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Relative velocities in bidisperse turbulent aerosols: Simulations and theory
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We perform direct numerical simulations of a bidisperse suspension of heavy spherical particles in forced,
homogeneous, and isotropic three-dimensional turbulence. We compute the joint distribution of relative particle
distances and longitudinal relative velocities between particles of different inertia. For a pair of particles with
small difference in their inertias we compare our results with recent theoretical predictions [Meibohm et al.,
Phys. Rev. E 96, 061102 (2017)] for the shape of this distribution. We also compute the moments of relative
velocities as a function of particle separation and compare with the theoretical predictions. We observe good
agreement. For a pair of particles that are very different from each other—one is heavy and the other one has
negligible inertia—we give a theory to calculate their root-mean-square relative velocity. This theory also agrees
well with the results of our simulations.
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I. INTRODUCTION

Here we are concerned with small but heavy particles
moving in a turbulent flow. How frequently and at what speeds
do such particles collide with each other in turbulence? This
question plays a central role in attempting to understand col-
lisions and coalescence of microscopic water droplets in tur-
bulent clouds [1] and to understand the formation of planetes-
imals in protoplanetary disks [2–4]. The particles in these tur-
bulent aerosols are small and collisions between them are few
and far between, consequently fluctuations matter. To under-
stand how the distribution of particle sizes changes as a func-
tion of time, it is therefore not sufficient to merely consider the
average collision rate. To account for the fluctuations it is nec-
essary to consider the joint distribution of particle separations
and their relative velocities [5–7]. A mean-field-like descrip-
tion based solely on the first moment of relative particle veloc-
ities neglects fluctuations and may therefore not be reliable.

Völk et al. [8–10] and others [11,12] formulated inertial-
range theories for relative velocities of particles, referring
to particle separations in the inertial range of turbulence.
A criticism of this approach is that the collisions between
the particles happen deep inside the dissipation range when
the particle sizes are much smaller than the Kolmogorov
length, η. It has been observed in direct numerical simulations
(DNSs) that inertial-range theories for the moments of relative
velocities [8–10] fail at small Stokes numbers [13] (the Stokes
number is a dimensionless measure of the importance of
particle inertia). The predictions of Ref. [12] for the far tail of
the distribution of relative velocities between nearby identical
particles assume large Stokes numbers and a well-developed
inertial range. This is difficult to achieve in DNSs, and there-
fore it remains to be determined under which circumstances
the prediction may hold.
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Gustavsson et al. [6,14–16] developed a dissipation-range
theory for the distribution of relative velocities of identical
particles, when the collision radius—the sum of the particle
radii—is in the dissipation range of turbulence. An asymp-
totic form of the distribution was obtained by matching two
limiting cases and using that inertial particles of identical
sizes distribute on a fractal attractor in phase space [6,14].
The result is a non-Gaussian distribution, with power-law
tails that reflect large fluctuations. The theory applies in the
limit where the Stokes number is large enough for particles to
detach from the streamlines of the flow. But since the theory
[6,14–16] neglects inertial-range fluctuations, it may require
modifications at very large Stokes numbers where the particle
separations explore the inertial range.

In the astrophysical literature, DNS results for the relative-
velocity distribution were recently reported by Ishihara et al.
[13], as well as by Pan and Padoan [17,18]. These au-
thors fit the distribution to stretched exponentials. This raises
the question how universal the power-law tails predicted in
Refs. [6,14] are. For Stokes numbers of order unity, the power
laws were clearly seen in DNSs [19,20].

The findings and open questions described above apply to
identical particles. But to understand how the size distribution
of particles in turbulent aerosols changes as a result of colli-
sions and coalescences, the distribution for particles of differ-
ent sizes (different Stokes numbers) is needed. Meibohm et al.
[21] developed a dissipation-range theory for the distribution
of relative velocities of particles that have different Stokes
numbers, by analyzing a statistical model in the white-noise
limit. The predictions of Ref. [21] have not been tested in
DNSs yet.

To understand the distribution of relative velocities in
turbulent aerosols is an important problem to study—both
in theory and in simulations—because it is hard to obtain
direct measurements of droplet velocities in clouds, and quite
impossible as far as grain velocities in protoplanetary disks
are concerned. There are two laboratory experiments [22,23]
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that have measured the distribution of relative velocities of
micron-sized particles in turbulence and their mean and root-
mean square values as functions of particle separations. Ex-
perimental limitations make it difficult to measure at which
relative velocities particles actually collide in these experi-
ments. For micron-sized particles this occurs at separations
deep inside the dissipative range, at present outside the spatial
resolution of the experiments.

It is therefore important to validate existing theories for
collision velocities of particles in turbulence by comparison
with results of DNSs. This is the purpose of the present paper.
It is organized as follows: in Sec. II we describe the model
and details of the DNSs. In Sec. III we summarize the key
theoretical results of Refs. [14,21]. In Sec. IV we present
our DNS results for the relative velocities between particles
with different Stokes numbers. We compare the DNS results
for the joint probability distribution of relative velocities and
separations with the theoretical predictions of Meibohm et al.
[21]. The distribution is non-Gaussian. When the difference
between the Stokes numbers is not too large, then the dis-
tribution exhibits power-law tails as predicted by theory. At
small separations and relative velocities, the power law in
relative velocities is cut off, and it becomes a broad Gaussian
(approximately uniform), verifying the new velocity scale Vc

predicted by theory [21]. Also the distribution of separations
becomes uniform for separations smaller than Rc. This scale
was predicted in Refs. [24,25]. We show how the scales Vc and
Rc are related. Finally, we develop a distinctive theory for the
root-mean-square (RMS) relative velocities of particles when
one of the particles has very small Stokes number. We find that
the results from this theory are in accord with our simulations.
We conclude in Sec. VI.

II. NUMERICAL METHOD

A. Particle dynamics

We describe the motion of a heavy particle in a turbulent
flow by the Stokes model [26]:

d

dt
x = v,

d

dt
v = 1

τ
[u(x, t ) − v]. (1)

Here x and v are the position and velocity of the particle,
respectively, and the characteristic response time of the par-
ticle is τ . The response time depends upon the particle size,
a. In the Stokes limit, τ = (2ρp/9ρ) a2/ν. Here ρp and ρ are
the mass densities of the particle and the fluid, respectively,
and ν is the kinematic viscosity. Finally u(x, t ) is the flow
velocity. This model assumes that the effect of gravitational
acceleration is small compared to the acceleration due to
the turbulent flow, fluid-inertia corrections are small, and
both particle-particle interactions and Brownian diffusion of
individual particles are ignored.

B. Direct numerical simulation of turbulence

The flow velocity u(x, t ) is determined by solving the
Navier-Stokes equation

∂
∂t

ρ + ∇ · (ρu) = 0, (2a)

ρ D
Dt

u = −∇p + μ∇ · S + f . (2b)

Here D
Dt

≡ ∂t + u · ∇ is the Lagrangian derivative, p is the
pressure of the fluid, and ρ is its density as mentioned above.
The dynamic viscosity is denoted by μ ≡ ρν, and S is the
second-rank tensor with components Skj ≡ ∂kuj + ∂juk −
δjk (2/3)∂lul (Einstein summation convention). Here ∂kuj are
the elements of the matrix A of fluid-velocity gradients. We
use the ideal gas equation of state with a constant speed of
sound.

Our simulations are performed in a three-dimensional pe-
riodic box with sides Lx = Ly = Lz = 2π in code units. To
solve Eqs. (2) we use the pencil code [27], which uses a
sixth-order finite-difference scheme for space derivatives and
a third-order Williamson-Runge-Kutta [28] scheme for time
derivatives. The external force f , which is a white-in-time,
Gaussian, stochastic process concentrated on a shell of wave
number with radius kf in Fourier space [29], is integrated by
using the Euler-Marayuma scheme [30]. Under the action of
the force the flow attains a statistically stationary state where
the average energy dissipation by viscous forces is balanced
by the average energy injection by the external force, f .
The amplitude of the external force is chosen such that the
Mach number, Ma ≡ urms/cs (where cs is the sound speed)
is always less than 0.1, i.e., the flow is weakly compressible,
which has no important effect on our results; please see the
discussion in Ref. [20], Sec. II, and Appendix A there for
further details. The same setup has been used in studies of
scaling and intermittency in fluid and magnetohydrodynamic
turbulence [31–33].

We introduce the particles into the simulation after the
flow has reached a statistically stationary state. Initially, the
positions of the heavy particles are random and statistically
homogeneous with zero initial velocity. Then we simultane-
ously solve Eqs. (1) and (2). To this end we must interpolate
the flow velocity to typically off-grid positions of the heavy
inertial particles. We use a trilinear method for interpolation.

We define the Reynolds number by Re ≡ urms/(νkf ),
where urms is the root-mean-square velocity of the flow av-
eraged over the whole domain and the kinematic viscosity
ν. The mean energy dissipation rate ε ≡ 2ν� where the
enstrophy � ≡ 〈ω2〉, and ω ≡ ∇ × u is the vorticity. The
Kolmogorov length is defined as η ≡ (ν3/ε)1/4, the charac-
teristic timescale of dissipation is given by τη = (ν/ε)1/2, and
uη ≡ η/τη is the characteristic velocity scale at the dissipation
length scale. In what follows, unless otherwise stated, we use
η, τη, and uη to nondimensionalize length, time, and velocity,
respectively. The large-eddy turnover time is given by Teddy ≡
1/(kfurms). We define the Stokes number as St ≡ τ/τη, where
τ is the particle response time in Eq. (1). As mentioned in the
Introduction, this parameter measures the importance of par-
ticle inertia. Parameters of our simulation are given in Table I.

It is important to note that the particles in our simulations
are actually point particles. As particle-particle interactions
are ignored there are no real collisions. As far as the numerical
code is concerned, the particles are characterized by the
timescale τ which determines the Stokes number. To estimate
the radius of a particle from its Stokes number we have used
typical values of the ratio of the density of the particle to
the density of the background fluid that corresponds to water
droplets in clouds [34]. To obtain collision velocities that
correspond to dust in protoplanetary disks one must use a
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TABLE I. Parameters for our DNS runs with N3 collocation
points: ν is the kinematic viscosity, Np is the number of particles,
Re ≡ urms/(νkf ) is based on the forcing wave number kf , ε is the
mean rate of energy dissipation, η ≡ (ν3/ε)1/4 and τη ≡ (ν/ε)1/4

are the Kolmogorov length and timescales, respectively, and Teddy ≡
1/(urmskf ) is the large-eddy-turnover time. The Mach number Ma =
urms/cs ≈ 0.1. We quote dimensionless numbers.

N Np Re 1/(kfη) Teddy/τη

512 107 89 14.28 2.21

different value of the density ratio. Also, since the sizes of
the dust grains are smaller than the mean-free path of the
gas [2,3,35], we must use a different expression for the particle
response time. It is obtained by replacing the mean free path
� in ν = �cs by the particle size a. This yields τ ∼ a instead
of the quadratic dependence τ ∼ a2 in Stokes law.

III. THEORETICAL BACKGROUND

In this section we summarize the dissipation-range the-
ory for the distribution of relative velocities between two
particles with different Stokes numbers [21]. We denote the
relative-particle velocity by V = v2 − v1, where v1 and v2

are the individual particle velocities. The distance between
the particles is denoted by R = |R|, where R = x2 − x1 is
the separation vector between the particle positions, and the
longitudinal relative velocity is defined as VR = V · R/R. We
denote the steady-state distribution of relative velocities and
separations by P (R,VR ). The moments of the distribution
are characterized by

〈|VR|p〉≡ mp(R)

m0(R)
,mp(R)=

∫
dVR |VR|p P (R,VR ). (3)

The factor m0(R) is related to the pair correlation function
g(R) by m0(R) ∝ g(R)Rd−1 [6].

A. Distribution of relative velocities and separations

Gustavsson and Mehlig [6,14,15] developed a theory for
the distribution of relative velocities of nearby identical parti-
cles. The theory takes into account particle inertia, and it rests
on the observation that such particles form fractal spatial pat-
terns in turbulence [26], and that caustics can give rise to large
relative velocities at small separations [36–38]. The theory
predicts that the distribution of relative velocities VR at small
separations R is a power law, reflecting fractal clustering in
phase space. The power-law exponent is related to the phase-
space correlation dimension D2 [6,14,21]. The distribution
determines the scaling of relative-velocity moments (3) with
separation R [15]. These predictions for identical particles
should hold for turbulence as well as statistical-model flows.
In the white-noise limit, the theory was derived from first
principles in Refs. [6,14]. For turbulent flows, the theoretical
predictions were verified using DNSs [19,20,39] and using
kinematic turbulence simulations [15]. See also Refs. [40–43].

The correlation dimension D2 is not universal. In the
white-noise limit D2 can be calculated in perturbation theory
[14,26], but in general it must be determined numerically. As
is well known, D2 depends nonmonotonically on St with a
minimum at St of order unity [44].

Particles with different Stokes numbers cluster on dis-
tinct fractal attractors, so that the distribution of separations
between particles with different Stokes numbers is cut off
at a small spatial scale, Rc, that depends on the difference
between the Stokes numbers [24,25]. How are the relative
velocities of nearby particles affected? In Ref. [21] a statistical
model for relative velocities between particles with different
Stokes numbers was analyzed in the white-noise limit. It was
shown that there is a distinctive velocity scale Vc, and that
the distribution of VR and R is a broad Gaussian below these
scales [21], in other words approximately uniform:

P (R,VR ) = N Rd−1

⎧⎪⎨
⎪⎩

1 for |VR| < Vc and R < Vc/z
∗,

Rμc−d−1 for R > Vc/z
∗ and |VR| < z∗R,

(|VR|/z∗)μc−d−1 for |VR| > Vc and z∗R < |VR| ,
0 for |VR| > V0.

(4)

In addition to the normalization N there are four more
parameters in Eq. (4): the two velocity scales Vc and V0, the
power-law exponent μc, and the parameter z∗.

The last parameter, z∗, defines the line |VR| = z∗R in the
R-VR plane where known limiting behaviors of P (R,VR )
in the dissipative range are matched to obtain the theoretical
predictions for P (R,VR ).

The exponent μc is related to the phase-space correlation
dimension D2(St ) of the mono-disperse system with Stokes
number St :

μc = min{D2(St ), d + 1}, (5)

where d = 3 is the spatial dimension, and St is the harmonic
mean of the two Stokes numbers,

St = 2St1St2
St1 + St2

. (6)

The parameter D2 can be calculated analytically in the white-
noise limit [21,45,46], but in turbulent flows it must be deter-
mined numerically.

Now consider the upper velocity scale V0. It was assumed
in deriving Eq. (4) that it suffices to consider separations
in the dissipative range where the turbulent fluid velocities
are spatially smooth. This range extends up to separations R

somewhat larger than the Kolmogorov length η. The theory
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mirrors the distribution of spatial separations for R < 1 to
distributions in relative velocities, just as it does for identical
particles. Therefore the upper cutoff for the VR power laws is

V0 = z∗. (7)

How this parameter depends upon the Stokes number is not
known in general. In a one-dimensional statistical model this
parameter was calculated in the white-noise limit in Ref. [6].

In Eq. (7), the distribution was simply set to zero for VR >

V0. This is an oversimplification, in particular for turbulence
where the far tails of the VR distribution at small spatial
separations result from particle pairs that have had separations
in the inertial range in the past. For large Stokes numbers and
when the inertial range is well developed it was argued in
Ref. [12] that the tail of the conditional distribution P (R=
0, VR ) has the form ∼C1/(ετ )1/2 exp[−C2|VR|4/3/(ετ )2/3]
for very large Stokes numbers. A statistical-model calculation
with an inertial range yields the prefactors C1 and C2 in the
white-noise limit, but they could have different parameter
dependencies in turbulence [47]. At smaller Re, when the
inertial range is not well developed, one may argue that the
tail should be well approximated by a Gaussian with vari-
ance ∝ u2

rms. The RMS turbulent velocity is an estimate of
the relative velocities of particles that move independently at
large separations of the order of the system size. In summary,
the far tail of the relative-velocity distribution is not universal.
Here we simply set

V0 = urms (8)

when we compare with our DNS data.
The fourth parameter in Eq. (4) is the scale Vc. It depends

upon the difference of the two Stokes numbers. We follow
Ref. [21] and write

θ = |St1 − St2|
St1 + St2

. (9)

The white-noise model predicts that [21]

Vc ∝θ (10)

at small θ . In this case, the power-law tails of the distribution
(4) are expected to contribute to the relative velocity moments.
According to Eq. (4), the tails of the distribution beyond Vc are
simply those of the monodisperse system.

Equation (4) implies that the distribution of separations be-
comes uniform in R for R < Rc, as predicted in Refs. [24,25].
Their spatial scale Rc is thus related to our velocity scale as
follows:

Rc ≡ Vc/z
∗, (11)

and therefore Rc ∝ θ at small θ .

B. Moments of relative velocities

Theoretical predictions for 〈|VR|p〉 are obtained by inte-
grating the distribution P , as determined by Eq. (3). We
first quote the results when θ is small, when the distribution
exhibits a clear power law. This power law is cut off at small
relative velocities at max(Vc, z

∗R) = z∗max(Rc, R), and con-
sequently the result for 〈|VR|p〉 depends on whether R > Rc

or not. When R > Rc we find

mp(R) = bpRμc+p−1 + cpRd−1, (12)

with

bp = −N (1+d− μc)z∗p+1

(p+1)(μc−d+p)
,

cp = N z∗p+1(V0
z∗

)μc−d+p

μc − d + p
, (13)

where N is the normalization factor in Eq. (4). For large
values of p, the coefficients bp and cp are sensitive to the
form of the distribution beyond the cutoff z∗, which depends
on the nature of the turbulent fluctuations. Also, the value of
μc = D2(St ) is not universal, and neither is the parameter
z∗. The second term in Eq. (12) appears due to presence
of singularities (of the gradient of particle velocity) called
caustics [37,38] for nonzero values of St. In other words, the
presence of caustics imply that while the distance between
two nearby particles goes to zero their relative velocities can
remain order unity. Whereas, in the absence of caustics, the
particle velocity field remains smooth: relative velocity of two
particles goes to zero as the separation between them goes
to zero, and this gives rise to the first term in Eq. (12) (see
Ref. [6] for more discussion).

The R dependence predicted by Eq. (12) is universal. It is
equal to the scaling form of mp(R) for identical particles [15],
as expected for small θ . But for particles with different Stokes
numbers the coefficients bp and cp depend upon θ , although
only through the global normalization constant N . The scale
Vc does not enter explicitly because R > Rc.

Now consider R < Rc. Then the uniform part in Eq. (4)
dominates the moments. At R < Rc, particles of two different
sizes a1 and a2 move approximately independently from each
other. In this case the moments take the form

mp(R) ∼ c′
pRd−1, (14)

with

c′
p = cp − N (1 + d − μc)(Vc/z

∗)μc−d+pz∗p+1

(μc − d + p)(p + 1)
. (15)

For p = 1, 2, 3, . . . one finds that c′
p < cp for heavy particles

in incompressible turbulence at not too large Stokes numbers
[DNSs show that D2 > d − 1, and that D2 < d + 1 for not
too large Stokes numbers; see Eq. (5)]. The moments for
larger θ are nevertheless usually larger than those for θ → 0,
because the term bpRD2+p−1 makes a large negative contri-
bution unless R is extremely small, and this term is absent in
Eq. (14). In general, if St is small enough so that caustics are
rare, then Eq. (14) can give a contribution for different parti-
cles that is much larger than for identical particles, leading to
a significantly higher collision rate. The dependence on R is
of the same form as the caustic contribution in Eq. (3) in the
limit θ → 0.

Finally consider larger values of θ , large enough so that
the power laws in Eq. (4) disappear. In a Gaussian white-
noise model the distribution P (R,VR ) is Gaussian in this
limit [21].
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Very dissimilar pair of particles

When one of the particles has a very small Stokes number,
e.g., St2 � 1, we can evaluate the coefficient c′

p term in
Eq. (14) in terms of single-particle observables. We now
outline the calculation for p = 2. When St2 � 1, we can
expand the equation of motion up to leading order in St2 to
obtain the velocity of the second particle:

v2 ≈ u(x, t ) − A · R − St2
Du
Dt

(x + R, t ). (16)

The relative velocity between two particles can then be written
as

V (R) ≈ v − u(x, t )

+A · R + St2
Du
Dt

(x + R, t ). (17)

The first line of the right-hand side of Eq. (17) is St1 times
the acceleration of a single particle; at small |R| and St2 this
is the leading order contribution to the relative velocity. The
distribution of the acceleration has been studied extensively
and is known to have exponential tails [48,49]. This informa-
tion allows us to approximately relate the structure functions
to single-particle averages, as shown below.

We assume that to calculate 〈V 2
R〉 for R much smaller than

Rc it is sufficient to consider one component of V . Consider
one component of Eq. (17), square both sides of the resultant
equation and then take steady-state averages. Assuming that
R � 1 we obtain

〈
V 2

R

〉 ≈ 1

3
[〈u2〉 − 〈v2〉]

(
1 − 2

St2
St1

)

− 2

3
St2〈(u − v) · A · (u − v)〉. (18)

All averages on the right-hand side of Eq. (18) are evaluated
for a single particle with Stokes number St1. The only St2
dependence appears in the prefactors on the right-hand side
of Eq. (18). We note that there is no R dependence (since
all averages are single-particle averages). This is the result
of neglecting the gradient term A · R in the equation for the
particle separations. As explained in Sec. II A of Ref. [21] this
is allowed provided that R < Rc. But note that in Ref. [21] the
white-noise model was analyzed, while Eq. (18) applies to a
turbulent flow.

IV. DNS RESULTS

A. Distribution of relative velocities and separations

Figure 1 shows a comparison between the theory Eq. (4)
and our DNS results for P (R,VR )/R2 for different values
of θ . The first column of panels in this figure shows contour
plots of P (R,VR )/R2. As predicted by the theory (4), there
is a region in the R-VR plane where the distribution is a broad
Gaussian. In a log-log plot this appears as an approximately
uniform region where P/R2 is approximately constant. Out-
side this region, and for small values of θ , the equidistant
contour lines show that the distribution exhibits the power
laws, as predicted by the theory.

To analyze the power laws in relative velocities in more
detail, the second column of panels in Fig. 1 shows plots of

P (R,VR )/R2 as functions of |VR| for several different values
of R. We can clearly distinguish the power law from the broad
Gaussian at small |VR|, where P/R2 ≈ const. Equation (4)
says that the crossover between these two behaviors occurs
at min(Vc, z

∗R). We estimate this crossover velocity scale
by drawing two lines: a horizontal one at small |VR| and a
power-law fit for larger |VR|. The scale at which these two
lines intersect is our estimate of the crossover scale. For small
values of R the fits yield a velocity scale that is independent of
R, this is Vc. For slightly larger values of R, the velocity scale
is proportional to R, as predicted by theory, and the constant
of proportionality defines the parameter z∗.

Dissipation-range theory [21] says that Vc = c θ for small
θ , but the theory does not determine the constant of propor-
tionality c. This constant is system specific, as is the value of
z∗. In the white-noise limit these parameters can be calculated
analytically [6,21], but not in general.

Therefore it is important to determine these constants by
DNSs. The results are shown in Fig. 2. Figure 2(a) shows
that z∗ is essentially independent of θ , while Fig. 2(b) demon-
strates that Vc is proportional to θ at small θ , as predicted by
the theory. Figure 2(b) also shows that the prefactor depends
on St as St 1/2, at least for the parameters simulated. This
follows from the fact that the DNS data for Vc St −1/2 collapse
onto a single line. However, there is no theoretical explanation
for this result, as far as we know.

Figure 2(c) shows the power-law exponents μc. We ex-
tracted μc for different values of St and for two different
values of θ by fitting power laws to the DNS results for
the distribution of relative velocities. Figure 2(c) shows the
resulting exponents μc together with D2 for the case St1 =
St2 from Ref. [20]. Up to the numerical accuracy in our
DNSs we find for D2 < 4 that μc = D2, independent of θ

for small values of θ . The phase-space correlation dimension
D2 has a characteristic minimum at St of order unity and
monotonously approaches the spatial dimension d for small
St and the dimensionality of phase space, 2d, for large St
[see Fig. 2(c)].

In summary we observe good agreement between our
DNSs and the theory, Eq. (4), in particular for small θ . As
θ increases, the velocity scale Vc grows so that the range of
the power law between Vc and V0 becomes smaller. For large
enough values of θ , the power laws disappear. In this limit
the distribution is a broad Gaussian, approximately uniform.
In our log-log plots, P/R2 is approximately constant in this
region.

B. Moments of relative velocities

Figure 3 summarizes our DNS results for the moments
of relative velocities as a function of particle separation.
Figure 3(a) shows DNS results for m0(R)/R2 as a function
of R (symbols), while Fig. 3(b) shows m2(R)/R2, also as a
function of R. The parameters are given in the figure caption.
Also shown is the scaling of the smooth contribution predicted
by Eq. (12) (solid line). Dashed vertical lines correspond to
the scale Rc = Vc/z

∗. The parameters Vc, μc, and z∗ were
determined separately, as described in Sec. IV A.

As predicted by Eq. (12), the moments scales as Rd−1 for
R < Rc. For R > Rc the smooth contribution dominates for
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FIG. 1. DNS results for joint distribution P (R, |VR|) of R and |VR|, divided by R2. Parameters: St = 2 and θ = 0.005 (top row), θ = 0.05
(second row), and θ = 0.1 (bottom row). First column: Contour plots of P (R, |VR|)/R2 color coded according to log10[P (R, |VR|)/R2]. The
blue lines in the bottom left corner of these plots show the scales Rc and Vc (see text). The dashed lines show the theoretical matching condition
|VR| = z∗R (see text). Second column: plots of P (R, |VR|)/R2 as functions of |VR| for different values of R as indicated in the panels. Also
shown are fits (solid lines) to the theoretical power-law prediction |VR|μc−4, Eq. (4), to determine μc as a function of St . The crossover
between the approximately uniform (broad Gaussian) part at small |VR| (and small R = 0.03, 0.06, horizontal solid lines) and the power law
at intermediate R sets the scale Vc (dashed vertical lines).

m0(R) for both values of St , whereas for higher order mo-
ment m2(R) the smooth contribution dominates only for the
smaller mean Stokes number. For larger mean Stokes number,
the caustic contribution cpRd−1 swamps the smooth part for R

below Rc. In this limit the relative-velocity moments mp(R)
are dominated by the singular Rd−1 contribution provided
that p is large enough. While the R dependence of this

contribution is the same for identical particles and for particles
with different Stokes numbers, the physical origin of this
power law is slightly different in the two cases. For identical
particles, the singular term is caused by caustics [36–38]. For
particles with different Stokes numbers, by contrast, the sin-
gular contribution is due to the uncorrelated motion between
nearby (R < Rc) particles with different Stokes numbers [21].
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FIG. 2. Estimates of the parameters z∗, Vc, and μc, obtained from the DNS results for P (R, VR ) shown in Fig. 1. (a) Scale z∗ as a function
of St , for two different values of θ (symbols). The solid black line is the estimate for identical particles, taken from the DNSs of Ref. [20].
(b) Scale Vc as a function of θ (symbols), for different values of St . The solid black line shows a linear dependence upon θ with fitted prefactor
1.3. (c) Exponent μc as a function of St for two different values of θ obtained by power-law fits to DNS results for P (R, VR ) at fixed R; see
Fig. 1. The solid black line is the phase-space correlation dimension D2 of the fractal attractor for identical particles with Stokes number St ,
taken from Ref. [20].

Very dissimilar pair of particles

Figure 3(c) shows DNS results for 〈V 2
R〉 at the collision

radius R = a1 + a2 for St2 � 1 as a function of St1 (red
circles), that is, for large values of θ . Also shown is the
theoretical expression, Eq. (18) (green squares). The averages
on the right-hand side of Eq. (18) are determined by DNSs,
by averaging along heavy-particle paths in the steady state.
The agreement is good at small values of St1, but we observe
deviations at larger values of the Stokes number. It is possible
that this is due to higher-St2 terms neglected in (18). Plotting
only the first term of Eq. (18) yields slightly different results,
although the deviations are smaller than those between the full
theory and the DNS results.

We have checked that the gradient term A · R in the
equation of motion for the separation R is negligible. For all
data points shown, θ is large enough so that a1 + a2 is much
less than Rc. In this range the DNS results do not depend upon
R. This is the plateau region seen in Fig. 3(a).

V. DISCUSSION

Our results show in agreement with the theory that the
distribution of relative velocities is non-Gaussian when θ is
small. For a fairly wide range of θ (up to θ ∼ 0.1), the dis-
tribution has power-law tails ∼|VR|μc−4 at small separations.
The dissipation-range theory predicts that the exponent μc is

determined by the phase-space correlation dimension D2(St )
for a monodisperse system with Stokes number St [Eq. (5)].
In our simulations, the numerical values of μc vary from
approximately 2.4 to 3.5, and in this range there is good
agreement between the theory and the numerical values of μc

obtained from the DNSs [50].
In the astrophysical literature, several papers have reported

DNS results for the distribution of relative particle velocities
[13,17,18]. These authors attempted to fit the distributions
to stretched exponentials, of the form exp[−(|VR|/β )γ ] with
fitting parameters β and γ . The parameter γ is usually quoted
to be smaller than unity. This law is consistent neither with our
power-law predictions nor with the large-St prediction from
Ref. [12]. We have reanalyzed the data in Fig. 12 of Ref. [13]
for the two smallest Stokes numbers, and find clear power
laws over one decade of VR/uη, with exponents μc − 4 in
good agreement with the dissipation-range theory (the values
of μc were obtained from the plots of the pair correlation
function in Fig. 8 of the same paper).

We remark that the distribution of relative velocities in
bidisperse suspensions was recently studied in Ref. [51].
This study did not report power laws for the distribution of
relative velocities. As our results show, possible reasons for
the absence of power laws are, first, that the distributions
were calculated at quite large separations (of the order of the
Kolmogorov length, R ∼ η). Second, the values of θ were

FIG. 3. DNS results for moments of relative velocities as a function of particle separation R. (a) Zeroth moment m0(R) and (b) second
moment divided by R2, for St = 0.2 and 2, and θ = 0.01 (symbols). Solid line shows the scaling of smooth contribution in Eq. (12). The
scale Rc = Vc/z

∗ is indicated by the dashed vertical line. (c) Root-mean-square radial velocity 〈V 2
R〉1/2 for R = a1 + a2 plotted as a function

of St1 for St2 = 0.1 (red circles). The first term of theoretical estimate, Eq. (18), is plotted as blue � (joined with a blue solid line). The full
expression Eq. (18), is plotted with green � (joined by a green solid line).
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quite large, too large to see power laws as our theory and DNS
data demonstrate.

Pan and Padoan [17] did not plot the radial relative velocity
VR (that determines how particles approach each other), but

instead the RMS relative velocity Vrms ≡
√

V 2
1 + V 2

2 + V 2
3 .

The power law of the distribution of Vrms has a different
exponent [6,14]: |Vrms|μc−2d . We have compared this predic-
tion with the data shown in Fig. 14 of Ref. [17]. There is a
clear power law, with exponent ≈ −3.7 for St = 1.55. Theory
says that the exponent should equal D2 − 6, but Ref. [17]
does not give values for the fractal correlation dimension D2.
Estimating D2 from our data at St = 1.55 (albeit at a different
Reynolds number), we find D2 − 6 ≈ −3.4, in reasonable but
not perfect agreement with the DNS results of Ref. [17].

Ishihara et al. state that their distribution approaches a
Gaussian when θ is not small. This is consistent with theory
[21], predicting a broad Gaussian for the body of the distribu-
tion. In our log-log plots, Fig. 1, the broad Gaussian appears
as a region where P/R2 is approximately constant. When θ

is large enough, this region extends out to V0, approximately
equal to the RMS turbulent velocity, urms. The form of the
far tails beyond V0 is difficult to determine, because the
tails describe rare events, and since there is no theoretical
prediction apart from the law predicted in Ref. [12]. Yet this
applies only at large Stokes numbers, and when there is a
well-developed inertial range.

In both cases, when θ is small and when it is large, the
RMS relative velocity is determined by the upper cutoff, V0.
We have simply set V0 = urms here, but this is a simplification.
In general, the upper cutoff V0 must also depend on particle
inertia (Stokes number). We have neglected this dependence
here. Taking V0 = urms implies that the moments of particle
relative velocities depend on the Reynolds number Re when
determined by the upper cutoff V0, since urms/uη ∝ Re1/4

[52]. With our present computational capabilities we cannot
explore such a weak dependence on Re; hence we have
concentrated our efforts on a single value of Re. Experimental
data [23] confirm that the Re dependence is quite weak.

Ishihara et al. [13], on the other hand, computed RMS
relative particle velocities for different values of Re (Fig. 3
in their paper), obtaining a fairly strong dependence on Re.
A possible explanation of this result is that Ishihara et al.
evaluated 〈V 2

R〉 at fixed separation r = 10−3L. Changing
Re while keeping the system size L the same changes the
Kolmogorov length η, and hence R = r/η is different for
different value of Re. Unless R < Rc (whether this condition
is satisfied or not is determined by the values of the Stokes
numbers), the relative velocity statistics depends on R, as the
dissipation-range theory shows. Thus evaluating the moments
at r = 10−3L for changing η may give rise to a spurious
Re dependence. It would be of interest to test quantitatively
whether the Re dependence predicted by the dissipation-range
theory is consistent with this explanation.

It is a strength of the dissipation-range theory summarized
in Sec. III that it predicts how the moments of relative ve-
locities depend upon particle separation R. The microscopic
dust grains in accretion disks are much smaller than the
Kolmogorov length η, so that the collision radius R = a1 + a2

is well below η. Inertial-range theories [8–12] do not refer

to scales below η. As a consequence they cannot describe
collisions that occur deep in the dissipation range. In DNSs
it is also difficult to reach to such small scales, much smaller
than η, simply because particles rarely come so close. But
collisional aggregation in turbulent aerosols is fluctuation
dominated when the systems are dilute, so that such rare
events matter. Several recent works [13,17,53] give results for
RMS relative velocities at fixed separations, usually of order
η, irrespective of the size of the particles. The theory (12)–(15)
allows us to extrapolate the DNS results to R = a1 + a2. Here
the parameter Rc = Vc/z

∗ plays an important role. If R <

Rc, then the theory shows that the relative particle-velocity
statistics is independent of the separation R.

A weakness of the dissipation-range theory is that it ex-
presses the prefactors bp and cp in the R dependence of
the moments in terms of parameters z∗, μc, Vc, and V0 that
must be determined separately, by DNSs, for example. The
theory shows, moreover, that the prefactors are not universal.
It would therefore be of great interest to find alternative
ways of computing these prefactors. One possibility, although
numerical, is to use the approach of Zaichik and collaborators
[54,55] and its refinements [56].

VI. SUMMARY AND CONCLUSIONS

Let us summarize the key findings here. We used direct
numerical simulations of particle-laden, homogeneous, and
isotropic, forced turbulence to study the statistics of relative
velocities and separations between particles with different
Stokes numbers. We computed the joint distribution of parti-
cle separations and their relative velocities. We found that the
shape of the distribution is in good agreement with the pre-
dictions of dissipation-range theory [21]. When the difference
between the two Stokes numbers is small enough, then the
distribution exhibits power laws, and the exponent is related to
fractal patterns in phase space [26]. We found that the power
laws are cut off at small relative velocities, at a scale Vc. We
found that Vc depends linearly on θ for small values of θ , in
agreement with the theoretical prediction [21].

When θ is large, by contrast, theory predicts that the
body of the distribution is broad Gaussian [21], in agreement
with the DNSs of Refs. [13,53]. In a log-log plot (Fig. 1)
this Gaussian appears as a region where P/R2 is roughly
constant. The shape of the distribution beyond V0 (here simply
set to zero) is not known. There are indications [53] that the
theory of Ref. [12] may work for the tails. But this could not
be unequivocally shown, and it must be borne in mind that
the prediction of Ref. [12] applies to large Stokes numbers in
systems with a very well developed inertial range, so that the
scale-dependent Stokes number at the largest scale is much
less than unity. These questions remain for further studies.

Dissipation-range theory [6,14–16,21] predicts how the
relative-velocity fluctuations depend on particle separation.
This power-law dependence of the relative-velocity moments
upon particle separation is universal (but the prefactors of
the power laws are not). The original inertial-range theories
discussed above do not refer to particle separations in the dis-
sipation range, and attempts to modify inertial-range theories
to take into account dissipation-range dynamics [57,58] were
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shown to fail (Fig. 5 in Ref. [13]), so that they cannot be used
to model collision velocities of microscopic dust grains in
circumstellar accretion disks, where collisions happen in the
dissipation range. It is challenging to use DNSs to determine
collision rates and velocities of small grains deep in the
dissipation range, because such encounters are infrequent, yet
significant. Usually, DNS data on relative-particle velocities
[13,17,53] are evaluated at fixed separations of order η, as
discussed above. The theory described and tested here allows
one to extrapolate the DNS results to the relevant scales, often
much smaller than the Kolmogorov length η.

Note added in proof. Note that Eq. (18) is essentially an ex-
pansion in powers of St2 for small St2, where we have retained
terms up to first order in St2. We have checked from our DNS
that the correlation function on the second line of Eq. (18)
is always negative and is proportional to St12 for small St1.
Eq. (18), which is confirmed by our DNS [Fig. 3(c)], is
clearly in disagreement with Abrahamson’s theory [59] which
predicts that the RMS relative velocity of two inertial particles
is given by the sum of their individual RMS velocities. This
disagreement becomes apparent if we take the limit St2 → 0

in Eq. (18), in which case the RMS relative velocity appears
as the difference between the RMS velocities of an inertial
particle and a tracer. It comes about because Ref. [59] assumes
that the motions of the two particles are uncorrelated – an
approximation of dubious validity when the particles are close
to each other, i.e., about to collide. This again illustrates one of
the central messages of this paper: a theory of relative velocity
of two particles must take into account the distance between
them, for otherwise the theory will fail to predict collision
velocities.
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