where δσlr obeys

V̂3δi3

3
+ V̂αδiα

6
+

(
3δi3V̂3

2λ2
+ 3δiαV̂α

4λ2

)(
1 + λ + λ2

9

)

= − 1

8π

∫
|x′−x̃0|=1

G0
il (x − x′)δσlr (x′)dS ′. (82)

Thus we study the equation

gi = − 1

8π

∫
|x′−x̃0|=1

G0
il (x − x′)δσlr (x′)dS ′, (83)

where gi is given by the first line of Eq. (82). Isotropy dictates
that the solution has a form similar to Eq. (79),

δσlr (x) = [a(λ)δlk + b(λ)λ2xkxl]gk, (84)

with certain functions a(λ) and b(λ). Substituting (84)
into (83), we find that these functions obey

gi = −a(λ)gk

8π

∫
|x′−x̃0|=1

G0
ik (x − x′)dS ′

− b(λ)λ2gk

8π

∫
|x′−x̃0|=1

G0
il (x − x′)x ′

l x
′
kdS ′. (85)

We find, rewriting the last integral with the help of Eq. (80),
that(

1 + 2b

3

)
gi = [b(1 + λ) − a]gk

8π

∫
|x′−x̃0|=1

G0
ik (x − x′)dS ′.

Due to isotropy, the last integral has the form

1

8π

∫
|x′−x̃0|=1

G0
ik (x − x′)dS ′ = c(λ)δik + d(λ)xixk, (86)

with certain functions c and d. This gives(
1 + 2b

3

)
gi = [b(1 + λ) − a]cgi + [b(1 + λ) − a]dgkxixk.

We find, assuming that d is nonzero, that a = −3(1 + λ)/2
and b = −3/2. We conclude that

δσlr (x) = − 3
2 [(1 + λ)δli + λ2xlxi]V̂i . (87)

We find, combining the above, that the force is given by

F = F∞ − 3π

2h3

(
1 + λ + λ2

3

)
g. (88)

Finally, using the definition of g, we find

F⊥ = −6π

(
1 + λ + λ2

9

)
V̂3

− 3π

2h3

(
1 + λ + λ2

3

)[
1

3
+ 3

2λ2

(
1 + λ + λ2

9

)]
V̂3,

F‖ = −6π

(
1 + λ + λ2

9

)
V̂‖ − 3π

2h3

(
1 + λ + λ2

3

)

×
[

1

6
+ 3

4λ2

(
1 + λ + λ2

9

)]
V̂‖. (89)

Derivation of the closed-form results for the force in Eqs. (89)
is one of the main results of our work. Comparing this result
with Eq. (73), we see that the time dependence diminishes
the effect of a distant wall. Correction to the force is smaller
by orders of magnitude, decaying as the inverse of the third
power of the distance, rather than the inverse of the distance.
The forces agree asymptotically if Eq. (89), which holds at
|λ| � 1/h, is continued to |λ|∼1/h.

The derivation of Eqs. (89) requires the large-distance
asymptotic form of the Green’s function only. The preceding
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section then implies that the force for the perfect slip boundary
is also given by Eqs. (89) (cf. [11]).

XI. HIGH-FREQUENCY LIMIT AND POTENTIAL FLOW

The derivation of Eqs. (89) involved no constraint on the
ratio of a and δ. Restriction to the case H � a � δ gives
the high-frequency limit where δ is the smallest scale of the
problem. The force in the case can be obtained by taking in
Eqs. (89) the limit of |λ| � 1. We find

F⊥ = −2πλ2

3

(
1 + 3

8h3

)
V̂3, (90a)

F‖ = −2πλ2

3

(
1 + 3

16h3

)
V̂‖. (90b)

This result can be interpreted as a distant wall correction
to the added mass and it was derived from the potential
flow approximation in [11,21]. It differs from what can be
inferred from (4.5) of [10] with the reasons for the discrepancy
discussed in detail in [11] (see also [21]). Below we rederive
Eq. (90) from the potential flow approximation. This gives
us the opportunity to present a detailed form of the flow and
make refinements.

The authors of [11] observed that in the limit of large fre-
quency the flow is potential everywhere apart from a narrow
viscous layer around the sphere with typical thickness δ. The
identical situation holds in the infinite fluid [18]. This obser-
vation can be proved using the integral representation. For
simplicity of the derivation we consider the flow ũs around
a sphere oscillating near a wall with perfect slip boundary
conditions. It can be verified by repeating the considerations
for the no-slip boundary conditions that the integral represen-
tation holds,

ũs
i (x) =

∫
|x′−x̃0|=1

G
slip
il (x, x′)[λ2x ′

l (V̂ · x′) − σ̃lr (x′)]
dS ′

8π
.

(91)

In this case the contribution of the wall boundary in the
volume integration of Eq. (B1) of Appendix B vanishes by
the vanishing of tangential stresses [cf. Eq. (9)]. We observe
that Eq. (68) can be written as

G0
ik (r ) = − 2

λ2
∇i

rk

r3
+ O(exp(−λr )), (92)

so the flow described by G0 is potential beyond the distance
∼δ from the source with exponential accuracy. We find, using
the form of G

slip
il given by Eq. (71), that beyond the viscous

layer of width ∼δ around the sphere ũs is a continuous sum
of potential flows [see Eq. (91)]. We conclude that ũs = ∇φ

holds beyond the narrow layer whose width is of order δ. The
potential φ obeys the Laplace equation by incompressibility
(see the similar proof in [26]). The potential flow obeys the
usual boundary conditions on the vanishing normal compo-
nent of the velocity on the sphere and the wall [18].

We consider the case of velocity perpendicular to the wall,
V̂ = V̂zẑ. The solution can be written as the sum of poten-
tials of the sphere, the image sphere moving in the opposite

direction, and a correction,

φ ≈ 1

2
V̂z

∂

∂z

1

r0
− 1

2
V̂z

∂

∂z

1

R0
+ δφ, (93)

where we defined r0 = x − x0 and R0 = x − x∗
0. This cor-

responds to searching for ũs outside the viscous layer in the
form

ũs = V̂z

3r0zr0 − r2
0 ẑ

2r5
0

− V̂z

3R0z R0 − R2
0 ẑ

2R5
0

+ ∇δφ, (94)

where ẑ is a unit vector in the z direction (cf. [18,27]). The first
two terms on the RHS produce the zero normal component of
velocity on the wall. Thus the correction δφ obeys the Laplace
equation with boundary conditions

r0 ·
(

∇δφ − V̂z

3R0z R0 − R2
0 ẑ

2R5
0

)∣∣∣∣
r0=1

= 0 (95)

and ∂zδφ(z = 0) = 0. The boundary conditions can be sim-
plified by neglecting terms of order higher than h−3 as

r0 ·
(

∇δφ − V̂zẑ

8h3

)∣∣∣∣
r0=1

= 0, ∂zδφ(z = 0) = 0. (96)

We can neglect the boundary condition at the wall to order
h−3. We find the problem of a sphere that moves at constant
velocity V̂zẑ/8h3. The solution is the first term on the RHS
of Eq. (93) with the appropriate change of the velocity. We
conclude that up to terms of order h−3 the flow has a simple
structure

φ = V̂z

2

(
1 + 1

8h3

)
∂

∂z

1

r0
− 1

2
V̂z

∂

∂z

1

R0
,

ũs = V̂z

(
1 + 1

8h3

)
3r0zr0 − r2

0 ẑ

2r5
0

− V̂z

3R0z R0 − R2
0 ẑ

2R5
0

.

(97)

The force is given by the sum of components F1 and F2 due
to the first and second terms on the RHS of the preceding
equation, respectively. We have [18]

F1 = −2π

3

(
1 + 1

8h3

)
dV̂z

dt
ẑ. (98)

We consider the component of the force F2 that derives from
the last term on the RHS of Eq. (97) that we designate by φ′.
We have

φ′ = −1

2
V̂z

∂

∂z

1

R0
, ∇φ′ = −V̂z

3R0z R0 − R2
0 ẑ

2R5
0

. (99)

This gives, for the pressure,

p = − (∇φ′)2

2
+ V̂α∇αφ′ − V̂z∇zφ

′ + 1

2

dV̂z

dt

∂

∂z

1

R0
(100)

(cf. [18]). The force is determined by the integral of the last
term over the sphere

(F2)i = −1

2

dV̂z

dt

∫
r0=1

dS r0i

∂

∂z

1

R0
. (101)
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We use the expansion of the last term near x = x0,

(F2)i ≈ −1

2

dV̂z

dt

∫
r0=1

dS r0i r0l∇l

∂

∂z

1

R0

∣∣∣∣
x=x0

= −2π

3

dV̂z

dt
∇i

∂

∂z

1

R0

∣∣∣∣
x=x0

= − π

6h3

dV̂z

dt
ẑ, (102)

where we dropped the terms of order higher than h−3. We find
the total force F = F1 + F2 given by

F = −2π

3

(
1 + 3

8h3

)
dV̂z

dt
ẑ. (103)

This agrees with the result for the ideal flow [27–29] and
confirms Eq. (90a). A similar derivation can be readily per-
formed for the particle motion parallel to the wall, confirming
Eq. (90b) (cf. [11]).

The derivation of the force in Eq. (103) assumes that the
force exerted by the potential flow outside the boundary vis-
cous layer is equal to the full force obtained by the integration
of the stress tensor over the particle surface where the flow is
nonideal. This equality is simpler for steady Stokes flows [26]
and demands care in the unsteady case. We have, using the
separation scale � obeying δ � � � 1, that

Fi =
∫

|x−x0|=1
σirdS =

∫
|x−x0|=1+�

σirdS

−
∫

1<|x−x0|<1+�

∇kσikdV, (104)

where the integral of the stress tensor over the particle surface
is written as an integral over a sphere outside the viscous layer
and the volume integral of the stress tensor divergence. The
viscous part of the stress tensor −pδik + 2∇i∇kφ holding
outside the viscous layer does not contribute the surface
integral on the RHS (this is readily verified by transforming
the surface integral in the integral over the volume of the
sphere). We find, using λ2ũi = ∇kσik , that

Fi = F id
i − λ2

∫
1<|x−x0|<1+�

ũidV , (105)

where F id
i is the ideal flow force given by the RHS of

Eq. (103). (This force has a correction of order of δ due to
the difference of the particle surface and the sphere outside
the boundary layer. This correction is always present due to
the neglect of this difference in the boundary conditions for
the potential flow.) The last term in Eq. (105) is of order
λ2V̂iδ. The O(h−3) correction in Eq. (103) materializes given
that δ � h−3, which is a more restrictive requirement than the
original condition δ � 1 � h. Thus, our asymptotic result for
the force in Eq. (89) holds for a considerably less restrictive
range of parameters.

XII. LOW-FREQUENCY LIMIT

In this section we derive the leading-order correction in
the frequency using a Taylor expansion of the integrands for
the inverse Fourier transform of the fundamental solution in
λ. This completes the study started in Sec. III. We confirm
the observation of that section that the higher-order terms
of the expansion produce divergent integrals signifying the

singularity of the asymptotic expansion. The results hold
under the condition H � δ, thus completing the study of
asymptotic forms of the Green’s function started in Sec. VIII.

A. Stream function at low frequency

We start the study of the low-frequency limit from the
components w3

i given by Eq. (45) via the stream function ψ .
To find the low-frequency limit of ψ we observe that factors
in Eq. (46) obey (up to quadratic order in λ)

exp[−h(q + �)] − exp(−hq )

�
= h(λ2h − 4q ) exp(−hq )

4q
,

e−z(q+�) − e−zq

λ2
= z(λ2 + λ2qz − 4q2)e−zq

8q3
,

(106)

where we introduced � = k − q ≈ λ2/2q − λ4/8q3 (here-
after, smallness of the complex number λ implies that both
real and imaginary parts are small). We find

ψ = ρhz

∫ ∞

0

J1(qρ) exp(−R3q )dq

16πq
[λ2(1 + R3q ) − 4q2].

(107)

The zeroth-order term produces

ψ (λ = 0) = ρhz
∂

∂ρ

∫ ∞

0

J0(qρ) exp(−R3q )dq

4π
= − ρ2hz

4πR3
.

This stream function reproduces the stationary Stokeslet flow
of [3]

w3
3 (λ = 0) = 3ρ2hz

4πR5
− 2hz

4πR3
= hz

4πR3

(
3ρ2

R2
− 2

)
,

w3
ρ (λ = 0) = − 1

ρ

∂ψ

∂z
= ρh

4πR3

(
1 − 3zR3

R2

)
. (108)

The λ2 term in Eq. (107) is found using [23]∫ ∞

0

J1(qρ) exp(−R3q )dq

q
= ρ

R3 + R
,

∫ ∞

0
J1(qρ) exp(−R3q )dq = ρ

R(R3 + R)
. (109)

We obtain

ψ = − ρ2hz

4πR3
+ λ2ρ2hz

16πR
= − ρ2hz

4πR3

(
1 − λ2R2

4

)
. (110)

We conclude that the flow up to quadratic order in λ is

w3
3 = − 2hz

4πR3

(
1 − λ2R2

4

)
+ 3ρ2hz

4πR5

(
1 − λ2R2

12

)
,

w3
ρ = ρh

4πR3

(
1 − λ2R2

4

)
− 3ρhzR3

4πR5

(
1 − λ2R2

12

)
. (111)

We observe that the correction is purely imaginary, corre-
sponding to the flow correction out of phase with the main
term. It can be seen readily that higher-order expansion in λR

is singular (discussed below), implying that the correction to
this formula can be of order lower than λ4R4 (cf. Sec. III). We
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conclude that

G33(x, x′) = r2 + r2
3

r3
− R2 + R2

3

R3
+ rλ2

4

(
3 − r2

3

r2

)

− Rλ2

4

(
3 − R2

3

R2

)
− 4x ′

3z

R3

(
1 − λ2R2

4

)

+ 6ρ2x ′
3z

R5

(
1 − λ2R2

12

)
,

Gα3(x, x′) = rαr3

r3
− RαR3

R3
− λ2rαr3

4r
+ λ2RαR3

4R

+ 2Rαx ′
3

R3

(
1 − λ2R2

4

)

− 6Rαx ′
3zR3

R5

(
1 − λ2R2

12

)
, (112)

where we used Eqs. (21), (24), and (111). We observed that
|λ2(x − x′∗)2| � 1 implies that |λ2(x − x′)2| � 1 at z > 0.

B. Nonsymmetric components

We consider the components of the Green’s function that
cannot be derived using the stream function. We introduce the
representation of the solution as a series in λ2. Coefficients
of the terms of order λ4 and higher contain nonintegrable
singularities at q = 0 in accord with the predictions of Sec. III.
We start with wβ

α , for which we have

ŵβ
α = kqαqβ (e−kh − e−qh)(e−qz − e−kz)

q�2(k + q )
(113)

[cf. Eq. (39)]. We use that

e−kh − e−qh =
∞∑

n=1

(−h�)ne−qh

n!
, (114)

and similarly for exp(−kz) − exp(−kz). We further find

ŵβ
α = −qαqβ exp(−R3q )

q

∞∑
n,k=1

(−1)n+khnzkqn+k−2

n!k!

×
√

1 + ε2(
√

1 + ε2 − 1)n+k−2

√
1 + ε2 + 1

, (115)

where ε2 = λ2/q2. We introduce the Taylor series

√
1 + ε2(

√
1 + ε2 − 1)n+k−2

√
1 + ε2 + 1

= ε2(n+k−2)
∞∑
l=0

cl
n+k−2ε

2l ,

(116)

with certain coefficients cl
n+k−2. Then

ŵβ
α = −qαqβ exp(−R3q )

q

∞∑
n,k=1

∞∑
l=0

(−1)n+kcl
n+k−2h

nzk

n!k!

× λ2(n+k+l−2)q2−k−n−2l . (117)

Regrouping the terms gives the solution as a Taylor series
in λ,

ŵβ
α = −qαqβ exp(−R3q )

q

∞∑
p=0

λ2p

×
∞∑

n,k=1

∞∑
l=0

δn+k+l−2,p

(−1)n+kcl
n+k−2h

nzk

n!k!qp+l

= −qαqβhz exp(−R3q )

q

[
c0

0 + λ2
(
2c1

0 − c0
1qR3

)
2q2

+ λ4

(
c2

0

q4
− c1

1R3

2q3
+c0

2(2h2 + 3hz + 2z2)

12q2

)
+O(λ6)

]
.

(118)

We see that terms of order λ4 and higher contain noninte-
grable singularities at q = 0. We will limit the analysis to the
leading-order correction that is determined by

c0
0 = 1

2 , c1
0 = 1

8 , c0
1 = 1

4 , (119)

where the numerical values are readily confirmed using the
definition in Eq. (116). Therefore,

ŵβ
α ≈ −qαqβhz exp(−qR3)

2q

(
1 + λ2(1 − qR3)

4q2

)
, (120)

where the correction is small provided all the parameters
λh, λz, and λ/q are small. This reproduces the solution
of [3] at λ = 0 upon the division by 2π due to differences
in the definition of the Fourier transform. Then in real space,
correspondingly,

wβ
α≈

∫
qαqβhz exp(iq · ρ − qR3)dq

8π2q

(
λ2(qR3 − 1)

4q2
− 1

)
,

(121)

where ρ = (R1, R2). For λ = 0 the integral is found from∫
qαqβ exp(iq · ρ − qR3)dq

2πq

= −∇α∇β

∫ ∞

0
J0(qρ)dq exp(−qR3)

= −∇α∇β

1

R
= R2δαβ − 3RαRβ

R5
. (122)

To find the finite-λ correction to wβ
α we evaluate (using

isotropy)∫
qαqβ exp(iq · ρ − qR3)dq

2πq3
= f1(ρ)δαβ + f2(ρ)RαRβ

R2
,

(123)

where fi are some functions of ρ. Taking the trace and
multiplying with ραρβ we find∫

exp(iq · ρ − qR3)dq
2πq

= 2f1(ρ) + f2(ρ),

∫
(q · ρ )2 exp(iq · ρ − qR3)dq

2πq3
= ρ2[f1(ρ) + f2(ρ)].

(124)

063108-14



FUNDAMENTAL SOLUTION OF UNSTEADY STOKES … PHYSICAL REVIEW E 98, 063108 (2018)

Thus we have

2f1 + f2 =
∫ ∞

0
exp(−qR3)J0(qρ)dq = 1

R
,

f1 + f2 =
∫

cos2 θ exp(iqρ cos θ − qR3)dq
2πqn−2

= 1

2

∫ ∞

0
dq exp(−qR3)[J0(qρ) − J2(qρ)]

= 1

2R

(
1 − ρ2

(R3 + R)2

)
, (125)

where we used the identity∫ 2π

0
cos2 θ exp(ix cos θ )

dθ

2π
= −d2J0

dx2
= J0(x) − J2(x)

2
.

(126)

We find from Eqs. (125),

f1 = R2
3 + R3R + ρ2

R(R3 + R)2
, f2 = − ρ2

R(R3 + R)2
. (127)

Finally, ∫
qαqβ exp(iq · ρ − qR3)dq

2πq2

= −∂R3

∫
exp(iq · ρ − qR3)dq

2πq3
qαqβ

= δαβ

R(R3 + R)
− (R3 + 2R)RαRβ

R3(R3 + R)2
, (128)

where we evaluated derivatives of fi given by Eq. (127). By
combining the above results we find that wβ

α in Eq. (121) is
given by

wβ
α = hz(3RαRβ − R2δαβ )

4πR5
− λ2hz

16πR(R3 + R)2

×
(

ρ2δαβ + RαRβ

2RR3 − ρ2

R2

)
+ o(λh, λz, λρ).

(129)

The correction term is of order lower than λ4 because of the
singularity of the λ4 term at q = 0. We find, for the Green’s
function,

Gαβ (x, x′)x ′
3

≈ δαβ

r
+ rαrβ

r3
+ rλ2

4

(
3δαβ − rαrβ

r2

)
− RαRβ

R3

− Rλ2

4

(
3δαβ − RαRβ

R2

)
+ 2zx ′

3(3RαRβ − R2δαβ )

R5

− δαβ

R
− λ2x ′

3z

2R(R3 + R)2

(
r2δαβ + rαrβ

2RR3 − r2

R2

)
.

(130)

We consider the last remaining component wα
3 directly, rather

than deriving it from w3
α by symmetry. We have, up to

quadratic order in λ2, that

ke−z� − q

λ2
= 4q2(1 − qz) − λ2(1 + qz + q2z2)

8q3
. (131)

Using this formula and Eq. (106), we find from Eqs. (39) that,
up to quadratic order in λ,

ŵα
3 = − iqαhe−qR3

2q

(
1 + qz − λ2(1 + R3q + q2zR3)

4q2

)
.

(132)

We have, by differentiation,

∂ŵα
3

∂R3
= iqqαzh exp(−R3q )

2

(
1 + λ2(1 − qR3)

4q2

)
, (133)

confirming, together with Eq. (120), that the incompressibility
constraint in Eqs. (30) is obeyed to order λ2. The inverse
Fourier transform of Eq. (133) yields [the direct inverse
Fourier transform of Eq. (132) produces a logarithmic diver-
gence at zero that needs special attention]

∂wα
3

∂R3
= hz ∂α

∫
(λ2(1 − qR3) + 4q2) exp(iq · ρ − qR3)dq

32π2q

= hz

16π
∂α

(
λ2 + λ2R3∂3 + 4∂2

3

) 1

R
. (134)

This can be rewritten as

∂wα
3

∂R3
= −hzRα

16π

[
λ2∂3

(
R3

R3

)
+ 4∂2

3
1

R3

]
. (135)

Integration of this equation over R3 up to infinity gives

wα
3 = hRα

16π

∫ ∞

R3

(R′
3 − h)dR′

3

(
λ2∂ ′

3R
′
3 + 4∂2′

3

) 1

R′3 .

We find

wα
3 = hRα

4πR3

(
1 − λ2R2

4

)
+ 3hRαR3z

4πR5

(
1 − λ2R2

12

)
.

(136)

This reproduces formula (15) of [3] at λ = 0. The correspond-
ing formula for the Green’s function is

G3α (x, x′) = r3rα

r3
− R3Rα

R3
− λ2r3rα

4r
+ λ2R3Rα

4R

+ 2x ′
3Rα

R3

(
1 − λ2R2

4

)

+ 6x ′
3RαR3z

R5

(
1 − λ2R2

12

)
, (137)

which is readily seen to agree with Gα3(x′, x) given by
Eq. (112).

The results of this section are equivalent to performing the
integration of the coefficient of the λ2 term in Eq. (23). We
designate the integral by G′

ik (x, x′), so

Gik (x, x′) = G̃ik (x, x′) + λ2G′
ik (x, x′) + O(λ2+�). (138)

Using the results of this section gives (x ′
3 = h)

G′
33(x, x′) = r

4

(
3− r2

3

r2

)
− R

4

(
3 − R2

3

R2

)
+ hz

R
− ρ2hz

2R3
,

G′
α3(x, x′) = RαR3

4R
− rαr3

4r
− Rαh

2R
+ RαhzR3

2R3
,
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G′
αβ (x, x′) ≈ r

4

(
3δαβ − rαrβ

r2

)
− R

4

(
3δαβ − RαRβ

R2

)

− hz

2R(R3+R)2

(
r2δαβ + rαrβ

2RR3 − r2

R2

)
,

G′
3α (x, x′) = R3Rα

4R
− r3rα

4r
− hRα

2R
− hRαR3z

2R3
. (139)

The derived expressions can be used to study the force.

XIII. FORCE IN THE LOW-FREQUENCY LIMIT

In this section we study the force on a sphere oscillating
with a small frequency near a wall. We assume that the viscous
penetration depth is the largest scale of the problem, H � δ

and a � δ (in the dimensionless form |λ|h � 1 and |λ| � 1).
The zeroth-order approximation for the flow u0 is the steady
Stokes problem of a sphere moving at constant velocity v near
the wall,

∇p0 = ∇2u0, u0(|x − x0| = 1) = V̂ , u0(z = 0) = 0

(140)

[cf. Eq. (3)]. This problem was solved in [19,20], however
the solution takes a rather complex form of an infinite series.
Thus we first explore the simpler limit of a distant wall,
i.e., a � H � δ. We consider the integral equation on the
surface traction σ 0

kr (x) of Eq. (140) in Appendix E. It can be
shown that in the leading order in the distance to the wall, the
traction, which is constant for the Stokes problem of a sphere
in an unbounded fluid, also remains constant (this could also
be obtained using the method of reflections [2]),

σ 0
kr = −3

2

(
1 + 9

8h

)
δkzV̂z − 3

2

(
1 + 9

16h

)
δkαV̂α. (141)

This reproduces the Lorentz result for the force given by
Eq. (73) multiplied with the surface area 4π . We derive the
leading-order correction in λ2 similarly to the analysis in
Sec. X. We use the approximation

Gik (x, x′) ≈ G̃ik (x, x′) + λ2G′
ik (x, x′), (142)

where G′
ik obeys the integral representation given by Eq. (23)

and has the explicit form determined in the preceding section.
In the limit of low frequencies, Eq. (10), up to the quadratic
order in frequency, takes the form

V̂i + λ2σ 0
lr

8π

∫
|x′−x̃0|=1

G′
il (x, x′)dS ′

−λ2V̂k

8π

∫
|x′−x̃0|<1

G̃ik (x, x′)dV ′

= − 1

8π

∫
|x′−x̃0|=1

G̃il (x, x′)σ̃lr (x′)dS ′, (143)

where we use the volume integral form of the∫
|x′−x̃0|=1 Gil (x, x′)x ′

l x
′
kdS ′ term. We consider the coefficients

on the LHS in the leading order in h. From Eq. (139), using

R3 ≈ 2h, z ≈ h, and Rα = rα � h, it follows that

G′
33(x, x′) ≈ −h

2
, G′

αβ (x, x′) ≈ −3δαβh

2
, (144)

while other components are O(1) at most. Thus the correction
is a constant diagonal matrix. The term in the second line
and the 1/h correction to σ 0

lr in Eq. (143) can be neglected
altogether, giving

V̂i + 3hλ2V̂l

8
(δi3δl3 + 3δiαδlα )

= − 1

8π

∫
|x′−x̃0|=1

G̃il (x, x′)σ̃lr (x′)dS ′. (145)

The expression on the LHS gives the surface traction σ̃lr of
the sphere that moves near the wall at constant velocity. The
force is given by Eq. (73), which, in the leading order, reads

F⊥
FSt

= 1 + 9

8h
+ 3hλ2

8
,

F‖
FSt

= 1 + 9

16h
+ 9hλ2

8
. (146)

The λ2 correction is smaller than 1/h Lorentz correction by a
factor λ2h2 = (H/δ)2. If this parameter is larger than (a/H )2,
that is, H 2 > aδ, then the former correction dominates over
the steady Stokes flow (a/H )3 correction to Eq. (73).

We now return to the case of the unconstrained ratio a/H

with δ � a,H . In this case the force can be obtained as an
integral over known functions. By linearity we can write the
surface traction σ 0

kr (x) for Eq. (140) at the point x of the
sphere surface as

σ 0
kr (x, λ = 0) = Fik (x)V̂i , (147)

with a tensor Fik (x) whose form at large h is readily obtained
from Eq. (141). At h ∼ 1 this tensor has a complex form. Con-
sidering Fik (x) at h � 1, we can express the force Fi ({v(x)})
on the sphere on which a given surface velocity distribution
v(x) holds. From the reciprocal theorem we have

Fi ({v(x)}) =
∫

|x−x̃0|=1
Fik (x)vk (x)dS. (148)

The leading-order correction in frequency to the force F0(V̂ )
can be determined by Eq. (140). This can be written as a series
with the help of the solution of [19,20]. In the limit of low
frequencies, Eq. (10), up to quadratic order in frequency, takes
the form

V̂i + λ2V̂k

8π

∫
|x′−x̃0|=1

G′
il (x, x′)Fkl (x′)dS ′

−λ2V̂k

8π

∫
|x′−x̃0|<1

G̃ik (x, x′)dV ′

= − 1

8π

∫
|x′−x̃0|=1

G̃il (x, x′)σ̃lr (x′)dS ′. (149)

We found the equation on the surface traction of a sphere that
moves in the vicinity of the wall with a velocity distribution
given by the LHS of the equation. We conclude from Eq. (148)
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and linearity that the force is

Fi = F 0
i (V̂ ) + λ2V̂k

8π

∫
|x−x̃0|=1

Fip(x)dS

×
(∫

|x′−x̃0|=1
dS ′G′

pl (x, x′)Fkl (x′)

−
∫

|x′−x̃0|<1
G̃pk (x, x′)dV ′

)
. (150)

This reduces the computation of the force to the numerical in-
tegration of known functions. Besides the already considered
limit of H � a, this formula can be simplified in the limit
where the sphere is close to the wall using the lubrication
theory [1]. A detailed consideration of this limiting case is
beyond the scope of the present paper.

XIV. FLOW IN THE LOW-FREQUENCY LIMIT

The leading-order correction to the flow in frequency can
be readily obtained via the regular perturbation theory as in
Sec. III. Looking for the solution of Eq. (3) in the form ũ =
u0 + λ2u′, where u0 is given in Eq. (140), we find

u′
i (x) = −

∫
z′>0

G̃il (x, x′)u0
l (x′)

dx′

8π
. (151)

The series solution of [19,20] for u0 can be used to represent
u′ as a series of integrals. The flow can also be used as an
alternative way for the study of the force considered in the
preceding section.

XV. HIGHER-ORDER SOLUTION

In this section we describe the procedure for determin-
ing Green’s functions with higher-order singularities, whose
source is a derivative of the δ function. We will demonstrate
that the solution for the source given by the Laplacian of the δ

function can be obtained from the fundamental solution with
the help of a rather simple correction.

The fundamental solution of unsteady Stokes equations
in infinite space can serve to produce higher-order singular
solutions. Taking the derivative of the solution gives another
solution of the Stokes equations with the source given by
the corresponding derivative of the δ function. The set of
solutions obtained by taking all possible derivatives of the
fundamental solution is complete: We can write an arbitrary
solution as a superposition of the singular solutions. In our
case derivatives over the lateral coordinates x or y would
also produce a higher-order singular solutions; however, z

derivatives do not satisfy the boundary condition at the plane.
Therefore, these derivatives require a separate analysis. In this
section we derive one such solution involving z derivatives.
This is the solution of the time-dependent Stokes equations in
the presence of the wall, whose source is the Laplacian of the
δ function:

−∇p̃k + ∇2ũk − λ2ũk = −x̂k∇2δ(x − x′), ∇ · ũk = 0,

ũk (z = 0) = ũk (r → ∞) = 0. (152)

We write the solution in the form

ũk
i = ∇2

(
G0

ik (x, x′) − G0
ik (x, x′∗)

8π

)
+ w̃k

i ,

p̃k = ∇2

(
rk

4πr3
− Rk

4πR3

)
+ s̃k, (153)

where the correction fields w̃k
i and s̃k obey Eq. (27) with a

different boundary condition

w̃k
i (R1, R2, h) = ∇2

(
G0

ik (R) − G0
ik (r )

8π

)∣∣∣∣
z=0

. (154)

We observe that for any function h(r ) that depends only on
the distance r = |r| we have

∇2(hrirk ) = 2hδik + rirk

r6

d

dr

(
r6 dh

dr

)
. (155)

We find, using this identity and Eq. (20), that

∇2G0
ik (r ) = 2δik (1 + λr + λ2r2) exp(−λr )

r3

− 2rirk (3 + 3λr + λ2r2) exp(−λr )

r5
. (156)

It is readily confirmed that at λ = 0 this reproduces the
Laplacian of the Oseen tensor [1]. We find, using this equation
and from Eq. (154), that

w̃k
i (R1, R2, h) = −(δkαδi3 + δiαδk3)

× hRα

2πR5
(3 + 3λR + λ2R2) exp(−λR),

(157)
whereas as before α and β can only take the value of 1 or 2.
Thus w̃ and w obey identical equations with similar boundary
conditions. We can write the solution as

w̃k = λ2wk − vk, s̃k = sk − Sk, (158)

where vk and Sk satisfy

−∇RSk + ∇2
Rvk − λ2vk = 0, ∇R · vk = 0, (159)

with the boundary condition

vk
i (R1, R2, h) = 3(δkαδi3 + δiαδk3)hRα

2πR5
. (160)

We find, comparing this problem with the problem on w and
using Eqs. (37), (34), and (C3), that

v̂k
α = − qα

q(k − q )
[eq(h−R3 )(kδkβqβ − iq2δk3)

− kek(h−R3 )(δkβqβ − iqδk3)],

v̂k
3 = − 1

k − q
[eq(h−R3 )(q2δk3 + ikδkαqα )

− ek(h−R3 )(q2δk3 + iqδkαqα )]. (161)

Further study proceeds similarly to the study of the fundamen-
tal solution.

XVI. CONCLUSION AND FUTURE WORK

In this paper we provided an alternative derivation of the
fundamental solution for unsteady Stokes equations near a
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plane wall. The derived solution has a more compact form
than the previously reported solutions [10,12,14]. We verified
our derivation by demonstrating that it reproduces known
results in various asymptotic limits. Based on our derivation,
we were able to resolve the apparent discrepancies between
the existing theories correcting various typos in [10,12,14].

As opposed to the solution for steady Stokes equations [3],
the number of images required to construct the solution of
unsteady Stokes equations is infinite [12]. The solution in-
cludes two spatial scales: the viscous penetration depth δ and
the distance to wall H . This results in two asymptotic limits
H � δ and H � δ, in which the Green’s function in real
space can be written via elementary functions (in a general
case only the Fourier-space solution is given via elementary
functions, while the real-space solution demands finding two
Hankel transforms). These limits are also provided.

We exploited simplifications of the Green’s function at
H � δ and H � δ to study the force exerted on a sphere
oscillating near the wall by the viscous liquid. The limit of
the distant wall is of universal applicability since there is in
practice always a boundary. This limit for steady Stokes flow
is a classical problem that was considered by Lorentz [2].
The force is given by the (Stokes) force in unbounded fluid
plus a correction due to the boundary that decays as the
inverse of the distance to the wall. This law of decay co-
incides with the law of decay of Stokes flow far from the
sphere. Translations parallel and perpendicular to the wall
represent two independent problems with different friction
coefficients [2]. We provided an analogous derivation for
an unsteady Stokes flow. Here the limit of the distant wall
pertains to the case, whereas the distance to the wall H is
much larger than both δ and the sphere radius a. The ratio
a/δ could be arbitrary. The rigorous asymptotic results for
the force are provided in Eqs. (89). The force is given by
the corresponding expression for the unbounded fluid plus a
correction due to the boundary that decays as the third power
of the distance to the wall. This decay law is intuitive since
the flow due to a sphere oscillating in infinite fluid decays as
the third power of the distance to the sphere (cf. with the case
of steady Stokes flow). Oscillations parallel and perpendicular
to the wall are decoupled independent motions with different
friction coefficients as for the steady flow. The inverse Fourier
transform of the derived expression can be used to study
arbitrary time-dependent motion of a sphere far from the wall
at relatively short times (the assumption δ � H implies a
lower bound on the frequency or an upper bound on time).
The H−3 decay law is quite fast, so in practice unsteadiness
can provide a cutoff for particle-wall interactions.

Taking the limit a � δ (so that H � a � δ) repro-
duces the known result for the high-frequency limit derived
in [11,21]. This is the limit where the vorticity is concentrated
in the narrow boundary layer at the sphere surface. The width
of this layer is O(δ), while the flow outside the layer is
potential. These arguments are typically semiheuristic (see,
e.g., [18]), however they can be rigorously derived using an
integral representation of the solution and by noting that the
Stokeslet flow becomes potential at distances from the source
larger than δ (cf. [26]). The force in the high-frequency limit
can be interpreted as a distant wall correction to the added
mass. The derivation of the correction from the potential flow

approximation in [11,21] used previous results of [27,28] (see
also [29]). Our result for H � δ and unconstrained a/δ is
simpler that the corresponding derivation in [11,21].

The authors of [11,21] criticized [10], where an assumption
on the form of far-field flow was made. That assumption
would lead to an incorrect result for the force in the high-
frequency limit. We provided an independent derivation of far-
field flow which for a sphere agrees with the form in [11,21].
Our approach allowed us to prove the conjecture of [11,21]
that a similar result holds for particles of arbitrary shape. The
complete multipole expansion can be derived from the integral
equation and the Green’s function. It would be interesting to
reexamine the approach of [11] using the rigorous Green’s
function derived here.

Simplification of the Green’s function at δ � H made it
possible to analyze the limit δ � H � a, where the force is
given by Eq. (146). The contribution of unsteadiness to the
force is significant in comparison to the steady Stokes flow
correction provided that H 2 > aδ. The force at δ � H, a and
arbitrary H/a is given in quadratures by Eq. (150).

We also derived the solution with the source given by the
Laplacian of the δ function to illustrate the general scheme to
derive the solution with an arbitrary source singularity. The
derivation can also be used for the study of the flow caused
by a sphere oscillating near a wall. We recall that in infinite
space the flow due to the oscillating sphere can be obtained by
superposition of solutions with δ(x) and ∇2δ(x) sources [1].
Similarly, we can consider the flow near a wall generated
by superposition of solutions with δ(x), ∇2

⊥δ(x), and ∇2δ(x)
sources. Here the flow with the source ∇2

⊥δ(x) can be obtained
by applying ∇2

⊥ = ∇2
x + ∇2

y on the fundamental solution. The
superposition obeys the boundary conditions on the wall and
is a good starting point for the perturbative approach. The
study of the flow derived in this way is left for future work.

We demonstrated that at large distances between the wall
and the source (much larger than the viscous penetration
depth) the Green’s functions for the no-slip and full-slip (i.e.,
free surface) boundary conditions coincide. This implies that
solutions to the problems of oscillating sphere with no-slip
and full-slip boundary at distant wall agree. This is quite
useful, since for the full-slip boundary the method of re-
flections can be used [11]. Similar facts are well known for
steady Stokes flows, where the reflected flow satisfies the
full-slip rather than no-slip boundary conditions, while it is
used to construct the solution to the problem with the no-slip
boundary [2].

It is remarkable that the Green’s function for a free plane
boundary is much simpler than for the no-slip wall. The
solution is provided by just one rather than an infinite number
of images (see [14] and Sec. IX). This implies that problems
of particle motion near a full-slip boundary are much simpler
(cf. [11]). This type of problem can occur in practice for un-
steady motion of biological swimmers near the water surface.
The solution of this problem could be useful for the study of
hydrodynamic interactions of organisms swimming under the
water surface.

It was demonstrated in [14] that an inverse Fourier trans-
form of the Green’s function with respect to the frequency can
be found in a closed form. It would be of interest to study the
corresponding transform of the solution derived here, which is
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advantageous towards the numerical calculation of the inverse
Fourier transform with respect to the wave number.

The derivation of the fundamental solution of the unsteady
Stokes equations as a series in frequency can become regular
for other geometries. It is remarkable that the expansion in
powers of λ2 holds as a regular convergent series for the
fundamental solution Gch

ik (x, x′, λ) of unsteady Stokes equa-
tions in a slit geometry, i.e., for the fluid confined between
two parallel walls. The Green’s function of the steady Stokes
equations in the channel G̃ch

ik (x, x′) was derived in [30] and
in a different form in [13]. This function decays quadratically
with the distance |x − x′|, which in this case is unbounded
only in horizontal directions. We find that, in this case,

Gch
ik (x, x′) =

∞∑
n=0

λ2n

∫
0<zk<H

G̃ch
i1i

(x1, x)G̃ch
i2i1

(x2, x1)

× G̃ch
i3i2

(x3, x2) · · · G̃ch
inin−1

(xn, xn−1)

× G̃ch
ink

(xn, x′)
n∏

k=1

dxk

8π
,

where H is the distance between the walls. The terms of this
series are finite, so the above provides a valid asymptotic ex-
pansion for the study of the limit of low frequency. It is likely
that the full solution can also be derived; some properties were
provided in [31]. Another confined geometry where the series
solution would apply is a circular pipe. Steady Stokes flow
due to point force in a pipe was obtained in [32,33]; some
properties of similar unsteady flow were derived in [34].

Due to innumerable uses of the fundamental solutions in
various problems of viscous hydrodynamics, we believe that
the form of unsteady Stokeslet near a wall derived here will
find many applications involving time-dependent confined
flows.
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APPENDIX A: SYMMETRY OF THE GREEN’S FUNCTION

Here we derive the symmetry of the Green’s function as
given by Eq. (6). We consider the flows

ui (x) = Gik (x, x1)fk

8π
, u′

i (x) = Gik (x, x2)gk

8π
, (A1)

with pressures p and p′, respectively, and stress tensors

σil =−pδil + ∇lui + ∇iui, σ ′
il = −p′δil + ∇lu

′
i + ∇iu

′
i .

We observe that integration of the identity

∇k (uiσ
′
ik ) − ∇k (u′

iσik ) = u′ · f δ(x − x1) − u · gδ(x − x2)

over x gives, on using the boundary conditions,

Gik (x1, x2)gkfi = Gik (x2, x1)fkgi. (A2)

This implies Eq. (6) since this holds for arbitrary f and g. We
confirm that the solution given by Eqs. (39) and (40) obeys
the symmetry constraint

ŵ3
α (q, z1 + z2, z1) − ŵα

3 (−q, z1 + z2, z2)

= iqα{exp[−k(z1 + z2)] − exp[−(z1 + z2)q]}
λ2

obtained by the Fourier transform of Eq. (25). We used
Eq. (38) and restored the dependence of wk on the vertical
distance zi between the source and the plane. Indeed, the
solution given by Eqs. (39) and (40) gives

ŵ3
α (q, z1 + z2, z1) = [exp(−kz1) − exp(−z1q )]

× iqα[k exp(−kz2) − q exp(−qz2)]

λ2(k − q )
,

ŵα
3 (−q, z1 + z2, z2) = [exp(−kz2) − exp(−z2q )]

× iqα[q exp(−kz1) − k exp(−qz1)]

λ2(k − q )
,

(A3)

which obeys Eq. (A3).

APPENDIX B: INTEGRAL REPRESENTATION

To derive the integral representation for the oscillating
sphere flow given by Eq. (7) we use the identity

∇l

(
ũiσ

k
il

) = ∇l

(
uk

i σ̃il

) − ũkδ(x − x′), (B1)

where we introduced the stress tensor of the Stokeslet σ k
il ,

σ k
il = −pkδil + ∇lu

k
i + ∇iu

k
i . (B2)

Integration over the volume of the flow gives (dSk = r̂kdS

where r̂ = r/r)∫
|x−x̃0|=1

Gik (x, x′)σ̃il (x)dSl

8π
+ ũk (x′)

=
∫

|x−x̃0|=1
ũi (x)σ k

il (x, x′)dSl, (B3)

where x′ is assumed to be outside the sphere and x̃0 =
(0, 0,H/a). Using the constancy of ũ on the sphere and∫

|x−x̃0|=1
σ k

il (x, x′)dSl = λ2
∫

|x−x̃0|<1
uk

i (x, x′)dV, (B4)

we find Eq. (7) upon using Eq. (6) and renaming the variables.

APPENDIX C: CALCULATION OF
THE FOURIER TRANSFORM

We consider calculation of integrals appearing in f̂ (q )
defined by Eqs. (26) and (34). Taking derivative of the inte-
gral [23,35–37]∫ ∞

0

J0(qρ)ρdρ

(ρ2 + h2)3/2
= exp(−qh)

h
(C1)

over h, we find∫ ∞

0

J0(qρ)ρdρ

(ρ2 + h2)5/2
= (qh + 1) exp(−qh)

3h3
. (C2)
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Thus we can write

λ2f̂ (q ) = (qh + 1) exp(−qh)

h3
− 3I5 − 3λI4 − λ2I3, (C3)

where we introduced

In =
∫

exp(−iq1R1 − iq2R2 − λR)dR1dR2

2πRn
. (C4)

The integrals In are not tabulated for n of interest. Our
attempts at the calculation failed. However, the combination
3I5 + 3λI4 + λ2I3 that enters f (q ) can be found. We consider
In as a function of h and introduce the representation

In = lim
ε→0

∫
exp(iq3h)Ĩ ′

n

dq3

2π
,

Ĩ ′
n =

∫
exp

(
−is · R − λR − ε

R

) d R
2πRn

. (C5)

Here we introduced s = (q1, q2, q3) and the convergence fac-
tor ε. We use that [23]∫

exp
(
−is · R − λR − ε

R

) d R
4πRn

=
∫ ∞

0
exp

(
−λR − ε

R

) sin(sR)dR

sRn−1

= 2

sεn/2−1
Im[(λ − is)n/2−1Kn−2(2

√
ε(λ − is))], (C6)

where K2−n(x) = Kn−2(x), Im stands for the imaginary part,
and s2 = q2 + q2

3 . We find

In = lim
ε→0

∫
Im[(λ − is)n/2−1Kn−2(2

√
ε(λ − is))]

× 2 cos(q3h)dq3

πsεn/2−1
. (C7)

We are interested in h �= 0 when we can write

In = lim
ε→0

Im
∫

2 cos(q3h)dq3

πs
Ĩn, (C8)

where Ĩn is defined by

Ĩn = 1

εn/2−1

(
(λ − is)n/2−1Kn−2(2

√
ε(λ − is))

+ εn/2−1(is − λ)n−2

(n − 2)!

[
ln(

√
ε) − ψ (1) + ψ (n − 1)

2

]

− 1

2

n−3∑
k=0

(n − k − 3)!(is − λ)k

k!εn/2−1−k

)
. (C9)

Indeed, the introduced terms are a linear combination of δ(h)
and its derivatives (after applying Im). The introduced terms
make the integrand of In have a finite limit ε → 0,

lim
ε→0

Ĩn = (−1)n+1

2(n − 2)!
(λ − is)n−2 ln(λ − is). (C10)

We cannot however interchange the order of the limit and the
integration in Eq. (C8) because the resulting integral diverges.
Thus we introduce further regularization

In = lim
δ→0

lim
ε→0

Im
∫

2 cos(q3h) exp(−δ|q3|)dq3

πs
Ĩn. (C11)

We find

In = (−1)n+1

(n − 2)!
Im lim

δ→0

∫
cos(q3h)

(
λ − i

√
q2 + q2

3

)n−2

× ln
(
λ − i

√
q2 + q2

3

)exp(−δ|q3|)dq3

π

√
q2 + q2

3

. (C12)

This representation agrees at h �= 0 with the relation In−1 =
−∂λIn implied by the definition in Eq. (C4). We consider the
combination 3I5 + 3λI4 + λ2I3 entering f (q ) in Eq. (C3). We
find, combining the terms,

3I5 + 3λI4 + λ2I3 = Re lim
δ→0

∫
ln

(
λ − i

√
q2 + q2

3

)
× cos(q3h)

exp(−δ|q3|)dq3

2π

(
k2 + q2

3

)
= lim

δ→0

∫ ∞

0

dq3

2π
cos(q3h) exp(−δ|q3|)

× (
k2 + q2

3

)
ln

(
k2 + q2

3

)
. (C13)

We start the calculation with the integral [23]

∫ ∞

0
dq3e

iq3h−δ|q3| ln
(
k2 + q2

3

)
= 2

δ − ih
[ln k − ci(x) cos x − si(x) sin x],

x = k(δ − ih), (C14)

where ci(x) and si(x) are the integral cosine and sine, re-
spectively. We have, at δ → 0, from series formulas for the
functions,

Re lim
δ→0

2 ci(x) cos x

δ − ih
= −Im lim

δ→0

2 cosh(kh)ci(x)

h

= π cosh(kh)

h
,

Re lim
δ→0

2 si(x) sin x

δ − ih
= −π sinh(kh)

h
. (C15)

We conclude that

lim
δ→0

∫ ∞

0
cos(q3h) exp(−δ|q3|) ln

(
k2 + q2

3

)
dq3

= lim
δ→0

Re
∫ ∞

0
dq3e

iq3h−δ|q3| ln
(
k2 + q2

3

) = −πe−kh

h
.

(C16)

We find that

3I5 + 3λI4 + λ2I3

= ∂2

∂h2

(
exp(−kh)

2h

)
− k2 exp(−kh)

2h

= (1 + kh) exp(−kh)

h3
. (C17)
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We conclude from Eq. (C3) that

λ2f̂ (q ) = (1 + qh)e−qh

h3
− (1 + kh)e−kh

h3
. (C18)

Taking the derivative over q, we find Eq. (38) from the main
text.

APPENDIX D: PRESSURE AND INTEGRABILITY

Here we consider in more detail the pressure field, which
is the simplest component of the solution. In real space it can
only be found in quadratures. We demonstrate that already
the simplest quantity, which is the value of the pressure at
the particular point on the wall beneath the source, introduces
integrals that are not writable via tabulated special functions.
The value can however be written in terms of the derivative of
a special function with respect to the order.

We observe that as a harmonic function s(x) must be
writable in terms of its values at z = 0,

s(x) =
∫

exp(iqxx + iqyy − qz)s(qx, qy, z = 0)
dq

(2π )2
,

s(qx, qy, z = 0) =
∫

exp(−iqxx − iqyy)

× s(x, y, z = 0)dx dy. (D1)

It can be readily seen that the solution given by Eqs. (41)
fits this general form. We first consider the pressure on the
wall pk (z = 0) = −hδk3/2π (ρ2 + h2)3/2 + sk (z = 0), where
ρ2 = x2 + y2 [see Eq. (37)]. The pressure for the vertical
forcing is obtained from Eq. (41) as

λ2ŝ3(z = 0) = q(k + q )(e−kh − e−qh). (D2)

We find, using that for a radially symmetric function l(ρ)
in two dimensions, we have l(ρ) = ∫ ∞

0 l(q )J0(qρ)q dq/2π ,
where l(q ) is the two-dimensional Fourier transform of l(ρ)
that [∇2

⊥ = ρ−1∂ρ (ρ∂ρ )]

λ2s3(z = 0) = ∇2
⊥

∂

∂h

∫ ∞

0
(e−kh − e−qh)

J0(qρ)dq

2π

+∇2
⊥

∫ ∞

0
(ke−qh − qe−kh)

J0(qρ)dq

2π
. (D3)

We have, for three of the integrals [23],∫ ∞

0
qJ0(qρ)e−khdq = h(1 + λ

√
h2 + ρ2)e−λ

√
h2+ρ2

(h2 + ρ2)3/2
,

∫ ∞

0
J0(qρ)e−hqdq = 1√

h2 + ρ2
,

∫ ∞

0
J0(qρ)e−khdq = − ∂

∂h

∫ ∞

0

dq

k
J0(qρ)e−kh

= −∂[I0(z−)K0(z+)]

∂h

= z+I0(z−)K1(z+) + z−I1(z−)K1(z+)√
h2 + r2

,

(D4)

where 2z± = λ(
√

h2 + ρ2 ± h). We used that the modified
Bessel functions of order ν, Iν (z) and Kν (z), obey I ′

0 = I1 and

K ′
0 = −K1. We did not find in tables the integral remaining

for the complete finding of s(z = 0),∫ ∞

0
kJ0(qr ) exp(−hq )dq. (D5)

We conclude that seemingly (unless the integral above can be
found by a certain transformation) we can only write down
the real-space pressure at z = 0 in quadratures. We reinforce
the conclusion by considering p(ρ = 0, z = 0), which can be
written via special functions using∫ ∞

0
k exp(−hq )dq = λ2L1 + L2

2
− 1

h2
, (D6)

where the integrals Li are defined below. We have, from the
integral in [23] using l’Hôspital’s rule,

L1 ≡
∫ ∞

0

exp(−hq )dq

k
= ∂

∂ν
[J−ν (λh) − J−ν (λh)]|ν=0

= π [H0(λh) − Y0(λh)]

2
, (D7)

where Yν , Jν , and Hν are Weber’s (Bessel function of the
second kind), Anger’s, and Struve’s functions, respectively.
The other integral in [23] gives

L2 =
∫ ∞

0

(
2k + 2q − λ2

k

)
exp(−hq )dq

= λ2 ∂

∂ν
[J−ν (λh) − J−ν (λh)]|ν=2. (D8)

We can write the first derivative with respect to the order via
the special functions

∂Jν (x)

∂ν

∣∣∣∣
ν=−2

= −∂Jν (x)

∂ν

∣∣∣∣
ν=2

+ πY2(x)

= πY2(x)

2
− 2[J0(x) + xJ1(x)]

x2
. (D9)

However, the derivative of Jν with respect to the order can
only be written in quadratures [38]. Thus, with the possi-
ble exception of special points, such as the position of the
source [10], pressure can only be written in quadratures.

APPENDIX E: LORENTZ PROBLEM
VIA THE INTEGRAL EQUATION

Here we derive the stress tensor for the problem of steady
motion of a sphere near the wall in the leading order in H . We
have, from [3] or Sec. XII, at λ = 0 that the Green’s function
of the steady Stokes problem obeys

G̃ik (x, x′) = Yik (r ) + δG̃ik (x, x′), (E1)

where

δG̃3α (x, x′) = −Y3α (R) + 2hRα

R3
+ 6hRαR3z

R5
,

δG̃αβ (x, x′) = −Yαβ (R) + 2zh(3RαRβ − R2δαβ )

R5
,
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δG̃33(x, x′) = −Y33(R) − 4hz

R3
+ 6ρ2hz

R5
,

δG̃α3(x, x′) = −Yα3(R) + 2Rαh

R3
− 6RαhzR3

R5
. (E2)

The integral equation on the surface traction is obtained by
setting λ = 0 in Eq. (10),

V̂i = − 1

8π

∫
|x′−x̃0|=1

G̃il (x, x′)σ̃lr (x′)dS ′. (E3)

When the sphere is far from the wall the points entering
the surface integral obey rα = Rα � h, z ≈ h, and R3 ≈ 2h,
which gives

δG̃αβ (x, x′) ≈ −3δαβ

4h
, δG̃33(x, x′) = − 3

2h
, (E4)

where the omitted components are much smaller. The integral
equation becomes, in the leading order

V̂i − 3V̂l

16π

∫
|x′−x̃0|=1

δG̃il (x, x′)dS ′

= − 1

8π

∫
|x′−x̃0|=1

Yil (x − x′)σ̃lr (x′)dS ′, (E5)

where we used that, in the leading order, the surface traction
is that of the Stokes problem σ̃ir = −3V̂i/2 (it is uniform
and gives the Stokes force −6πV̂i on multiplication with the
surface area 4π ). Using, in Eq. (E5), δG̃il from Eq. (E4), we
find the equation on surface traction of a sphere moving at
constant velocity in infinite space. The solution is the constant
surface traction of the corresponding Stokes problem given by
Eq. (141).
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