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Simple theory of viscosity in liquids
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A simplistic model of atomic dynamics in liquid, based on the concept of dynamic fluctuations in local atomic
connectivity, is proposed to elucidate the temperature variation of the viscosity of a material in its liquid phase.
Within the simplifications and hypothesis made to define the model, it is possible to explain the crossover from a
simple liquid to a cooperative liquid and covariance of viscosity near the glass transition temperature. The model
is a mechanical analog of the Drude model for the electric transport in metal.
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I. INTRODUCTION

Viscosity, η, of a liquid near the melting point is of the
order of 10−3 Pa s, whereas the glass transition is defined
by η reaching 1012 Pa s [1]. The origin of this rapid change
in viscosity over a relatively small range of temperature is
crucially related to the unsolved problem regarding the nature
of the glass transition [2,3]. In spite of numerous attempts
to explain its origin [4–9] there is no broad agreement on
this subject. Whereas much attention is currently focused
on the behavior of highly viscous supercooled liquids, in
our view the most important feature of the viscosity is the
crossover from the Arrhenius to super-Arrhenius behavior
which occurs at a temperature, T*, much higher than the
glass transition temperature, Tg . Kivelson et al. noted that the
temperature dependence of the activation energy is universal
if T* is used to scale temperature [6]. The functional form
of the universal behavior explains quite well the measured
viscosity of a large number of metallic alloy liquids [10].
Once the temperature dependence of the viscosity becomes
super-Arrhenius, the activation energy keeps increasing with
decreasing temperature, and it is a natural course of action that
viscosity diverges at a finite temperature. The glass transition
is merely a consequence of this crossover. Therefore, in this
line of argument the crucial element for understanding the
glass transition is not the glass transition itself but the nature
and origin of this crossover phenomenon.

Kivelson et al. proposed that T* is the freezing temper-
ature of a phase which the liquid never reaches because of
frustration [6]. Because of its intrinsic frustration long-range
order of such a phase cannot be achieved, but short-range
dynamic fluctuations into this phase become more prevalent
as temperature is lowered, resulting in increased viscosity

*jeanbel@math.gatech.edu

and ultimate jamming into a glassy state. An example of
the frustrated phase is the icosahedral state [4,11]. Whereas
a quasicrystal is a solid with icosahedral symmetry, it is a
stoichiometric crystalline compound in six dimensions which
is formed only for a number of specific compositions [12]. For
a liquid with a composition other than these specific composi-
tions the icosahedral order is geometrically frustrated [4], and
cannot form long-range order. But the particular local order of
the frustrated phase depends on composition. For instance, for
polydispersed hard-sphere colloids the fluctuating phase is a
mixture of the icosahedral phase and the face-centered-cubic
phase [13]. However, the hypothesis that T* is the freezing
temperature of the frustrated phase has not been confirmed.

On the other hand different interpretations of the crossover
phenomenon were proposed based upon the idea that the
atomic dynamics become more collective below T* [14,15].
Such crossover is observed in the colloidal system as well, as
a function of colloid density, from the noninteracting colloid
below the critical density to the interacting colloid above
[15,16]. In our view the crossover occurs when the mean free
path of the shear phonon, ξ = cT τM , where cT is the velocity
of a transverse phonon and τM is the Maxwell relaxation time,
becomes shorter than the mean atomic distance, and the bulk
of shear phonons is localized [17]. In other words above the
crossover temperature, TA = T ∗, the structure is fluctuating so
fast that phonons cannot propagate and become overdamped.
Only below TA atoms can interact via phonons and atomic
dynamics becomes cooperative. In this paper we propose a
simple model to quantify this dynamic crossover phenomenon
based on the dynamics of an atomic connectivity network. We
define the structure of liquid in terms of the atomic connec-
tivity network [18], and describe its dynamics by the action
of cutting and forming the atomic bond [19]. The crossover
occurs as a consequence of competition between phonons and
bond cutting. This model is a mechanical analog of the Drude
model for the electric transport in metal. The paper presented
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here is a small brick added to the knowledge, hoping that it
will open the door to a more accurate theory liable to explain
the mystery of glass transition. However, several evidences
point toward this model providing some universal results:
(a) it explains the crossover phenomenon, (b) it introduces a
parameter that permits us to distinguish between strong and
fragile glasses, and (c) it explains the precipitous increase in
viscosity below the crossover temperature. In addition, while
we are first motivated by the study of bulk metallic glasses, it
could be relevant in other areas, such as colloids [20], usual
glassy materials in their liquid phase, or even quantum fluids
[21].

II. MODEL

A. Structure and dynamics of liquid

Liquid and glass have no symmetry in the atomic structure.
Thus, it is difficult to describe the structure and relate it to
properties, even when we know the positions of all atoms at
time t , Ri (t ). Experimentally the only the pair density correla-
tion function (PDF), g(r ), can be readily obtained through the
Fourier transformation of the structure function, S(Q), which
can be determined by diffraction [22]. However, the PDF
is a one-dimensional function, and does not have sufficient
informational content to determine a three-dimensional (3D)
structure. To describe the three-dimensional structure usually
a model is constructed using a phenomenological interatomic
potential, and the results are analyzed in terms of the Voronoi
polyhedra [18,23], which is an example of the Delone set
[24,25], as discussed in Appendix A. The atomic connectivity
is defined by atoms which share a Voronoi face. The state of
atomic connectivity is expressed in terms of the Delone graph.

The Delone graph describes the state of atomic connec-
tivity at a time. We now consider how it evolves with time to
describe its dynamics. The action of changing the connectivity
of the Delone graph, by cutting one bond and forming a
new one, is called Pachner moves, discussed in Appendix B
[24–27]. Such a move requires local atomic rearrangement
which squeezes atoms and increases the potential energy. It
represents a move from one local equilibrium to another,
crossing over an energy barrier. In terms of the energy land-
scape it corresponds to crossing a saddle point [7]. In high-
temperature liquid the action of cutting or forming a bond
was shown to be the elementary process of excitation [15,19],
and was named the “anankeon” [19]. A typical Pachner move
represents a bond exchange and involves two anankeons.
They happen at unpredictable times, so that their dynamic
is more efficiently described in terms of a Markov process.
Hence the corresponding stress felt by each atom is constantly
varying under the stress of circumstances, a concept that can
be translated by the word “anagkeia” in Greek. Associated
with this concept was the Greek goddess Ananke, expressing
fate or destiny, due to uncontrollable forces, constraints, and
necessity, hence the name “anankeon” associated with these
stress-induced unpredictable atomic moves.

B. Toy model

What happens in the liquid state? Phonons still exist in liq-
uids as in solids. However, phonons with short wavelengths,

comparable to interatomic distance, are strongly damped in
the liquid phase at high temperature. Whenever the typical
time scale characterizing the anankeon dynamics is compara-
ble to the phonon period, the phonon has no time to oscillate
and it is overdamped. The present model investigates this
damping more quantitatively. To proceed, the same intuition
will be followed as in the original paper of Drude on electronic
transport in metals [28,29]. In order to make the model com-
putable, it will be assumed that it describes the mechanical
fate of a given atom.

(i) As long as the topology of atomic connectivity remains
unchanged, this atom is located near the minimum of a local
potential well, and it will oscillate, harmonically, with a
frequency given by the local curvature of the well.

(ii) Then at random times (Poissonian distribution) the
atom jumps, finding itself, after the jump in a new potential
well, with a new local curvature and a new initial location
relative to the new equilibrium position and a new initial
velocity (phase-space position).

Hence, the curvature of the potential well (expressed in
terms of the frequency of oscillation) will be considered as
a random variable with a fixed average and a given covariance
δ, which will be shown to be the most important parame-
ter. Similarly, the new relative initial phase-space position,
after the jump, will also be chosen randomly according to
a Maxwell-Boltzmann distribution. To make the model even
more computable, it will be assumed that only one degree of
freedom of oscillation is allowed (the local Einstein model). It
will be seen that, even though this model is so simplistic, it ex-
hibits a transition between two time scales as δ decreases. The
computation of correlation functions, like viscosity, shows
that this change of scale may affect the viscosity in an
essential way.

C. Anankeons in glass: Shear transformation zone theory

The deformation behavior of metallic glass was success-
fully described by the shear transformation zone (STZ) the-
ory, proposed by Argon [30] and extended by Langer and
coworkers [31–34]. The idea is that during plastic deformation
the local groups of atoms form droplets, the STZ, in which
the solid really behaves like a liquid for a short time. Us-
ing the density of the STZ as a variable, Langer and coworkers
proposed a system of effective equations at the macroscopic
scale that are modeling the behavior of the material under
stress with a good accuracy. At the atomic scale numerical
simulation shows that these STZ’s are the result of a cascade
or avalanche of many atomic swaps, namely, of anankeons
[35], starting at a random site, called the germ. The anankeon
involves only two atoms which define the bond to be cut
or formed, whereas the STZ involves many (30–300) atoms
[36,37]. The initial anankeon action induces other anankeons
in its neighborhood, because of the disruption created by the
propagation of the stress induced by such swaps. The cascade
looks like a local catastrophic event, occurring during a very
short time, leading to the building of the local liquidlike
droplets. The time scale representing the time necessary to
create an STZ is, however, long in comparison with the
typical time scale of the anankeon. Thus, the cascade is not
a collective phenomenon, but simply a succession of separate
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anankeon events induced by the stress field created by the
preceding deformation events. A model for such a cascade of
events was proposed in Refs. [35,38].

III. LIQUIDS AT HIGH TEMPERATURE AS A PERFECT
ANANKEON GAS

In our approach the structure of glass or liquid is described
by the Delone graph which specifies the topology of atomic
connectivity. The Delone graph, however, does not have an
energy scale, whereas in order to calculate thermodynamic
properties we need the knowledge of the energy scale. A
convenient way to introduce the energy scale to the Delone
graph is to use the concept of the atomic-level stresses [39].
The atomic-level stress tensor for an atom i, ¯̄σi , is defined by

σ
αβ

i = 1

Vi

∑
j

f α
ij r

β

ij , (1)

where α and β refer to Cartesian indices, Vi is the local
atomic volume of atom i, and fij

α and rij
β are the α and

β components of force and distance between atoms i and j

[40,41]. Its trace gives the atomic-level pressure,

pi = 1
3

(
σxx

i + σ
yy

i + σ zz
i

)
, (2)

whereas five other combinations give the shear, or deviatory,
stresses, τni , n = 1−5. The origin of the atomic-level stress
is the atomic-level misfit between the size of the atom and
the size and shape of the atomic site [39]. For instance, if the
atom is larger than the site in which it is placed it is under
compressive pressure. Thus, they are directly connected to the
topology of the neighboring atoms which defines the size and
shape of the atomic site. For instance, the pressure is linearly
related to the number of nearest neighbors, the coordination
number [42].

The stress tensor has six components for each atom; how-
ever, because of the identity fij = −fji , the total number
of free components is 3N, equal to the positional degree of
freedom. For this reason the equipartition theorem holds for
the stress in liquid [43,44]:

V 〈p2〉
2B

= V
〈
τ 2
n

〉
2G

= kBT

4
, (3)

where B and G are the bulk and shear moduli and V
is the atomic volume. The distribution of local stress is
Gaussian [45]. In the liquid state the atomic-level stresses
fluctuate with time because the neighbors are dynamic. In
high-temperature liquid phonons are overdamped, and the
mechanism of structural change is anankeon excitation.
Therefore, a high-temperature liquid can be modeled as a free
gas of anankeons. The degree of freedom associated with each
anankeon will be given in terms of an atomic stress tensor.
Their Gaussian distribution observed in the numerical results
can be interpreted in terms of a Gibbs state describing the
thermal equilibrium in a statistical mechanical approach. If the
atomic stress is uncorrelated, it becomes possible to compute
the partition function Z(T;N) of a volume of liquid containing
N atoms. Note, however, that an anankeon excitation affects
the stress tensors at two atoms involved in each atomic bond.
Thus, the part of the partition function regarding the potential

energy is Z(T ; N ) = Z1(T )N/2, where

Z1(T ) =
∫

e−β(p2/2B+∑
n τ 2

n /2G)dσ, β = 1

kBT
. (4)

The domain of integration is the space of all real sym-
metric d × d matrices, representing a possible stress tensor.
This Gaussian integral is easy to compute, giving Z1(T ) =
ZT d (d+1)/4

, where Z is a constant depending on B and G,
but independent of the temperature. The Clausius entropy is
given by S = kB ln[Z(N ; T )], leading to the following expres-
sion of the contribution of the potential energy to the heat
capacity, Cv, p = cdNkB/2, where cd = d(d + 1)/4, which
is 3 in three dimensions. Adding the contribution from the
kinetic energy, Cv, k = cdNkB/2, we obtain the total specific
heat, Cv = cdNkB . Accordingly the system follows a law of
Dulong-Petit, just as the contribution of phonons in crystal.
However, the physical origin is different in liquid, because the
main degree of freedom associated with atoms is the atomic
stress. Hence a liquid at high temperatures can be seen as a
perfect gas of anankeons. This prediction gave a satisfactory
answer to the experimental observation [46] of the saturation
of the heat capacity at high temperature.

IV. PHONON-ANANKEON INTERACTION

What happens at lower temperature, below the crossover
temperature? The following model will show that as the
temperature decreases the vibration modes are constraining
the shape of local clusters, so as to change the viscosity is a
nontrivial way.

A. Time scales

Because the dynamics plays such an important role in
explaining the difference between solids and liquids, the
various relevant time scales ought to be discussed. The most
elementary is τLC, where LC stands for “local configuration,”
representing the time required between two consecutive Pach-
ner moves [14]. It corresponds to the anankeon relaxation
time. The next time scale is called Maxwell relaxation time
τM = η/G∞ [47] where η is the viscosity and G∞ is the
high frequency shear modulus. The Maxwell relaxation time
represents the time scale below which the system behaves like
a solid and beyond which it can be considered as a liquid.
Through classical as well as ab initio molecular dynamics
simulation on various metallic liquids it was found that τM =
τLC at high temperatures [17]. They obey the Arrhenius law:

τM = τLC = τ∞eW /kBT . (5)

However, below the crossover temperature, TA(=T ∗), the
equality τM = τLC breaks down, and τM becomes super-
Arrhenius, whereas τLC remains Arrhenius [48]. Near the
glass transition point, there is a significant discrepancy be-
tween τM and τLC. This is the discrepancy that the present
model is going to describe. It seems natural, then, to choose
τLC as the basic time scale for modeling.

B. Toy model for anankeon-phonon interaction

There are two modes of dynamics for the atomic-level
stresses. At high temperatures it is dominated by phonons. To
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describe phonons we adopt the Einstein model, and assume
ωE,i is the local Einstein frequency of the atom i. Below TA

local configurational dynamics takes over [49]. For simplicity
we also use the same Einstein model, but the values of {ωE,i}
decrease rapidly with decreasing temperature. Around an
atom anankeon excitation occurs randomly with the average
interval of τLC. Thus, the distribution of the time interval
between anankeon excitation should have an exponential dis-
tribution. Then the probability that anankeon is excited within
the time τ is

P (τ ) = 1

τLC

∫ τ

0
e−t/τLCdt. (6)

Anankeon excitation involving the bond between atoms i and
j changes the atomic-level stress tensor of the atom i and j , ¯̄σi

and ¯̄σj , and ωE,i and ωE,j by �ωi,n and �ωj,n. Here n denotes
the sequence of anankeon excitation (−∞ < n < ∞). It is
reasonable to assume that �ωi,n is also a random variable.
Its average and variance are given by

ω = 1

N

∑
i

ωE,i, �ω =
(

1

N

∑
i

(�ωi,n)2

)1/2

. (7)

C. Viscosity

The viscosity is given by the fluctuation-dissipation theo-
rem as [47]

η = V

kBT

∫
Cσ (t )dt, (8)

where V is the volume of the liquid, T is the temperature, and
Cσ is a shear stress correlation function:

Cσ (t ) = 〈σxy (0)σxy (t )〉. (9)

In terms of the atomic-level stresses, Eq. (1) [40],

σxy (t ) = 1

V

∑
i

Viσ
xy

i (t ). (10)

Therefore,

Cσ (t ) = 1

V 2

∑
i,j

ViVj

〈
σ

xy

i (0)σxy

j (t )
〉
. (11)

Using the approximation in Ref. [49],

Cσ (t ) = ν

V 2

∑
i

(Vi )
2〈σxy

i (0)σxy

i (t )
〉
, (12)

where ν ≈ 2. In the liquid state the thermal average is equal
for all atoms. Thus,

Cσ (t ) = ν
〈
σ

xy

i (0)σxy

i (t )
〉
. (13)

We will show that Cσ (t ) ∼ exp(−t/τM ). For this purpose we
compute the Laplace transform:

L̃Cσ (ς ) =
∫ ∞

0
e−tςCσ (t )dt. (14)

Detailed derivation is given in Ref. [50] and summarized in
Appendix C. The result is

L̃Cσ (ς ) = τa2(ς )

1 − a2(ς )e−(p̂2
r +4/r2 )

, (15)

where

a2(ς ) =
〈

1

1 + τ
(
ς + i2ωj−1

)
〉

� 1

1 + τς

+O

(
1

(1 + τς )2

)
. (16)

To calculate a2(ζ ) explicitly we need to know the distri-
bution of {ωj }. Here for simplicity we assume that {ωj } are
distributed evenly within the range of ω ± √

3δ. Then,

a2(ς ) = 1

i4
√

3z
ln

{
1 + τ (ς + 2iω) + i2

√
3z

1 + τ (ς + 2iω) − i2
√

3z

}
, (17)

and z = δτ . The value of z varies with temperature. At high
temperatures the system samples a wide space of the potential
energy landscape (PEL), so that the range of {ωj }, �ω, is
large, resulting in a value of z of the order of unity. As
the system is cooled it gets settled in certain local basins
in the PEL, and the dynamics becomes more cooperative,
dominated by configurational fluctuations because phonons
are averaged out over the time τ . Thus, the values of {ωj } and
δ decrease rapidly with decreasing temperature. Thus, cooling
the system results in reducing the value of z. Now using the
polar coordinates in the complex plane,

ρeiθ = 1 + τRe(ς ) + i2
√

3z, (18)

a2(ς ) = θ

2
√

3z
, tan θ = 2

√
3z

1 + τRe(ς )
. (19)

Thus, the solution critically depends on the value of z. If
2
√

3z � π/2,

τM = τLC, (20)

whereas, if 2
√

3z < π/2,

τLC

τM

= 1 − 2
√

3z

tan(2
√

3z)
. (21)

The value of z varies with temperature, and

z = zc = π

4
√

3
(22)

defines the viscosity crossover temperature TA = T ∗. Above
TA Eq. (20) holds, whereas below TA Eq. (21) applies.

V. INTERPRETING THE RESULTS

A. Crossover condition

Above TA phonons are overdamped [17], so that, at the
critical value of z, ωτ = 1. Then from Eq. (22) the crossover
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condition is given by

�ω

ω

∣∣∣∣
c

= π

4
√

3
≈ 0.45. (23)

The phonon frequency ω depends on volume through the
Grüneisen formula:

d ln ω

d ln V
= γ. (24)

The Grüneisen constant is about 2 for many materials. Now
for metallic systems with random close packed structure the
coordination number NC is close to 12 (∼4π [51]). Therefore
the volume strain, εv = � ln V , for changing the coordination
number NC by 1

2 is [39,52]

εcrit
v = 0.11, (25)

thus activation of the anankeon which changes NC by unity
will result in the volume strain of 2εcrit

v = 0.22. Therefore, the
change in ω due to anankeon excitation is

�ω

ω
= � ln ω = 2γ εcrit

v = 0.44, (26)

for γ = 2, quite close to the value in Eq. (23). This agree-
ment illustrates the reasonableness of the result expressed in
Eq. (21).

B. Glass transition

At low temperatures below the crossover temperature
atomic dynamics become more correlated and cooperative.
Therefore, the anankeons become correlated, and the assump-
tion of a random sequence which led to Eq. (21) breaks
down. For instance, when two atoms are surrounded by a
glassy solid, breaking of a bond creates a strong back stress
field around the atoms which tries to restore the bond. In
other words, unlike the liquid above the crossover, the sys-
tem now has a memory and behaves like an anelastic solid.
Consequently, the effective value of z becomes smaller. It
is difficult to estimate how z varies with temperature, but it
should go to zero at the glass transition because the system
is no longer dynamic. Therefore, the overall change in ω due
to the localized anankeon is of the order of 1/NC . For small
values of z,

τM

τLC
= 1

/(
1 − 2

√
3z

tan(2
√

3z)

)
= 1

4z2
+ . . . . (27)

Thus, τM diverges at Tg (z = 0), as expected. Strictly speak-
ing, therefore, Tg is the ideal kinetic glass transition temper-
ature where τM diverges rather than the conventional glass
transition temperature where τM becomes comparable to the
experimental time scale. Also this result is based upon the
lowest order term in Eq. (16). In deeply supercooled liquid
we will need to take higher order terms which make the results
more complicated.

C. Fragility

Angell classified liquids into fragile and strong liquids, by
plotting viscosity in the logarithmic scale against Tg/T , the
so-called Angell plot [1]. In a very strong liquid, such as silica,

the Arrhenius temperature dependence persists well above the
glass transition up to very high temperatures. In our model
this means z > zc up to high temperatures. This is consistent
with our model [52] in which the critical strain increases with
decreasing NC . Whereas there is no simple way to estimate
the value of z, because the square of the phonon frequency is
proportional to the local elastic constant C which scales with
NC , we may argue that

z = �ω

ω
≈

√
�C

C
≈

√
1

NC

. (28)

For NC = 4 we obtain z = 0.5, higher than the critical value
zc. Because silicate has an open structure cutting one bond
does not affect other bonds even below TA; there is no back
stress effect. Thus, the value of z should remain high through
the supercooled state down to low temperatures, resulting in
the Arrhenius behavior of viscosity with no crossover to the
super-Arrhenius behavior.

D. Comparison with simulation

It is difficult to estimate how z depends on temperature. At
the moment theories are not available to make such estimates,
and it will require extensive simulation effort to do so. On
the other hand, it is possible to gain some insight through
the comparison of Eq. (21) with the results of simulation in
Ref. [17]. We found that scaling of z by

1 − z

zc

=
(

1 − t

1 − tg

)γ

, (29)

where t = T/T∗, tg = Tg/T
∗, T ∗ = 1.3TA, and γ = 4, of

Eq. (22) fits well to the simulation data as shown in Fig. 1.

FIG. 1. Plot of τM/τLC against T/TA. Symbols denote simula-
tions by various models from Ref. [17]. The line is given by Eq. (21)
with the temperature scaling of Eq. (29).
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Because the physical meaning of this scaling is unclear, this
agreement merely suggests that our model captures some
features of the crossover phenomenon in spite of its simplicity.
Here T ∗ > TA, but this merely reflects the ambiguity of
defining TA from the viscosity data through the deviation from
the Arrhenius behavior.

VI. CONCLUSION

The origin of glass transition has long been debated,
without satisfactory resolution. Whereas many research works
focus on the glass transition itself, it is equally important to
examine the crossover behavior of viscosity in a liquid at high
temperatures. Below the crossover temperature, TA, cooper-
ative atomic dynamics leads to super-Arrhenius temperature
dependence of viscosity, culminating inevitably in the glass
transition. In our view this crossover occurs because of the
competition between phonons and local configurational fluc-
tuations represented by the action of cutting or forming atomic
connectivity, called anankeons. In this paper we propose a
simplistic model of atomic dynamics in liquid, based on the
concept of dynamic fluctuations in local atomic connectivity
(anankeons), to elucidate the viscosity crossover phenomenon
in the liquid phase. With this model it is possible to explain the
crossover from a simple liquid to cooperative liquid and the
divergence of viscosity near the glass transition temperature.
The model is a mechanical analog of the Drude model for the
electric transport in metal.
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APPENDIX A: DELONE HYPOTHESIS AND THE
ERGODIC PARADOX

An instantaneous snapshot of the atomic arrangement can
be described as a set of points L, representing the position of
atomic nuclei. With a very good approximation L is efficiently
described as a Delone set. Namely, it is characterized by two
length scales 0 < rR < 1 defined as follows: (i) any open
Euclidean ball of radius r contains at most one point of L
and (ii) any closed Euclidean ball of radius R contains at least
one point of L. The first condition is equivalent to having a
minimum distance 2r between any pair of distinct atoms. The
second condition is equivalent to forbidding holes a diameter
larger than 2R. However, the principles of equilibrium statis-
tical mechanics and the ergodicity with respect to translations
contradict such a hypothesis. This is the content of the so-
called ergodicity paradox [26]. This is because in the infinite
volume limit the ergodic theorem implies that with probability
1, given any ε > 0, somewhere in the atomic configuration
two atoms are at a distance shorter than ε. Similarly, with
probability 1, given any ε > 0, somewhere in the atomic con-
figuration there is a hole of size larger than 1/ε. However, such
local arrangements are rare, so that dynamically their lifetimes
are so short that they are unobservable. Hence restricting the

atomic configurations to make up a Delone set is a reasonable
assumption called the Delone hypothesis.

APPENDIX B: VORONOI TILING, DELONE GRAPHS, AND
LOCAL TOPOLOGY

Given a Delone set L and a point x ∈ L, the Voronoi cell
V(x) is defined as the set of points in space closer to x than
to any other point in L. V(x) can be shown to be the interior
of a convex polyhedron containing the open ball centered at
x of radius r and contained in the ball centered at x of radius
R [24,25]. The closure T(x) of the Voronoi cell is called a
Voronoi tile. Two such tiles can only intersect along a common
face. In particular two Voronoi cells centered at two distinct
points of L do not intersect. The entire space is covered by
such tiles, so that the family of Voronoi tiles constitutes a
tiling, the Voronoi tiling. The vertices of the Voronoi tiles
will be called Voronoi points. Their set L* is usually called
the dual lattice. For a generic atomic configuration, a Voronoi
point has not more than d + 1 atomic neighbors in space
dimension d (3 in the plane and 4 in the space). In particular,
the Voronoi points are the center of a ball with d + 1 atoms
on its boundary, a property called by Delone (who signed
Delaunay) the “empty sphere property” [11]. This means that
it is at the intersection of d + 1 Voronoi tiles. The d + 1 atoms
located at the center of those tiles are the vertices of a simplex
(triangle for d = 2, tetrahedron for d = 3) that generates the
so-called Delaunay triangulation.

Two points x; y ∈ L will be called nearest neighbors
whenever their respective Voronoi tiles are intersecting along
a facet, namely, a face of codimension 1. The pair {x, y} will
be called an edge. In practice, though, using physical criteria
instead of a geometrical one, an edge might be replaced by
the concept of bond, to account for the fact that the atoms
associated with x and y are strongly bound [18,23]. The term
“strongly” is defined through a convention about the binding
energy, so as to neglect bonds between atoms weakly bound
to each other. Whatever the definition of an edge, geometrical
or physical (bonds), this gives the Delone graph G = (L, E),
where L plays the role of the vertices and E denotes the set
of edges or of bonds. At this point the Delone graph need not
be oriented.

Along a graph, a path is an ordered finite set of edges, each
sharing a vertex with its successor or with its predecessor. The
number of such edges is the length of the path. The graph
distance between two vertices is the length of the shortest
paths joining them. A graph ball centered at x of radius n

will be the set of all vertices at graph distance at most n

from x. Such graph balls correspond to local clusters. Two
graph balls are called isomorphic if there is a one-to-one
surjective map between their set of vertices, which preserve
the graph distance. As a result, if the atomic position is
slightly changed locally in space, the graph balls might still be
isomorphic. Therefore, the graph balls, modulo isomorphism,
are encoding what physicists called the local topology of
the atomic configuration. The transition between two graph
balls can be described precisely through the concept of Pach-
ner moves [24,25,27]. This concept was created by experts
of computational geometry, to describe the deformation of
manifolds via a computer. A Pachner move can only occur
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FIG. 2. (a) A Pachner move in the plane. (b) A Pachner move
in 3D space. In 3D space such a move involves at least five atoms
moving quickly to deform the Delaunay triangulation, changing the
nature of the Delone graph, namely, the local topology. This number
(5) has been seen in numerical simulations [53].

if at least one Voronoi point becomes degenerate, namely, it
admits at least d + 2 atomic neighbors at some point during
the move. Such moves correspond to a local change in a
graph ball, namely, when an edge disappears another may
reappear. A Pachner move corresponds exactly to the concept
of the anankeon. It can be described using the Delaunay
triangulation as explained in Fig. 2. A recent simulation [53]
indeed shows that the average number of atoms involved in the
saddle point (a midpoint of the Pachner move) is 5 for d = 3.

APPENDIX C: DERIVATION OF EQ. (16) (SEE REF. [50]
FOR FULL DETAILS)

We assume that the atomic-level shear stress varies with
time in two different ways, by phonon and by anankeon. The
phonon dynamics is harmonic, and for simplicity we use one
local phonon frequency for each atom, ωEi (Einstein model).

The anankeon excitation produces local change in the value
of ωEi by �ωEi. To describe the temporal evolution of the
atomic-level shear stress, σi

xy (t ), we define X(t ) = (u, v),
where u = σi

xy (t ) and v = du/dt . We also define f (X) = u.
The continuous evolution of X(t) is given by

X(t + dt ) = e−ωdtJX(t ), −J = v∂u − u∂v. (C1)

We now consider a series of anankeon operations at time
τj , (j = 0, 1, 2, . . . , n). By definition 〈τn+1 − τn〉 = τLC. For
each anankeon excitation X makes a jump:

X(τj + 0) = X(τj − 0) + ξj . (C2)

Therefore,

f (X + ξ ) = eξ ·∇f (X), ξ · ∇ = a∂u + b∂v, (C3)

where ξ = (a, b). Then,

f [X(t )] =
n∏

j=1

(e−(τj −τj−1 )ωj−1J eξj ·∇ )e−(t−τn )ωnJ f [X(0)].

(C4)

Now we break up the Laplace transform, Eq. (15), into time
segments of τn:

L̃Cσ (ς ) = ν

∞∑
n=0

〈
f [X(0)]

∫ τn+1

τn

e−tςf [X(t )]dt

〉
. (C5)

From Eq. (C4),

L̃Cσ (ς ) = ν

∞∑
n=0

〈
f [X(0)]

n∏
j=1

(e−(τj −τj−1 )ωj−1J eξj ·∇ )e−(t−τn )ωnJ f [X(0)]

〉
. (C6)

Because {τj } obeys the Poisson statistics,

〈e−(τj −τj−1 )A〉 =
∫ ∞

0
e−s/τ−sA ds

τ
= 1

1 + τA
, (C7)

where τ = 〈τj − τj−1〉 = τLC. This is a crucial step in this theory. Then Eq. (C6) becomes

L̃Cσ (ς ) = ντ

∞∑
n=0

〈
f [X(0)]

n∏
j=1

(
1

1 + τ (ς + ωj−1J )
eξj ·∇

)
1

1 + τ (ς + ωnJ )
f [X(0)]

〉
. (C8)

Because ξj ’s and ωj ’s are statistically independent, averages are

〈eξj·∇〉 = ekBT ∇2/2m. (C9)

Defining

A(ς ) =
〈

1

1 + τ (ς + ωj−1J)

〉
, (C10)

we obtain

L̃f (ς ) = ντ

∞∑
n=0

{A(ς )ekBT ∇2/2m}nA(ς )f [X(0)] = ντ

1 − A(ς )ekBT ∇2
/

2m
A(ς )f [X(0)]. (C11)
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Now, using the polar coordinate

f�(X) = ei�θf (|X|), (C12)

and choosing l = ±2 for the symmetry of shear, we find that the kernel of Eq. (C10), 1/[1 + τ (ζ + ωj−1J )], has a pole at

ς±2 = −
(

1

τ
± i2ωj−1

)
. (C13)

Thus,

a±2(ς ) =
〈

1

1 + τ
(
ς ± i2ωj−1

)
〉

� 1

1 + τς
+ O

(
1

(1 + τς )2

)
. (C14)

To calculate a2(ζ ) explicitly we need to know the distribution of {ωj }. Here for simplicity we assume that {ωj } are distributed
evenly within the range of ω ± √

3δ. This assumption leads to Eqs. (18)–(21).
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