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We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral
planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry
considerations (involving parity P and charge conjugation 6) establish correspondence between propulsive
states depending on orientation of the dipolar moment. Although basic symmetry arguments do not forbid
individual symmetric objects to efficiently propel due to spontaneous symmetry breaking, they suggest that
the average ensemble velocity vanishes. Some additional arguments show, however, that highly symmetrical
(I?—even) objects exhibit no net propulsion while individual less symmetrical (6 ﬁ—even) propellers do propel.
Particular magnetization orientation, rendering the shape C P-o0dd, yields unidirectional motion typically
associated with chiral structures, such as helices. If instead of a structure with a permanent dipole we consider
a polarizable object, some of the arguments have to be modified. For instance, we demonstrate a truly achiral
(I?— and C ﬁ—even) planar shape with an induced electric dipole that can propel by electrorotation. We thereby
show that chirality is not essential for propulsion due to rotation-translation coupling at low Reynolds number.
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I. INTRODUCTION

Bacteria employ rotation-translation coupling when they
spin their helical flagella in order to swim through fluids
at low Reynolds (Re) numbers [1]. It is also possible to
rotate an artificial magnetic corkscrew to generate propulsion
[2,3]. In both cases, the rotation-translation coupling arises
because of the symmetry breaking due to the chiral shape.
Purcell’s famous remark “Turn anything, if it isn’t perfectly
symmetrical, you’ll swim” [4] raises the question if a shape
needs to be chiral to propel when it is spun at low Reynolds
number. This issue is, of course, only relevant for swimming
in unbounded liquid, as boundaries can provide such coupling
even for highly symmetrical driven objects, e.g., isotropic
spherical “microrollers” [5] and axisymmetric peanut-shaped
colloids [6] exhibit net propulsion when rotated by an external
field in the vicinity of a solid surface.

For a long time the geometric chirality of the object
was taken for granted as a necessary condition for driven
propulsion in rotating magnetic [2,3,7-9] and electric fields
[10,11] and for cross-stream migration and separation in shear
flows [12-14] and for Brownian swimmers [15]. Recent ex-
periments with random-shaped magnetic aggregates [16,17],
as well as clusters made of just three magnetized beads
[18], demonstrated propulsion in a uniform rotating magnetic
field. The latter example is particularly intriguing, as it is
argued that seemingly “achiral” planar objects are propulsive.
Reference [19] offered an explicit solution for driven rotation
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and propulsion of an arbitrarily shaped and magnetized object,
establishing the dependence of the propulsion velocity on the
object’s geometry and on the orientation of its permanent
magnetic dipole moment. It had confirmed that geometric
chirality is not required for driven propulsion and proposed
that an achiral shape can break symmetry due to nontrivial
orientation of its magnetic dipole. The most recent study [20]
showed that in agreement with the experiments [16,17], the
fastest random aggregates have a shape of an arc, i.e., having
the same symmetry as the three-bead cluster of [18].

In this paper we address symmetry requirements for mag-
netized objects to propel when acted upon by an external
torque and show that chirality alone does not predict if an
individual structure propels. Instead it only predicts whether
a net propulsion persists after averaging over random ini-
tial orientations in a large ensemble of such structures. We
apply these arguments to simple magnetic V shapes with a
permanent magnetic dipole moment affixed to it, and then
demonstrate them experimentally. For polarizable objects
with an induced (rather than a permanent dipole) some of
the symmetry arguments have to be revisited. We illustrate
this experimentally considering electrorotation of a planar V
structure with induced electrical dipole.

This research may have important practical implications, as
planar high-symmetry microstructures and nanostructures are
generally easier to fabricate than complex three-dimensional
(3D) low-symmetry shapes. The paper is organized as follows:
Sec. II briefly outlines the governing equations of motion
and their explicit solution. Section III discusses the relevant
symmetries of the solution and in Sec. IV the respective
consequences of the symmetries for the dynamics of a mag-
netized V shape with a permanent dipole are theoretically
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investigated. Section V addresses the close analogy between
electric and magnetic propellers. Finally, experiments in sup-
port of the theory are provided in Sec. VI.

II. PROPULSION DRIVEN BY A ROTATING
MAGNETIC FIELD

We consider the propulsion of an arbitrary magnetic
object driven by an external uniform magnetic field H =
H(X coswt + ysinwt). At low Re, an object’s velocity is
linearly dependent on the forces and torques exerted on it. If
no external force is applied, then only the external magnetic
torque L = m x H can be responsible for the actuation of the
object:

U=G-L, =F L, (1)
where U and £ are the object’s translation and rota-
tion velocities, G the rotation-translation coupling mobility
(pseudo)tensor, and F is the rotational mobility tensor. Typi-
cal dynamics in a rofating magnetic field (provided that the
rotation frequency w is not too high) exhibit, after a short
transient period, a solution where the object is turning in sync
with the actuating field., i.e., rotating about the z axis with
angular velocity 2 = wZ. It was found that there can be up to
two stable synchronous solutions of Egs. (1) [19].

Expressing the magnetic torque L using the second equa-
tion in (1) and substituting it into the the first equation in
(1), the translational velocity U can be readily found as U =
G - F'. 2. By symmetry the average velocity in an in-sync
solution is along the z axis. Taking a scalar product on both
sides of this equation with 2 = wZ we readily obtain it in a
compact covariant form as [19,20]

U,

= Ch- 2, )
wl

where Ch is a dimensionless chirality matrix given by the
symmetric part of % G - F~! with ¢ being the characteristic

length and £ = 2/w = 2 the normalized (unit) angular ve-
locity. It is most convenient to write the right-hand side of
Eq. (2) in the body frame spanned by a triad of body frame
unit vectors {ey, e;, e3} affixed to the rotating body. These are
defined to be the principal rotation axes, i.e., the eigenvectors
of F. The laboratory coordinate unit vectors {X, y, 2} are
related to the body frame axes by a rotation matrix R(¢, 6, )
parametrized through the three Euler angles ¢, 6, and .
Thus, in the body frame Ch is fixed and £2 expressed via the
Euler angles. Note that Ch (in contrast to G) is independent
of the choice of coordinate origin. Under rotation of the
coordinate frame it transforms as a (symmetric) pseudotensor.

The Euler angles v, 6, ¢ (and the rotation matrix R)
are determined by solving the second equation in (1). For
synchronous solutions Y =60 =0, ¢ =w this turns into a
system of algebraic equations for constant values of ¢, 6, and
@ = ¢ — wt (see Appendix A).

III. CHIRALITY AND SYMMETRIES OF SOLUTIONS

In general, the symmetries of the object’s shape determine
the structure of its mobility tensors F, G [21]. For externally

driven objects it is not sufficient to consider only the shape
of the object, but one also needs to include the transformation
property of its dipole moment m [22]. Any proper discussion
of the symmetries of Egs. (1) and their solutions must involve
both a discussion of the symmetries of the swimming object
as well as those of the external magnetic field H.

As the magnetized object is actuated by an externally
applied magnetic field, the equations governing its evolution
are invariant only under symmetries which preserve this field.
The magnetic field H = H (¥ coswr + ysin wr) is_invariant
under three independent symmetries: (i) P (i) c RZ, (iii)
TR_ Here, P, C, T denote parity, charge conjugation, and
time reversal, respectively, while i?\x, ie\y, I’Q\Z denote rota-
tion by m around the laboratory coordinate axes. Below
we shall also use the notation R;, R,, R3 to denote rota-
tion by m around the body frame principal axes e, e, es3,
respectively.

The last symmetry (iii) involving time reversal T maps sta-
ble in-sync solutions into unstable solutions. As we are only
interested in stable solutions, this symmetry will be irrelevant
to our considerations and we shall not discuss it further [23].
We note that in our present context of magnetically driven
propulsion charge conjugation C corresponds to a reversal
of the dipole moment, while parity transformation (or point
reflection) is described by the operator P:

P(x,y,2) = (—=x, —y, —2). ?3)

For future reference we note that the relevant quantities
governing the dynamics exhibit the following transformation
properties under P and C:

(F.G.m. H) ‘> (+F. —G. +m. +H), @

(.’F',g,m,H)lg +F,+G,—m, —H). 5)

Since the actuating magnetic field H is invariant under
parity, any solution of Egs. (1) for a magnetic propeller must
then be mapped to a valid solution under the action of P.
As parity P is not a proper rotation, it cannot be practically
implemented on a physical 3D object. An object is called
achiral (P even) if there exists a proper rotation R whose
action on it is equivalent to the action of parity (and chiral
otherwise). In such a case, the action of parity is equivalent
to a proper rotation. Applying this constant rotation R then
maps a solution to another solution of Eqgs. (1). Thus, merely
rotating an achiral object through R would result in a parity-
dual solution having the reverse propulsion velocity.

We note that in terms of R(g, 0, ¥) this map is R RR
(as R is defined in the body frame). The case in which R=1
correspond to a parity-symmetric object which clearly cannot
swim as it has vanishing coupling matrix G = 0. This trivial
case is of no real interest. In any nontrivial (achiral) case R #*
I implies R # RR, showing that the two solutions are truly
distinct. Since there are no more than two stable solutions, it
follows that these are all the solutions in this case.

A rotating mgg/n\etic field, however, possesses also the extra
symmetry (ii): CR;. One can easily check that combining a
rotation R, by 7 around the z axis, with charge conjugation
C, maps H to itself and is thus a symmetry [24]. It follows
that R,C P is a symmetry too. In analogy to the usual notion
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FIG. 1. Schematic diagrams 1llustrat1ng symmetries of a planar V—shaped object carrying a magnetlc dlpole moment (red) of dlfferent
orlentatlons with respect to parity P and charge conjugation C. (a) P- (and CP- ) even object; (b) C P-even (and P- odd) object; (c) CP- (and
P- ) odd object. Principal axes of rotation {e;, e, e3} are shown in (b). (d)—(f) Diagrams illustrating the pairs of solutions corresponding to

(a)—(0).

of chirality, we shall call an object C-even or C P-even if there
exist a rotation R such that the object is symmetric under
R'Cor R 1C P, respectively.

Being C P-even implies that one can substitute the action
of CP _by the action of a proper rotation R. Thus, the Sym-
metry R C P~ R R shows that changing the orientation of a
C P-even object (by applying R R rotation) maps a swimming
solution to a swimming solution. As C P reverses velocities
we obtain a pair of dual solutions having opposite propulsion
velocities. In terms of R(g, 0, ¥) this map is R R RR
(as R is defined in the body frame and R in the laboratory
frame). The two solutions are in general distinct. Indeed, they
can coincide only if the two rotations Rz, R cancel each other
which can happen only if the (body frame) rotation axis of R
coincides with the laboratory z axis.

For a C-even object the same arguments lead to the exis-
tence of pairs of solutions having identical velocities. If the
solutions are distinct (as must happen whenever the rotation
axis of R does not coincide with the laboratory z axis), then
these are necessarily all the stable solutions.

It may also be noted that the symmetry (ii) under C R - (and
hence also under CPR, .) is special to the case of a rotating
field H = H(x coswt 4+ ysinwt). Adding, for example, a
constant field component along the z axis is enough to break it
and some of the results we derive below will not apply in this
case. For the experiment described in this paper, this special
symmetry is very relevant.

IV. DYNAMICS OF PLANAR V-SHAPED PROPELLERS

We apply the above symmetry arguments to planar V-
shaped objects, schematically depicted in Fig. 1 and then test
these predictions experimentally in Sec. VI. Note that the V
shape (ignoring its dipole moment) is a highly symmetrical
object with two mutually perpendicular symmetry planes. In
the frame of principal rotation axes aligned with eigenvectors
of F [see Fig. 1(b)] it therefore has only two nontrivial
components of G (G,3 and Gsz;) [19].

Consider first a V-shaped structure with a magnetic mo-
ment m oriented perpendicular to the plane of the object [see
Fig. 1(a)]. This object is P-even as well as C P-even. Denot-
ing by R; rotation by 7 around the ith principal rotation axis,

one can see that the object is mapped onto itself under R,P,
RIC and R3C P. (Notice, however, that an asymmetric V
shape with unequal arms is only P-even. ) When the magnetic
moment lies in plane of the V shape, e.g., directed along one
of the arms as shown in Fig. 1(b), the object is P- odd, but
CP-evenas R,CP maps it onto itself. The object in Fig. 1(c)
with an off-plane orientation of the dipole, on the other hand,
is odd under both P and CP; being invariant under R\ Citis
C-even.

Let us focus on the details of the propulsion. Figure 1(e)

illustrates the existence of two propulsive states related by
the symmetry of a CP-even object. We assume arbitrary
orientation of the V shape with respect to the field so that its
rotation could be accompanied by precession (or wobbling).
AsCP ~ Rz, the R CP symmetry ir implies that R R2 rotation
leads to another solution. Since C P inverts linear velocities,
the two solutions have opposite propulsion velocities. As
we shall demonstrate below, an individual C P-even object
can propel quite efficiently. The propulsion direction, 4z or
—z, is controlled by the initial orientation which serves to
“spontaneously break the symmetry.” Thus, a large collection
of such propellers having random initial orientations would at
most exhibit symmetric spreading with zero ensemble average
velocity, as if it was a racemic mixture having an equal
number of structures with opposite handedness. Notice that
the symmetry arguments concerning the V-shaped object in
Fig. 1(b) apply even if its two arms are unequal.
__ Similar arguments can be applied to the highly symmetric
P-even object with a permanent magnetic dipole m as in
Fig. 1(a). A stronger result, however, can be obtained in this
case combining symmetry and geometric arguments.

Although the shape of an arbitrary object can be in-
finitely complicated, in the low-Reynolds-number regime we
are guaranteed that its propulsion in the magnetic field is
fully described in terms of a limited number of variables,
namely, a (positive symmetric) tensor F, a pseudotensor G
(which without loss of generality is also symmetric), and the
pseudovector m (in the case of a permanently magnetized
object). Moreover, the rotational equations involve only JF
and m. These facts put further restrictions on the possi-
ble behavior of chiral objects. Notice that if instead of an
object with permanent dipole we have a polarizable (i.e.,
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superparamagnetic) object, then the analysis below has to be
modified. N

Let us first show that any P-even magnetized object either
has G = 0 (implying it cannot propel upon rotation) or m ||
e;. To see this note that invariance under parity implies the
existence of a rotation R satisfying

RFR'=F, RGR'=-G, Rm=m.

The first relation implies that R is diagonal in the frame of
principal axes {ej, e, e3}. If R= 1, then from the second
relation follows G = 0. Otherwise, R must be a rotation by
s around one of the principal axes e; and the third relation
then demands m_to be along this axis. Note, moreover, that
the relation RGR™' = —G with R = R; a 7 rotation around
e; || m limits further the form of G. If, e.g., i = 3, it follows
that only the elements G;3, G31, G23, G3» can be nonzero.

Next, we demonstrate that an object having m along a
principal axis [e.g., along e;, as in Fig. 1(a)] will necessarily
rotate around some other of its principal axes. To see this, note
that as L = m x H is orthogonal to e, || m so must also be
2 =7F-L. As both L and £2 are also orthogonal to H we
conclude that they are parallel (unless L = m x H = 0). The
relation 2 = F - L then implies that £2 is an eigenvector of
JF and hence coincides with one of the principal axes.

We further notice that an object undergoing planar
precession-free rotation (tumbling) around a principal axis e;
must also have the torque L = F ! . 2 along this axis. Thus,
it implies that e;, $2, and L are all parallel to 2. Recalling that
the net propulsion is also along the z axis, we find that U,
G;; (no summation) vanishes for any geometrically achiral
shape, e.g., V-shaped object. In particular, neither of the two
tumbling solutions shown in Fig. 1(d) and related by P~R,
yield any net propulsion. Notice that for a symmetric V shape,
the solutions in Fig. 1(d) are invariant under R,C P which
also proves that U = 0. However, our arguments are more
general (they apply, e.g., to a P-even V shape with unequal
arms.) .

Combining the above arguments, it follows that P-even
magnetic swimmers with permanent dipole moment m cannot
propel. Furthermore, any geometrically achiral shape (such as
a V shape), rotating around a principal axis in sync with the
actuating field will exhibit no net propulsion regardless of its
symmetry, The net propulsion, in general, requires precession
or wobbling of the object.

The finding that magnetized P-even objects are unable to
propel should be compared with the weaker result we had
for a magnetized C P-even propellers [see Figs. 1(b) and
1(e)] that can propel individually, while only the average
velocity (over random initial orientations) needs to vanish.
Notice also that the above reasoning only holds for structures
with a permanent dipole. As we shall demonstrate below,
individual achiral (P-even) polarizable objects can propel, as
parity symmetry only guarantees vanishing of their ensemble
average velocity.

Finally, the least symmetric (P and C P- odd) objects ex-
hibit enantiomeric selection of the propulsion direction even
when averaged over arbitrary initial orientations. This is illus-
trated for the V shape in Fig. 1(c) with the magnetic moment
m lying in the plane orthogonal to e;. The two solutions
shown in Fig. 1(f) can be related by the symmetry R,C. As

C~R, the V shape is C -even and applying R;ﬁl yields
another valid solution. Since C (as opposed to P and CP)
does not invert velocities, it guarantees that the two solutions
possess the same propulsion velocity U. Thus, the propulsion
direction depends on the sense of rotation in exactly the
same way as for left- or right-handed helices: the original
object in Fig. 1(c) will translate along the field rotation z axis
under clockwise (CW) rotation, while its C P-transformed
enantiomer would propel in the opposite direction, regardless
of the initial orientation. Notice that a collection of less
symmetric (C-odd) propellers, e.g., with unequal arms, would
still exhibit nonzero ensemble average velocity.

V. SYMMETRIES OF ELECTROROTATION SOLUTIONS

Since an electric field E acts on an electric dipole p in
exactly the same way that magnetic field H acts on a magnetic
dipole m, one could imagine an electric propeller which is a
complete analog of the magnetic one described above. This
case differs from magnetic case described earlier in a number
of aspects.

We first notice that the transformation properties of E
and p under P (C P, respectively) are exactly the same as
the transformation properties of H and m under cP (P
respectively). For a hypothetical object with permanent elec-
tric dipole actuated by a rotating electric field, one could
apply the same arguments we had in the magnetic case using
C P symmetry instead of P (and vice versa). The conclusion
would then also require merely a change of terminology
CP< P everywhere.

Having a propeller with a permanent electric dipole is,
however, not practically feasible and below (see Sec. VI) we
present experiments involving polarizable structures with an
induced electric dipole. Yet, some of the above arguments
(that use the specific form of the governing equations) do not
hold for polarizable (either electric or magnetic) propellers.

VI. EXPERIMENTAL RESULTS

We now experimentally demonstrate the different propul-
sion gaits associated with different symmetries. We perform
low-Reynolds-number experiments with cm-sized magnetic
structures immersed in glycerol, as well as pum-sized struc-
tures that possess either a magnetic or an induced electric
dipole moment suspended in water. The larger objects allow
for precise positioning and alignment of the magnetic mo-
ment. An arc-shaped structure with cross-sectional radius a =
1 mm was 3D printed [see Fig. 2(b)]. It had a cubic compart-
ment into which a small 1 mm? NdFeB (N45) ferromagnet
was glued. The orientation of the magnet with respect to the
object was therefore fixed and prescribed. The arc was placed
in a cuvette filled with glycerol (n &~ 1000 cP). The high
viscosity prevented sedimentation and ensured that Re ~ 1.
A pair of two disk-shaped iron-based permanent magnets
generated a homogeneous magnetic field of 300 G throughout
the volume of the cuvette. The magnets were mounted and
mechanically rotated in the xy plane around the cuvette. The
driven motion of the arc was recorded and analyzed. Results
for a right-handed arc with an off-plane magnetization [as in
Fig. 1(c)] actuated by a rotating field at frequency of 1.5 Hz
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FIG. 2. (a) Snapshots of the magnetically driven arc. The mag-
netic field rotates clockwise in the xy plane with a frequency of
1.5 Hz resulting in the arc rotating and propelling along the z axis.
(b) Image of the arc; (c) a corresponding symmetry diagram; (d) arc
displacement along the z axis vs time showing a constant speed of
U, =~ 3.3 mm/s [the scale bar length in (a) and (b) is 1 cm].

are shown in Fig. 2. In Fig. 2(a) the position and orientation
of the arc is depicted at different times; Fig. 2(d) shows the
corresponding displacement of the arc’s centerpoint along the
z axis of the field rotation (see Video No. 1 [25]). The arc turns
in sync with the field and propels along the z axis, as expected
for CW rotation.

In Fig. 3(a) the scaled propulsion velocity U,/wa of an
off-plane magnetized (C P-odd) arc is depicted vs the actu-
ation frequency v = w/2m. At low frequencies v < 1.1 Hz
the arc tumbles without any noticeable translation. Above the
tumbling-to-wobbling transition frequency v-y ~ 1.1 Hz, it
starts to precess and propel along the z axis. The fact that
propulsion occurs only at v > v, demonstrates its depen-
dence on dynamics rather than just symmetry. In Fig. 1(f), for
example, the nonpropulsive tumbling regime corresponds to
vanishing of the angle between e; and 2, that is precession-
free rotation around 2. The regime selection at a given ac-
tuation frequency, i.e., nonpropulsive tumbling vs propul-
sive wobbling, depends on whether it is energetically more
favorable for the angle between e; and Z to vanish or to
have nonzero value. Such energy arguments were provided
in [26] assuming cylinderlike rotational anisotropy of the
driven object. The direction of translation is controlled by
the rotation sense of the applied magnetic field, thus, the
velocity of the structure in Fig. 3(a) is always positive. The
velocity increases quasilinearly with frequency, U, ~ va (1 —
V2, /v?), similarly to a magnetic helix [26] up to v ~ 1.6 Hz
in excellent agreement with the theory (see Appendices B and
C). For frequencies v 2 1.6 Hz, the arc can no longer turn in
sync with the external field and exhibits asynchronous twirling
accompanied by a negligible net propulsion [26].
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FIG. 3. Scaled propulsion velocity U,/wa of the magnetic arc
vs the actuation frequency w/27: (a) CP-odd oft-plane magnetized
propeller; (b) CP-even in-plane magnetized propeller. The insets
show the corresponding symmetries. Circles stand for in-sync ac-
tuation and triangles for asynchronous tumbling. Filled and empty
symbols correspond to clockwise and counterclockwise rotation of
the magnetic field, respectively. Lines are the theoretical predictions
corresponding to stable in-sync actuation with infinite (solid line)
and finite (dashed line) basin of attraction and to aperiodic tumbling
(dotted line).

Note that while a combined rescaling of both w and H
is expected to lead to a self-similar solution, the results
presented here as a function of w correspond to fixed value
of H which, e.g., sets the scale of v, o HmJF |, where F |
is the transverse rotational mobility (see Appendix B). Thus,
no simple linear relation between U and w is expected.

In Fig. 3(b) the velocity-frequency dependence is shown
for an arc with a magnetic moment oriented along one of
the arms. This (C P-even) structure can spontaneously break
symmetry and exhibit translation when actuated at v > v_y,.
Symmetry demands, however, that for every initial orientation
of the structure propelling in one direction, there exists an
orientation for which it will propel in the opposite direction
as the symmetry transformed counterpart. The experimental
results showing a symmetric pitchfork bifurcation in Fig. 3(b)
(symbols) agree very well with the theory (see Appendices B
and C) and the arc can propel in the 4z direction irrespective
of the sense of magnetic field rotation. It has also been
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FIG. 4. Displacement Az of V micropropellers with differ-
ent magnetization and therefore different symmetries which are
schematically depicted in the corresponding (top) insets for each
case. (a) Individual CP-even and P-odd (chiral) structures move
with constant velocity either in the +z or the —z direction; (b) CP-
and P-even (achiral) structures show no net translation upon rotation.
Bottom inset in (a) is a SEM image of the micropropeller. The nickel
segment (white) is clearly visible in the SiO, (gray) arm. Scale bar
length is 1 um.

confirmed experimentally (see Appendix D and Video No. 2
[25]) that upon reversal of the field rotation, the object
maintains its propulsion direction. Additional experiments
with the achiral arc magnetized along the principal rotation
axes [e.g., Fig. 1(a)] have been performed demonstrating
no propulsion, as expected (see Appendix E and Video
No. 3 [25]).

To demonstrate applicability of the symmetry consid-
erations to the microscale objects, we used a physical
vapor deposition method, known as glancing angle deposition
(GLAD) to grow billions of magnetic microstructures on
a wafer [2,27]. V-shaped SiO; microstructures containing
a nickel section were grown onto silica beads [see SEM
image in the inset in Fig. 4(a)]. The growth direction is well
controlled during the GLAD process, which enables us to
orient the V-shaped structures before they are magnetized.
The desired magnetization was obtained by placing the wafer

FIG. 5. (a) SEM image of polarizable SiO, V micropropeller
with a Au-coated (white) arm (scale bar length is 1 um) and (b)
schematic drawing (double-headed arrow indicates the polarization
easy axis). (c) Sketch of the four-electrode setup generating a rotating
electric field in the xy plane. (d) Schematic of time evolution
showing the displacement along the z axis. (e) First, the structure
appears in focus (0 s), then moves out of focus (5 s and 10 s) and
after the electric field is turned off it sediments back into the focal
plane due to gravity (14 s).

with the structures in an electromagnet (1.8 T) at a specific
angle. Afterwards, the V-shaped structures were removed
from the wafer in an ultrasonic bath and dispersed in a solu-
tion of 150 uM poly(vinylpyrrolidone). A custom three-axis
Helmbholtz-coil setup was put up a microscope to generate a
uniform magnetic field of 60 G, rotating at a frequency of
25 Hz in the xy plane. Slight variation in the shape and the
direction of magnetization of the colloids is expected. Two
microstructures with symmetries shown in Figs. 1(a) and 1(b)
were investigated and their translation along the z axis of the
field rotation was measured. It is also possible to control the
trajectory of the micropropellers by switching the external
field rotation plane between all three principal planes, includ-
ing, e.g., displacement out of focus of the microscope of chiral
structures (see Appendix F and Y\ic}lg:o No. 4 [25]). In Fig. 4(a)
the displacement Az of several C P-even structures is plotted
vs time. It can be seen that they move in opposite directions
with approximately the same speed of U, &~ 2.7 um/s, which
is about one body length per second (see Video No. 5 [25]).
On the other hand, as illustrated in Fig. 4(b), net propulsion
of the achiral V micropropellers is negligible as expected.
These experimental observations are thus in agreement with
the symmetry arguments above.

Finally, we demonstrate that propulsion can occur for
structures of even higher symmetry. For that purpose, we
conducted experiments that involved polarizable structures
with an induced (rather than a permanent) electric dipole.
The GLAD technique was applied to grow V-shaped SiO,
microstructures with one arm being coated with a thin layer
of gold, as shown in in Fig. 5(a). Au is highly polarizable
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and should, therefore, give rise to an induced electric dipole
moment p = « - E, where « is a tensorial polarizability. Due
to the anisotropy of the Au patch, the V microstructure [see
Fig. 5(b)] possesses an anisotropic polarizability o > «,
which tends to align the Au-coated arm parallel to the external
rotating E field.

After sonication in deionized water the suspension was
placed in a four-electrode setup as schematically shown in
Fig. 5(c) (see also Appendix G). Applying sinusoidal /2
out-of-phase potentials at the electrodes at 500 kHz results in
a rotating ac electric field E that exerts an electric torque on
the V shape, L = p X E = (o) — a)[n x E](n - E), where
n is a unit vector along the Au arm, causing its electrorotation
[28]. The actuating ac frequency of 500 kHz is definitely
beyond the stepout which is typically some tens of Hz, and
a slow quasisteady aperiodic rotation is taking place. General
symmetry arguments should, however, hold regardless of the
actuation regime. The resultant propulsion of the polarizable
V microstructure (against gravity) is illustrated in Figs. 5(d)
and 5(e) (see also Appendix G and Video No. 6, [25]) and it
obviously resembles the dynamics of the magnetic counterpart
from above despite their different symmetries. In fact, we have
demonstrated propulsion of truly achiral objects.

The electrically polarizable V micropropeller in Fig. 5(b) is
clearly both P- and C P-even. General symmetry arguments
then imply only that every positive propulsion solution has
a complementary solution of opposite propulsion. For the V
shape with permanent magnetic dipole moment [see Fig. 1(a)]
it was shown further that such high symmetry excludes
propulsion even in individual instances. This stronger result,
however, relied on the explicit form of the equations of motion
rather than just symmetry. The equations governing the dy-
namics of the polarizable electric V-shaped object are, in fact,
similar to those governing the C P-even (P-odd) magnetic
propeller [see Fig. 1(b)], apart from the extra scalar factor
n-E.

VII. CONCLUDING REMARKS

To conclude, the shape of an object together with its
dipole moment determines its symmetry. The dipole moment
affixed to a geometrically achiral planar shape can render it
chiral. Such chiral objects with intrinsically broken symmetry
can exhibit steady unidirectional propulsion, resembling that
of a helix, when actuated by a rotating field. In general,
however, there could be two distinct in-sync rotational solu-
tions possessing different propulsion velocities. For certain
highly symmetric objects (e.g., P- and C P-even polarizable
propellers) these two velocities average to zero, while indi-
vidual structures can propel efficiently due to spontaneous
symmetry breaking. The theoretical predictions are confirmed
experimentally using macroscopic and microscopic planar
magnetized V-shaped propellers driven by a rotating magnetic
field.

Our symmetry considerations can be extended to other
shapes and actuation schemes. For example, it is interesting
to note how these results change upon adding a constant
magnetic field along the z axis that breaks the R,C symmetry
(ii), but preserves P symmetry (i). In such a case, C P-even
objects can acquire a nonzero ensemble average velocity. For

instance, the V-shape swimmer with dipole moment oriented
along the e; symmetry axis (P-odd) can, in a certain fre-
quency range, exhibit unidirectional propulsion. Recall that
in a planar rotational magnetic field, magnetization along
any principal axis yielded U = 0. The P-even object with
permanent dipole m along a principal axis can still be shown
not to propel even when actuated by this less symmetrical
field. Dynamics driven by a conical rotating magnetic field
(i.e., superposition of a rotating and a constant fields) is, how-
ever, beyond the scope of this paper and will be considered
elsewhere.
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APPENDIX A: DRIVEN PROPULSION IN
A ROTATING MAGNETIC FIELD

We consider the propulsion of an arbitrary magnetic
object driven by an external uniform magnetic field H =
H (X coswt + y sin wt). At low Reynolds number, an object’s
translational and rotational velocities U and 2 depend lin-
early on the external torque L = m x H exerted on it (as the
external force vanishes)

U=G-L, =F- L. (AD)

Here, G and F are the coupling and rotation viscous mobility
tensors, respectively. The triad of unit eigenvectors {e, e;, €3}
of F make up the body frame principal rotation axes. We
fix their order such that the corresponding eigenvalues satisfy
F1 £ F, < F3. For an arc (or any planar symmetric V shape)
the principal rotation axes are shown schematically in Fig. 6.
The laboratory coordinate unit vectors {X, ¥, Z} are related
to the body frame axes by a rotation matrix R(p, 6, V)
parametrized through the three Euler angles ¢, 6, and .
These Euler angles thus describe the instantaneous orientation
of the object in the laboratory frame. The object’s magnetiza-
tion in the body frame is characterized by a polar angle ® and
an azimuthal angle o, such that the magnetic moment affixed
to the body is given by m = m(sgpcye) + Sosq€2 + cope3),

FIG. 6. Geometry and principal rotational axes of the arc or any
planar V-shaped object [29].
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where we used the compact notation ¢y = cos P, s, = sina,
etc.

We are interested in the solutions in which the object turns
synchronously with the magnetic field, i.e., rotating about the
z axis with angular velocity £2 = wZ. This condition reduces
the £ = F - L into a system of nonlinear equation for the
three angles ¥, 6, and ¢ = ¢ — wt. One can show that this
system can further be reduced to a fourth order polynomial
equation in sin?v [19]. There can be up to eight in-sync
solutions 0 < @, ¥ <2m,0< 6 < 7 to such an equation.
Physically, however, only stable solutions are of real rele-
vance. The number of stable solutions is found to be at most
two.

By symmetry the average velocity in an in-sync solution
is in the z direction. It can be written in a compact covariant
form as [19]

U;

— =2-Ch-2,

wl (A2)

where Ch is a dimensionless chirality matrix given by the
symmetric part of % G - F! with ¢ being the characteristic
length. It is most convenient to write the right-hand side of
Eq. (A2) in terms of the body frame components, where Ch is
fixed and £2 expressed using the Euler angles as

R=R2/w=2= SoSy e + Sgcyer + cpes.

Notice that the Euler angle 6 defines the precession (or
wobbling) angle between the easy axis e3 and the z axis
of the field rotation. One can show that Ch (in contrast to
G) is independent of the choice of coordinate origin. Under
rotation of coordinate frame, it transforms as a (symmetric)
pseudotensor.

APPENDIX B: APPROXIMATE THEORY FOR
THE MAGNETIC V SHAPE

For a V-shaped object (or, in fact, any object possessing
two mutually orthogonal planes of reflection symmetry, e.g.,
the arc in Fig. 6) the only nonzero component of the chirality
matrix Ch in Eq. (A2) is Ch = Chy; = Chy, = 1G03(F ! +
F3~")/a with 2a = 2¢ being the width of the shape and
F», F3 the two major eigenvalues of F. Equation (A2) then
reduces to

U;

—Z&C 8520
wa Y926

(BI)

The Euler angles 6, ¥, and @ can be found in a simple
closed form assuming cylinderlike rotational anisotropy of
the object, i.e., F| & JF,, which is an accurate approximation
for an arbitrary object (see [20]). In such a case, the above
mentioned fourth order polynomial equation in sin? 1 reduces
to a quadratic equation. A cylinderlike object has two distinct
well-defined regimes of in-sync rotation: tumbling, whereas
the easy axis ez rotates in the xy plane of the field, and
wobbling, whereas e; undergoes precession with respect to
field rotation z axis). The explicit form of the tumbling at low
frequencies, 0 < @ < Wiy, is [26]

~

0=n/2, ¥ = —a, go:—CD—i-arccos( @ ) (B2)
W-w

The frequency wy-y, of the tumbling-to-wobbling transition
is wi-w = wp cos O, where wy is the characteristic frequency,
wy = mHJF,, with F| being the harmonic mean of the mi-
nor rotational mobilities F ' = (F; ' + 5 ')/2. At higher

frequencies, wy-y < @ < ws-o, Up to the stepout frequency

Ws-o = Vo, + @} p?sin® & with p = F3/F,, there are two

complementary wobbling rotational states [19]:

@, = arcsin (M), Yy = —a — arcsin <&>, (B3)
w

woPSe

by =7 =01, Y2 =—-2a =Y, (B4)

and @ = @ = 0. These dual solutions reveal the bistable
character of the rotational problem usually leading to different
propulsion gaits of the object depending on the initial orien-
tation. The substitution of Egs. (B3) and (B4) into Eq. (B1)
gives the closed-form expression for the in-sync propulsion

velocity:
U. 2Ch[ . ol
— = — | —sing[ 1 - =%
wa y ?

2 2
ot w2

+ cosa, /1 — tzw —2 -1,
® w

where y = p tan ®.

Thus, Eq. (B5) gives the propulsion velocity of V-shaped
magnetic objects in the high-frequency domain wi-y < w <
ws-o, assuming cylinderlike rotational anisotropy. In the low-
frequency domain 0 < w < wy-y, the propeller tumbles with-
out translation. At frequencies above the stepout @ > w;-o,
the object can no longer rotate in sync with the field and
the transition to the asynchronous regime takes place. Dur-
ing asynchronous rotation, the propulsion velocity rapidly
diminishes with increasing frequency. This regime is beyond
the scope of this paper. Depending on the orientation of
an object’s magnetization, there are two distinct propulsion
scenarios considered in detail in the main text. The first case
corresponds to out-of-plane [OOP, e.g., Fig. 1(c) of the paper]
magnetization, with cos « = 0 and the second case to in-plane
[IP, e.g. Fig. 1(b) of the paper] magnetization, with sino = 0.
Below, we consider both these cases in detail.

(BS)

1. Out-of-plane magnetization

When cos o = 0, there are two nontrivial components of
the propeller magnetization m, along the directions e, and e3
as shown in Fig. 1(c) in the main text. In this case, the dual
rotational states results in the same propulsion gait with the
velocity

U, 2Ch ( wf_w)
=———sina|1l— > )
wa y w

Thus, for positive values of the parameter Ch >0 the
V-shape object with the corresponding magnetic component
in the direction of e, [@ = /2 as in Fig. 1(c)] moves in the
—z direction (U, < 0), i.e., similar to a left-handed helix. In
contrast, the V-shaped object with the magnetic component
pointing in the —e, direction (¢ = —m/2) moves along the z
axis (U, > 0) similarly to a right-handed helix. Due to the
freedom in the choice of orientation of the principal axes

(B6)
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of rotation e; we assume here and thereafter without loss of
generality that0 < ® < w/2and y = ptan ® > 0.

We emphasize again that this helixlike propulsion corre-
sponds to both rotational branches of the solution, e.g., the
right-handed object under clockwise rotation (CW) of the
external field can move in the +z direction by two different
ways: the object easy axis e; may acquire either an obtuse
or acute angle with the field rotation z axis. In the scaled-
up experiment, the cm-sized arc’s two halves were painted
in two different colors: red and green. In case of an OOP
magnetization, it was shown to propel with either the red or
the green end forward.

2. In-plane magnetization

When sine = 0, there are two in-plane magnetization
components m, along the e; and e3 axes as shown in Fig. 1(b)
in the main text. In this case, the dual in-sync rotational states
yield propulsion in opposite directions:

U. 2Ch oty w2,
— =d——cosa,/1 — — 1. B7)
wa y w? ¥V ?

This means that the two symmetric (in polar angle ) so-
Iution branches (B3) and (B4) result in propulsion with the
same speed in opposite directions. In contrast to the OOP-
magnetized V shape, the [P-magnetized arc can propel either
along the z axis of the field rotation or antiparallel to it.
Moreover, unlike the OOP magnetization, the IP-magnetized
V shape always propels while keeping the same orientation
(of e3) with respect to the field, meaning that depending on
the value of the azimuthal magnetization angle o = 0 (or,
respectively, @ = ) it will move either with the red (or,
respectively, the green) end forward regardless of the sense
of the fields rotation (CW or CCW).

APPENDIX C: PARAMETER ESTIMATES
FOR THE MAGNETIC ARC

In the experiments we used a cm-size propeller [see Fig.
2(b)] in the shape of a circular arc with the centerline radius
9.56 mm, waist 2a =2 mm, and central angle of 119°.
The mobility tensors were computed numerically using the
particle-based multipole expansion method (see, e.g., [30] for
a detailed description). We found

1 —4
F = —diag(2.36,2.42, 14.95),
na
2.14 x 1074
Opn=——"5—, (CDH

na?

where 7 is the fluid dynamic viscosity. The value of the pseu-
dochirality coefficient is then Ch = 1Go3(F ™' + F37 ") /a =
0.515. The transverse anisotropy parameter proves to be quite
small, ¢ = (F, — F1)/(F2 + F1) =0.011, suggesting that
the above cylindrical approximation is in fact quite accurate.
The longitudinal anisotropy parameter is p = F3/F, = 6.25
and the the transverse rotational mobility F| = 2/(F| 4
Fy') =239 x 107*/(na®). Using the values of H = 300
Oe, m =0.975 emu, n =10 P for glycerol, and a = 0.1

cm we can estimate the characteristic frequency as wy =
mHJF, ~7 s~

1. Out-of-plane magnetization [Fig. 3(a)]

The polar magnetization angle was ® = 15° and the az-
imuthal angle « = —90° corresponding to a right-handed he-
lix, resulting in y = ptan ® = 1.67. The estimated frequen-
cies of the tumbling-to-wobbling transition and the stepout are
W = 6.65 s and we, = 13.22 571, respectively, giving
Veew = Wr—w /2w = 1.06 Hz and v, = ws-o/27 = 2.10 Hz.
Substitution of the values into Eq. (B6) gives the propulsion
velocity as a function of actuation frequency v for the case of
OOP magnetization of the V-shaped object:

U 1.062
== = 0.614(1 - )

wa V2

(C2)

The experimental data points (o, e) in Fig. 3(a) are in
excellent agreement with the theoretical prediction in Eq. (C2)
for frequencies v < 1.6 Hz. Notice that stable in-sync rotation
in the frequency interval 1.6 Hz < v < 2.1 Hz does not ma-
terialize in the experiments. This is due to the fact that for
frequencies v > 1.6 Hz [dashed line in Fig. 3(a)] the basin
of attraction in terms of initial orientations, of the in-sync
solution, shrinks rapidly in size, while for 1.06 Hz < v <
1.6 Hz [solid line in Fig. 3(a)] the solution converges to the
steady state for an arbitrary initial orientation (i.e., basin of
attraction filling all space). We could not observe the stable
solutions at 1.6 Hz < v < 2.1 Hz, as it was not possible
to smoothly vary the actuation frequency on-the-fly in the
experiments. Due to the finite size of the cuvette we started
each experiment from rest with the arc placed roughly at the
center of the cuvette and the rotating field was switched on
abruptly with a particular (fixed) frequency v. Atv > 1.6 Hz,
the aperiodic tumbling of the V shape takes place (A, A) in
a complete agreement with the theoretical prediction (dotted
line) based on numerical integration of the dynamical system
of Egs. (5)—(7) in [19], for the Euler angles using the above
estimated parameters and the geometry of the arc.

2. In-plane magnetization [Fig. 3(b)]

The polar angle of magnetization in this case was ® = 13°
and the azimuthal angle was close to o = 180°. The esti-
mated parameters are y = ptan ® = 1.33, v, = 1.10 Hz,
and vs., = 1.80 Hz. Substituting these values into Eq. (B7)
gives the propulsion velocity of the V-shape object as a
function of actuation frequency v for the IP magnetization:

U. 1.10%2 /1.802
= = 30.775,/1 — — 1.
wa V2 V2

Equation (C3) represents two symmetric (with respect to
the horizontal axis) branches, however, in reality, perfect IP
magnetization is hard to achieve. Best fits of the theory to the
experiments [see o, e in Fig. 3(b)] suggest minor imperfection
in the azimuthal magnetization angle o & 183°, resulting in a
slight asymmetry between the two solution branches in (C3)
shown in Fig. 3(b) by the continuous (blue and red) lines. The
agreement between the theoretical prediction (solid colored

(C3)
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FIG. 7. Displacement of the magnetic arc depicted in the inset vs
time. Two experiments were conducted at the actuation frequency
1.25 Hz (triangles and squares). Open symbols stand for CCW,
whereas full symbols denote CW rotation of the external field. In
each case, the field rotation sense is abruptly reversed after 10 s
(vertical dashed line) resulting (after a short transient) in the arc’s
propulsion along the same direction with the same speed as before.

lines) and the experimental results is very good. As anticipated
by the theory, both branches are equally accessible upon CW
and CCW actuation. As for the case of OOP magnetization
and for the same reason, the high-frequency stable in-sync
solutions (dashed colored lines) are hard to realize in the
experiments. Therefore, aperiodic tumbling (A, A) takes over
before the stepout at v < 1.8 Hz is attained. And as for the
OOP magnetization, the theoretical prediction of the aperiodic
tumbling based on numerical integration of the full dynamical
system in [19] (dotted line) shows excellent agreement with
the experimental results. Notice that the measurements were
taken over a whole day during which the temperature and
humidity raised resulting in somewhat lower (about 40%)
viscosity of the glycerol as the viscosity of the pure glycerol
is quite sensitive to temperature and humidity. This change
resulted in proportional increase of the characteristic (dimen-
sional) tumbling-to-wobbling and stepout frequencies. There-
fore, the values of frequencies of the afternoon measurements
were downscaled by a constant factor of 1.4 to match the
measurements taken in the morning hours.

APPENDIX D: DUAL SOLUTION, IN-PLANE
MAGNETIZED ARC

The displacement in the £z direction for the IP-magnetized
arc [as in Fig. 1(b)] is shown in Fig. 7 over time. The data
were extracted from Video No. 2 [25], in which the direction
of the field rotation was suddenly reversed (2 — —$2) after
the arc started to move with a constant steady velocity U,.
Upon this reversal, the arc tumbles for a few revolutions,
before acquiring a constant velocity equal to U, in the same
direction as before. Recalling that our Z direction was defined
by $2 this is, in fact, equivalent to a change of the sign of
U, = U - z, whereas its absolute value is the same before and
after the field reversal in both experiments (|U,| &~ 2.4 mm/s).

150 = | T | | | T [

100 — —

50 —

AZ (mm)

-100 — —

-150 — |

0 5 10 15 20
Second (s)

150 _I | I | I | I | I | | J_

«‘n““h‘ mM (u kbl —

iiliie
W;

5 10 15 20 25 30
Second (s)

FIG. 8. Displacement plots of two achiral cm-sized arcs, each
schematically depicted in the corresponding inset. The actuation
frequency for the arc in the upper panel is 5.25 Hz while the arc in the
lower panel was rotated with 1.05 Hz. The slope of the fits is close
to zero for both cases, indicating that arcs with these symmetries are
nonpropulsive.

These field reversal experiments confirm unequivocally the
theoretical prediction in Eq. (B7) that the propulsion direction
of IP-magnetized arc is independent of the field rotation sense.

APPENDIX E: ACHIRAL MAGNETIC ARC

In Fig. 8 the displacement of the magnetic arc is plotted
vs time for two shapes shown in the respective insets. The
data were extracted from Video No. 3 [25]. In both cases, the
magnetic moment is oriented along one of the principal axes
of rotation rendering the arcs P- and C P-even and therefore
truly achiral. Thus, their dynamics is precession free, resulting
in no net propulsion. This is readily seen from the negligible
slope of the linear fit (red lines). Notice that the stepout
frequencies for the two arcs shown in Fig. 8 are different.
The arc shown in the lower panel has a stepout frequency of
Vs-o & 1.2 Hz compared to the one shown in the upper panel
with vs, = 5 Hz.
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FIG. 9. Time evolution of a magnetized V-shaped microcolloid
moving along the z axis upon a rotating field in the xy plane, i.e., it
moves out of the focal plane of the microscope. In the right column
the z position of the structure is schematically depicted.

APPENDIX F: P-ODD, C P-EVEN MAGNETIC
V-SHAPED MICROCOLLOIDS

Video No. 4 [25] shows the ability to control the trajectory
of the (CP-even, P-odd) microcolloids by switching the
external field rotation plane between all three principal planes.
Notice that the z axis is now perpendicular to the microscope
focal plane in contrast to the microcolloid experiments de-
scribed in the main text (see Fig. 4), in which the z axis
belonged to the focal plane of the microscope. The frames
in Fig. 9 correspond to a movement out of plane and were
extracted at the specified times. They show that CP-even
V-shaped microstructures can propel against gravity. One can
see that the structure is in the microscopes’ focus at the
beginning of the video and starts to move out of focus when
the magnetic field is turned on in the xy plane at 11 s. The
magnetic field is then switched off at 19 s and the structure
sediments and reappears in the focal plane of the microscope.
Waiting even longer leads to further sedimentation and the
image defocuses again (not shown). This indicates that the
trajectory of this microcolloid can be controlled in every
spatial direction, including x, y, and z.

APPENDIX G: ACHIRAL (P-, C P-EVEN) ELECTRICALLY
POLARIZABLE V-SHAPED MICROCOLLOIDS

The same propulsion behavior as described in the previous
appendix was demonstrated for a microcolloid driven by an
electric instead of a magnetic field. This is shown in Video
No. 6 [25], from which the frames shown in Fig. 10 were

FIG. 10. Extended time evolution of the achiral V-shaped micro-
colloid driven by an electrical field, including video frames and a
schematic visualization (a)—(g). The double-headed arrow visualizes
the induced electric moment by the external electric field. Image of
the experimental four-electrode setup (scale bar length 100 pm) (h).

extracted; the z-axis is again perpendicular to the focal plane
of the microscope. The applied electric field strength was
around E =7.5kV/m with an ac frequency of 500 kHz,
while the V-shaped microstructures rotate with a few Hz
as seen in the video. Initially the structure is not turning.
As the ac electric fields start to rotate in the xy plane, the struc-
ture moves out of focus (along +z direction). After switching
off the electric field the structure sediments due to gravity.
This sequence was repeated twice in a row. The behavior
of the electrically polarizable particle thus resembles the
propulsion dynamics of the magnetic V-shaped microcolloid
in Fig. 9, but this time with a truly achiral (i.e., P- and C P-
even) object. Notice that the permanent-magnetic counterpart
of such an achiral propeller in Fig. 1(a) does not propel. The
electrorotation of the structures is highly dependent on the
geometry of the structure. Note that the visible drift in the
xy plane is most likely due to a small gradient of the electric
field, as the four-electrode setup shows some asymmetry [see
Fig. 10(h)].
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