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Self-propulsive swimmers: Two linked acoustic radiating spheres
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We propose a simple, practical, and versatile acoustic-driven swimmer, composed of two spherical bodies
that may radiate the sound field, monochromatically, at monopole state (breathing mode of vibration) and are
linked by a rigid rod. Considering the nonlinear acoustic effects, the net acoustic radiation force exerted on the
device is analytically derived and it is shown that the resultant radiation force exerted on the swimmer may
be nonzero. Two different configurations are considered: In the first, both spheres radiate, and in the second,
one of the spheres is off. In both cases, the full manipulability conditions of swimmers are obtained and the
effects of size factors, frequency of radiation, etc., are discussed. Assuming low Reynolds number swimming
condition, the frequency-dependent swimming velocity is obtained via the so-called reflection method and the
optimal radiating states are discussed. Finally, the challenge of random walk due to host medium fluctuations
is discussed and it is shown that the Brownian noise is negligible. Our methodology will open a path toward
self-propulsive controllable devices, which may play the role of carriers, machines, or mechanisms at small
scales.
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I. INTRODUCTION

Design of artificial small scales (i.e., micro- to molecular-
size) swimmers with capability of carrying out intricate tar-
geted tasks such as material, agent, or drug transportation [1]
or minimally invasive therapeutic treatments inside the human
body [2,3] or sensing, actuating, or cleaning, etc., is challeng-
ing due to low Reynolds number operating condition [i.e.,
assuming usual scales of swimming velocity v ∼ O(100) −
O(101) μm/s, fluid mass density ρ ∼ O(103) kg/m3, fluid
dynamic viscosity η ∼ O(10−4) Pa s, and length scales l ∼
O(100) − O(102) μm, Reynolds number is obtained as � =
ρνl/η ∼ O(10−5) − O(10−2)] in which the inertial forces are
negligible in comparison with the viscosity effect and noisy
fluidic environment in which the steering of the swimmer may
be affected by thermal fluctuations or other sources.

Many attempts have been conducted to tackle the issue
by introduction of swimmers with motion patterns which
break the time reversal symmetry [4–7] or with exploita-
tion of the surface phoretic effects such as electrophoresis,
electro-osmosis, diffusiophoresis which may lead to active
and passive self-propulsive swimmers [8–16] or by internally
or externally induction of thermal field gradients [17,18]. As
a different methodology, the passive propulsion mechanism
based on asymmetric chemical reaction has been revealed
[19–22]. Inspired from the micro-organisms and small-scale
living matters motion strategies, artificial swimmers may be
designed in which their motion is derived from the wave-
like deformation of their main body or their conjugate parts
(e.g., flagella or cilia), such as squirmers [23–25], sheets
and rods with propagating plane waves along them [4,26,27],
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elastic filaments [28,29], and nonslender bodies [30–35] with
traveling wavelike disturbances, bodies with rotating helix
component [6,36,37], or over-twisted elastica [28,38], etc.
Another technique which utilizes the oscillation of the host
fluid medium to produce self-propulsion of double spherical
bodies linked by spring is introduced by Refs. [39,40]. The
propulsion based on the acoustic techniques for the case of
oscillating entrapped air bubbles is investigated [41,42].

The acoustic radiation force is the result of body-wave
interaction. The force is defined as the time-averaged force
exerted on body in the way of wave-field propagation, caused
by asymmetric pressure induction around the body and the
momentum transfer from the host medium to it [43].

The effects associated with the acoustic radiation force
is emerged in theory, if someone considers the higher-order
terms, at least, up to second-order terms, for field quanti-
ties and state equations (e.g., Taylor expansion of acoustic
pressure, p, in terms of enthalpy, h, leads to p = p0 +
(∂p/∂h)s,0 + (1/2)(∂2p/∂h2)s,0h

2 + h.o.t., where p0 is the
pressure at equilibrium condition, h.o.t. stands for higher-
order terms, and by setting (∂p/∂h)s,0 = ρs,0 = ρ, which
yields p = −ρ(∂ψ/∂t ) − (ρ/2)[|∇ψ |2 + (1/2c2)(∂ψ/∂t )2]
+ O(ψ3).

Various potential functions associated with the radiation
force phenomenon have been introduced in literature espe-
cially due to its suitable orders of magnitude with respect to its
electromagnetic or optic counterparts, noninvasive nature, in-
depth penetration, and steady effect with special applications
in biological systems, therapeutic issues and engineering field
such as remote noncontact manipulation and drug, agent, or
material delivery systems [44–61], trapping [62–67], levita-
tion in microgravity or normal gravity containerless situations
[68,69], sorting, classification and collection [70], coagulation
[71], fractionation [72,73], bubble clustering [74], cavitation
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[75,76], Sonoluminescence [77], transducer calibaration [78],
etc.

The present work is based on the fact that if a body could
generate an asymmetric acoustic field in the host medium so
that the net induced force on the host medium or its body
becomes nonzero, the swimming may be achieved as a self-
propulsive mechanism. Inspired from the most recent novel
idea of self-motile acoustic induced swimmers [79], a new
mechanism is offered in the present work which includes two
monochromatically acoustic radiating spherical bodies which
are connected through a rigid link. Due to the symmetry, the
probable swimming direction is along the connecting link.
The mechanism has no rigid-body translational or rotational
degrees of freedom. Considering this fact that for mechanism
with moving parts, the net motion at low Reynolds number
condition is achievable if and only if the time reversal sym-
metry is broken due to a nonreciprocal sequence of trans-
lational deformation of the mechanism [4,5] with at least
two internal degrees of freedom [5,7], the problem seems
challenging. However, the mobility of the proposed device
appears nonintuitive due to the fact that in linear acoustic
regime, all the field quantities (e.g., pressure and velocity)
in the host medium have zero time-averaged (i.e., consider f

as field quantity, 〈f 〉t = (1/T )
∫ T

0 f dt , where T = 2π/ω is
the period of acoustic-driven oscillations). We aim to prove
the mobility of our proposed mechanism via the concept of
acoustic radiation force which is one of the interesting and
experimentally observed features associated with nonlinear-
ity effects in wave-body interactions. The acoustic radiation
forces exerted on the bodies are analytically calculated and it
is shown that the net force on the swimmer may be nonzero.
Two distinct configurations are analyzed in numerical results
section. The first configuration is composed of two same-sized
radiating spheres. In the second configuration, one of the
spheres is nonradiating and its size may be different from the
radiating one. The second configuration may serve as a single-
driver swimmer with a cargo container. In both configurations,
our aim is to find the condition for rightward and leftward
manipulations and discuss the swimming velocity as an index
for performance of the proposed swimmers.

Assuming low Reynolds number swimming condition for
typical host media and radiation characteristics of the mecha-
nism in microscales, the swimming velocity is estimated and
the functionality of the device is discussed.

II. FORMULATION

The geometry of the problem is depicted in Fig. 1. This
figure shows two radiating spheres with radii a1 and a2; d is
the distance between the center of spheres. Two coordinate
systems are used as r1 = (x1, y1, z1) and r2 = (x2, y2, z2)
placed on the centers of spheres 1 and 2, respectively. The
spheres are radiating with the same angular frequency of ω,
velocity amplitudes of V1 and V2, and phases of γ1 and γ2,
respectively. The excitation mechanism of the spherical bod-
ies and its probable challenges in practice is not our concern
in this work, but the common excitation techniques based
on internally implementation of piezoelectric and ceramic
actuators is offered in literature [56,80–87].

FIG. 1. The geometry of problem: two radiating spheres with
radii a1 and a2, d is the distance between the center of spheres. Two
coordinate systems are used as r1 = (x1, y1, z1) and r2 = (x2, y2, z2)
placed on the centers of spheres 1 and 2, respectively. The spheres are
radiating with the same angular frequency of ω, amplitudes of V1 and
V2, phases of γ1 and γ2, respectively.

A. Acoustic field equations

In linear acoustic regime, the continuity and the Eulerian
governing equations for an inviscid and ideal compressible
medium that cannot support shear stresses is expressed, re-
spectively, as [88]

∂ρ

∂t
+ ρ ∇ · v = 0, (1)

ρ
∂v

∂t
+ ∇p = 0, (2)

where ρ denotes the density of fluid host medium in equi-
librium state, v is the fluid particles’ velocity, and p denotes
the ambient pressure. Combination of Eqs. (1) and (2) leads
to ∂2v/∂t2 = c2∇(∇ · v), where c = {(∂ p/∂ ρ )s,0}1/2 is the
speed of acoustic waves in fluid host medium, and subscript
s,0 means the constant entropy condition due to adiabatic
process. Considering the zero vorticity condition of wave
propagation phenomenon in linear acoustic (i.e.,∇ × v = 0),
the velocity vector can be expressed as v = −∇ψ . Substi-
tution of this expression into velocity-time-space equation
yields to ∂2ψ/∂t2 = c2∇2ψ.

Considering the monochromatic nature of the wave fields,
vibrating with the frequency of ω, the feasible description
of the form ψ (r, t ) = Re(ϕ(r ) e−iωt ) leads to the so-called
Helmholtz equation as [88]

(∇2 + k2)ϕ = 0, (3)

where k = ω/c is the wave number for the dilatational wave.
The solution of the above equation according to the boundary
conditions of the system leads to evaluation of the velocity
vector field by v = −∇Re[ϕ(r ) e−iωt ] and the acoustic pres-
sure via p(r, θ, ω) = ρ∂Re[ϕ(r ) e−iωt ]/∂t .

It can be easily shown that the expansions of the scalar
velocity potential function of outgoing wave from the radia-
tors in spherical coordinate, satisfying the above Helmholtz
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equation, have the form [88]

ϕ
(α)
rad (rα, θα, ω) =

∞∑
n=0

A(α)
n (ω)hn(krα )Pn(cos θα ), (4)

where α = 1, 2 corresponds to first and second radiator,
A(α)

n (ω) are unknown radiation coefficients, which are to be
determined by applying appropriate boundary conditions, hn

is the spherical Hankel function of the first kind, and order n,
Pn are Legendre polynomials. Notice that the harmonic time
variations throughout the manuscript with e−iωt dependence,
is suppressed for simplicity. Considering the superposition
principle in linear acoustic regime, the total velocity potential
is obtained as ϕ

(α)
tot = ϕ

(1)
rad + ϕ

(2)
rad.

B. Boundary conditions and translational addition theorem

To determine the unknown coefficients, A(α)
n (ω), continu-

ity of normal velocity on the surface of spherical bodies is
applied as

v
(1)
tot

∣∣
r1=a1

· ê(1)
r =

{
V1e

iγ1

0
n = 0
n > 0 ,

v
(2)
tot

∣∣
r2=a2

· ê(2)
r =

{
V2e

iγ2

0
n = 0
n > 0 ,

(5)

where ê(1)
r and ê(2)

r are the radial unit vectors on the surface
of spheres in (x1, y1, z1) and (x2, y2, z2) coordinate systems.
To be able to apply the above boundary conditions, one has to
express the velocity potential expansions of Eq. (4) in terms
of the other coordinate system variables. This can be done by
utilizing translational addition theorem [89].

In this theorem, each term of the velocity potential of
coordinate system α = 1, 2 can be expressed in terms of the
other coordinate system variables, β = 1, 2, α �= β, as

hn(krα )Pn(cos θα )

=
∞∑

q=0

Q
αβ

0n0q (rαβ, θαβ )jq (krβ )Pq (cos θβ ), (6)

where

Q
αβ

0n0q (rαβ, θαβ ) = (2q + 1)iq−n

×
q+n∑

σ=|q−n|
iσ bn0q0

σ hσ (krαβ )Pσ (cos θαβ ), (7)

bn0q 0
σ = (2σ + 1)(nq00|σ, 0)2, (8)

in which (qn00|σ, 0) is the so-called Clebsch-Gordan coef-
ficients [90], rαβ = d is the distance between the origin of
coordinate systems and θαβ = 0, π is the polar angle between
two coordinate systems.

The boundary conditions of Eq. (5) can be rewritten as

− ∂ϕ
(1)
tot

∂r1

∣∣∣∣∣
r1=a1

=
{
V1e

iγ1

0
n = 0
n > 0 ,

− ∂ϕ
(2)
tot

∂r2

∣∣∣∣∣
r2=a2

=
{
V2e

iγ2

0
n = 0
n > 0 ,

(9)

which yields

A
(1)
0 h′

0(ka1) +
∞∑

q=0
Q21

0q00A
(2)
q j ′

0(ka1) = −V1e
iγ1

k
,

A
(2)
0 h′

0(ka2) +
∞∑

q=0
Q12

0q00A
(1)
q j ′

0(ka2) = −V2e
iγ2

k
, n = 0,

A(1)
n h′

n(ka1) +
∞∑

q=0
Q21

0q0nA
(2)
q j ′

n(ka1) = 0,

A(2)
n h′

n(ka2) +
∞∑

q=0
Q12

0q0nA
(1)
q j ′

n(ka2) = 0, n > 0.

(10)

Equations (10) form a linear system of equations with the
form of AX = B, where X is unknown scattering coefficients
X =[A(1)

0 A
(1)
1 · · · A

(1)
N A

(2)
0 A

(2)
1 · · · A

(2)
N ]T .

C. Acoustic radiation force

For an immersed object with ϒ0 as the fixed outer sur-
face at equilibrium condition, interacting with the acoustic
monochromatic waves, the emerged acoustic radiation force
may be expressed as [91]

〈F〉 =
∫ ∫

ϒ0

� · dϒ, (11)

where 〈·〉 means time averaged over a period of oscillation,
2π/ω, ϒ0 is the fixed outer surface of the body at equilibrium,
�ij = −〈p〉δij − ρp〈vivj 〉 is the Brillouin radiation stress
tensor, in which δij is Kronecker δ, ρ is the density of host
medium, and vi are the fluid particle velocity components in
direct contact with outer surface of the body, ϒ.

The above formulation of radiation force leads to
nonzero values if the Brillouin radiation stress tensor
is considered up to at least second order of velocity
potential fields (e.g., Taylor expansion of acoustic pressure,
p, in terms of enthalpy, h, as p = p0 + (∂p/∂h)s,0 +
(1/2)(∂2p/∂h2)s,0h

2 + h.o.t., where p0 is the pressure
at equilibrium condition, and by setting (∂p/∂h)s,0 =
ρs,0 = ρ and (∂2p/∂h2)s,0 = (∂ρ/∂h)s,0 = (∂ρ/∂p)s,0
(∂p/∂h)s,0 = ρ/c2, which yields p = −ρ(∂ψ/∂t ) − (ρ/2)
[|∇ψ |2 + (1/2c2)(∂ψ/∂t )2] + h.o.t.). The time-averaged
radiation force which is exerted upon radiator α may be
written as [91]

〈 f (α)〉 = −
∫ ∫

S

(
ρ

2c2

〈(
∂ψ (α)

∂t

)2〉)
ndS

+
∫ ∫

S

(
ρ

2
〈|∇αψ (α)|2〉

)
ndS

+
∫ ∫

S

ρ
〈(
v(α)

n n + v
(α)
t t

)
v(α)

n

〉
dS, (12)

where S is equilibrium position of the radiator’s surface,

ψ (α) = Re
(
ϕ

(α)
tot

) =
∞∑

n=0

R(α)
n Pn(cos θα ), (13)

063003-3



M. RAJABI AND A. HAJIAHMADI PHYSICAL REVIEW E 98, 063003 (2018)

where R(α)
n = Re[(U (α)

n + iV (α)
n )e−iωt ], in which U (α)

n = (χ (α)
n + ξ (α)

n )jn(krα ) − λ(α)
n yn(krα ) and V (α)

n = (λ(α)
n + ς (α)

n )jn(krα ) +
χ (α)

n yn(krα ). By defining χ (α)
n = Re(A(α)

n ), λ(α)
n = Im(A(α)

n ), ξ (α)
n = Re(

∑∞
q=0 Q

βα

0q0nA
(β )
q ), ς (α)

n = Im(
∑∞

q=0 Q
βα

0q0nA
(β )
q ),

α, β = 1, 2, while α �= β, the radiation force with respect to z axis, 〈 f (α)〉 = 〈fz
(α)〉 êz, can be rewritten as

〈
fz

(α)
〉 = 〈

fr
(α)

〉 + 〈
fθ

(α)
〉 + 〈

frθ
(α)

〉 + 〈
ft

(α)
〉
, (14)

where

〈
f (α)

r

〉 = −πa2
αρ

∫ π

0

〈(
∂ψ (α)

∂rα

)2
∣∣∣∣∣
rα=aα

〉
sin θ cos θdθ = −2π (kaα )2ρ

∞∑
n=0

2(n + 1)

(2n + 1)(2n + 3)

〈
R

′(α)
n R

′(α)
n+1

〉
,

〈
f

(α)
θ

〉 = πρ

∫ π

0

〈(
∂ψ (α)

∂θα

)2
∣∣∣∣∣
rα=aα

〉
sin θ cos θdθ = 2πρ

∞∑
n=0

2n(n + 1)(n + 2)

(2n + 1)(2n + 3)

〈
R(α)

n R
(α)
n+1

〉
,

〈
f

(α)
rθ

〉 = 2πaαρ

∫ π

0

〈(
∂ψ (α)

∂rα

)∣∣∣∣
rα=aα

(
∂ψ (α)

∂θα

)∣∣∣∣
rα=aα

〉
sin2θdθ

= 2πkaαρ

∞∑
n=0

[
2n(n + 1)

(2n + 1)(2n + 3)

〈
R(α)

n R
′(α)
n+1

〉 − 2(n + 1)(n + 2)

(2n + 1)(2n + 3)

〈
R

′(α)
n R

(α)
n+1

〉]
,

〈
f

(α)
t

〉 = −πaα
2ρ

c2

∫ π

0

〈(
∂ψ (α)

∂t

)2
∣∣∣∣∣
rα=aα

〉
sin θ cos θdθ = −2πρ(kaα )2

∞∑
n=0

2(n + 1)

(2n + 1)(2n + 3)

〈
R(α)

n R
(α)
n+1

〉
, (15)

in which 〈R′(α)
n R

′(α)
n+1〉 = (U ′

nU
′
n+1 + V ′

nV
′
n+1)/2, 〈R(α)

n R
(α)
n+1〉 = (UnUn+1 + VnVn+1)/2, 〈R(α)

n R
′(α)
n+1〉 = (UnU

′
n+1 + VnV

′
n+1)/2

and 〈R′(α)
n R

(α)
n+1〉 = (U ′

nUn+1 + V ′
nVn+1)/2.

D. Stokes flow and swimming velocity

For low Reynolds number swimming of micro- or millimeter-sized particles, the governing equations considering the Stokes
flow and incompressibility condition, can be written as [92]

μ∇2v = ∇p + f , (16)

∇ · v = 0, (17)

where μ is the viscosity of fluidic environment, v is the flow velocity field, p is the pressure field and f is the density of
external body forces on the fluid which is neglected in our analysis. Considering the unknown swimming velocity of the proposed
swimmer as, V s = Vsêz, where êz is the common unit vector in z1 or z2 directions, and assuming the no-slip boundary conditions
on the spherical bodies, v = Vsêz at r1 = a1ê

(1)
r and r2 = a2ê

(2)
r , along with the zero-velocity boundary condition at infinity,

v → 0 at r1, r2 → ∞, the obtained boundary value problem has been solved by reflections method [93]. Due to the linearity
of governing equations and boundary conditions, which leads to the relation between the required external applied propulsion
force on the spheres, Fi, i = 1, 2, and the swimming velocity, Vs , up to O(ap1

1 a
p2
2 /d5), p1 + p2 = 5 as

Fi = 6πμa1Vs

[
1 − 3

2

a2

d
+9

4

a1a2

d2
+ 1

2

(
a2

1a2

d3
− 27

4

a1a
2
2

d3
+ a3

2

d3

)

+ 3

4

(
− 2

a3
1a2

d4
+ 27

4

a2
1a

2
2

d4
+ 3a1a

3
2

d4

)
−9

4

(
a3

1a
2
2

d5
+ 27

8

a2
1a

3
2

d5
+ a1a

4
2

d5

)]
. (18)

Considering F1 = f (1)
z + T and F2 = f (2)

z − T , where f (1)
z and f (2)

z are acoustic radiation forces on spheres 1 and 2,
respectively, and T as the rigid link force, we obtain F1 = F2 = (f (1)

z + f (2)
z )/2, which leads to the swimming velocity up
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to first, third and fifth order of aspect ratio, O(ap1
1 a

p2
2 /d5), as

Vs =
(
f (1)

z + f (2)
z

)
12πμa1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 3

2
a2
d

)−1
, first order

(
1 − 3

2
a2
d

+ 9
4

a1a2
d2 + 1

2

( a2
1a2

d3 − 27
4

a1a
2
2

d3 + a3
2

d3

))−1
, third order

(
1 − 3

2
a2
d

+ 9
4

a1a2
d2 + 1

2

( a2
1a2

d3 − 27
4

a1a
2
2

d3 + a3
2

d3

)
+ 3

4

( − 2 a3
1a2

d4 + 27
4

a2
1a2

2
d4 + 3a1a

3
2

d4

) − 9
4

( a3
1a2

2
d5 + 27

8
a2

1a3
2

d5 + a1a
4
2

d5

))−1
. fifth order

(19)

It should be noted that the obtained swimming velocity,
is the time-averaged value considering the nature of driving
acoustic radiation force [55,56,94–96].

Also, the steady Stokes condition is assumed in which
the inertial, buoyant, history, and other contributing terms are
neglected for simplicity [43,97], first due to this fact that at
low Reynolds number hydrodynamics, the viscous drag force
dominancy is a practical assumption, and second, the main
aim of the present work is just to show the functionality of
the proposed acoustic-driven swimmer rather than accurate
modeling of the swimmer dynamics and the hydrodynamics
of the host medium.

III. RESULTS AND DISCUSSIONS

In this section, we consider a numerical example to study
the general behavior and performance of the proposed swim-
mer. Two distinct configurations are considered:

(1) In the first one, two spherical bodies radiate and
for simplicity, the geometrical configuration is limited to

a1 = a2 = a. In this case, we aim to give the feasibility study
and investigate the influence of the design parameters such as
the frequency of operation, phase difference and the aspect
ratio on the swimming velocity.

(2) In the second one, the body 2 does not radiate and may
have larger radius than the sphere 1. This configuration may be
considered as a self-propulsive carrier with a cargo container.
The radiating sphere plays the role of driving motor of the
system. The proposed configuration overcomes the safety and
compatibility problems associate with the probable effects of
radiating driver mechanism (e.g., piezoelectric actuators) on
the carried material, drug, or agent in the container. In this
case, the complete manipulability (i.e., rightward and leftward
motion) would be the challenging factor.

In both cases, a1 = 100 μm and the velocity of radiation
is set as V = P 2

0 /(ρc) where P0 is the an index of maxi-
mum induced pressure in the medium, P0 = 104 Pa. The fluid
medium is assumed to be water in atmospheric condition,
density ρ = 103 kg/m3, speed of sound waves c = 1480 m/s,
and viscosity η = 8.9 × 10−4 Pa s.

FIG. 2. (a) Two-dimensional (2D) plot of amplitude and (b) real of acoustic pressure contour in xz plane, respectively, for the case of
d/a = 4 and �� = γ1 − γ2 = π/2.
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FIG. 3. (a) Three-dimensional (3D) plot of normalized radiation force function, YT , as a function of nondimensional frequency,
0 < ka < 10, and phase difference, 0 � �� = γ1 − γ2 � 2π . (b) The top-view of 3D plot of YT to illustrate the locus of zero driving
force states and the positive [rightward motion along (z+) direction] and negative [leftward motion along (z−) direction], yellow- and
green-colored rectangular regions in ka, ��− plane, respectively. (c) Some selected slices of 3D plot of YT for phase differences,
�� = 0◦, 90◦, 180◦, 180, 270◦. (d) Some selected slices of 3D plot of YT for nondimensional frequencies, ka = 1.0, 4.0, 5.8, 10.0 (i.e.,
λ/a = 2π, (2π )/4, (2π )/5.8, (2π )/10). (Configuration 1.)

The validity of the computations is verified by first: Con-
sidering the limiting case of d/a → ∞ with existence of
progressive plane wave in z direction, the radiation force func-
tion of body 1 is computed as a function of nondimensional
frequency, ka, and Fig. 3 of Ref. [91] is obtained; second,
by setting d/a = 5, V1 = V2 = 0 and adding the effect of a
plane progressive monochromatic incident field to Eq. (11)
and calculating the scattering cross section function, as a
function of nondimensional frequency, ka, Fig. 3 of Ref. [98]
is obtained.

Figures 2 through 8 belong to the case of configuration
1 and Figs. 8 through 10 discuss the case of configuration
2. To show the emergence of asymmetric acoustic pressure
distribution in the case of out-of-phase radiation, Figs. 2(a)
and 2(b) illustrate 2D amplitude and real (captured at time
t = 0) of acoustic pressure contour in xz plane, respectively,
for the case of d/a = 4 and �� = γ1 − γ2 = π/2.

For normalizing the radiation force amplitude, fz
(α), the

normalized radiation force is defined as f̄ (α) = fz
(α)/(Pr Sc )

where Sc = πa2
1 denotes the cross sectional area of spherical

bodies, Pr = ρ V 2/2 is an index of radiated pressure and f̄ (α)

is the nondimensional radiation force. The normalized time-
averaged total radiation forces on the swimmer is denoted as
YT = f̄ (1) + f̄ (2), which play the role of driver in Eq. (19).

Figure 3(a) illustrates the 3D plot of total normalized
radiation force, YT , as a function of nondimensional fre-
quency, 0 < ka < 10, and phase difference, 0 � �� = γ1 −
γ2 � 2π . Figure 3(b) shows the top-view of Fig. 3(a) to
illustrate the locus of zero driving force states and the positive
(rightward motion) and negative (leftward motion) values
of force, which are depicted as yellow and green colored
rectangular regions in (ka,��) plane, respectively. The zero
driving force state occurs for �� = 0◦, 180◦, independent of
frequency of operation. Moreover, it is seen that for specified
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FIG. 4. (a) Three-dimensional (3D) plot of normalized radiation force function, YT , as a function of nondimensional frequency, 0 <

ka < 10, and geometrical aspect ratio, 3 < d/a < 10, for �� = 90◦ corresponding to the maximum swimming state. (b) The top-view of
three-dimensional (3D) plot of YT to illustrate the locus of zero driving force states and the positive (rightward motion) and negative (leftward
motion), yellow and green colored regions in ka, d/a− plane, respectively. (c) Some selected slices of 3D plot of YT for selected aspect ratios,
d/a = 4, 6, 10. (d) Some selected slices of 3D plot of YT for three categories of wavelength to radius of spheres ratios as λ/a = 10, 1, 1/3
[i.e., ka = (2π )/10, 2π, 3(2π )] corresponding to low, medium, and high wavelength to size ratios. (Configuration 1.)

frequencies, zero driving force states emerge independent of
phase difference of spheres. It can be easily shown that for
any specified fluid medium, the frequencies of zero-driving
force states are dependent to geometrical aspect ratio of
swimmer, d/a. The existence of these zero-state frequen-
cies (i.e., they can be exactly found from the simultaneous
solution of ∂ YT /∂ (��) = 0 and YT = 0) is not obvious
and it cannot be inferred from force equations. It seems the
physical interpretation especially the switching nature of the
force states, needs further in-depth investigation into pressure
and momentum distribution balance on the radiating bodies at
specified wavelength to size ratios.

Figure 3(c) shows some selected slices of Fig. 3(a) for
phase differences, �� = 0◦, 90◦, 180◦, 270◦. It is seen that
the total driving force has oscillatory behavior with respect
frequency of operation. As the frequency increases, the total
driving force decreases. The oscillatory behavior leads to
positive and negative values of driving force which means
rightward (along z direction) and leftward motion. An inter-
esting event is the zero-driving force states which occur for
all values of phase differences, at the same frequencies.

The variation of driving force with respect to phase
difference for selected nondimensional frequencies,
ka = 1.0, 4.0, 5.8, 10.0 [i.e., λ/a = 2π, (2π )/4,

(2π )/5.8, (2π )/10], is shown in Fig. 3(d). The selected
nondimensional frequency of ka = 5.8 is corresponding to
zero driving force state. It is seen that the extremes (maximum
amplitude) of driving force at any specified frequency, occurs
at �� = 90◦ and �� = 270◦. At any specified frequency of
operation, a phase switch of �γ1 = ±180◦ or �γ2 = ±180◦,
leads to direction switch of swimming. It is important to note
that at any specified frequency, the phase difference between
the spheres may play the role of speed controller from zero to
the frequency-dependent maximum value.

Figure 4(a) illustrates the 3D plot of total normalized radi-
ation force, YT , as a function of nondimensional frequency,
0 < ka < 10, and geometrical aspect ratio, 3 < d/a < 10.
It should be noted that as d/a closes to 2, the error of
reflection method for obtaining swimming velocity increases.
Therefore, we confine our numerical results to minimum
of d/a = 3. The phase difference is set �� = 90◦, corre-
sponding to the maximum swimming state. The variation of
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FIG. 5. (a) The variation of swimming velocity, Vs , in its maximum state, �� = 90◦, with respect to normalized frequency, ka, at constant
aspect ratio, d/a = 4 and (b) The variation of swimming velocity, Vs , in its maximum state, �� = 90◦, with respect to aspect ratio, d/a, at
constant nondimensional frequency, ka = 1, for three cases of approximation order obtained from the reflection method, up to first, third and
fifth order of aspect ratio index, O(ap1

1 a
p2
2 /dp1+p2 ). (Configuration 1.)

driving force illustrates oscillatory behavior and decreasing
trend with respect to both frequency and aspect ratio. Figure
4(b) shows the top-view of Fig. 4(a) to illustrate the locus of
zero driving force states and the positive (rightward motion)
and negative (leftward motion), yellow and green colored
rectangular regions in ka, d/a plane, respectively.

Figure 4(c) shows some selected slices of Fig. 4(a) for
selected aspect ratios, d/a = 4, 6, 10. Figure 4(d) illustrates
some slices of Fig. 4(a) for three categories of wavelength
to radius of spheres ratios as λ/a = 10, 1, 1/3 [i.e., ka =
(2π )/10, 2π, 3(2π )] corresponding to low, medium, and
high wavelength to size ratios. From the design point of view,
as the frequency and aspect ratio increases, the amplitude of
driving force decreases. Considering the maximum amplitude
of normalized driving force as YT ∼ 1, which occurs at λ/a ∼
9.1 (i.e., the exact value of normalized frequency of maximum
state is ka ∼ 0.69), it is found that the maximum order of
possible driving force is estimated as O(πρa2 V 2/2). For
the given numerical example, a ∼ 102 μm, V ∼ 10−3 m/s,
the order of maximum driving force is ∼10−10 N , occurs
at the frequency of operation, ∼106 Hz. The given radiating
sphere’s velocity is equivalent to the amplitude of radiation
of the bodies, ∼O(V/ω) ∼ 10−1μm. Comparing the obtained
order of magnitude of the driving force which seems small,
with the fluctuation noise amplitude due to thermal induced
random fluctuations associated with the atoms of host medium
[4,5,99], (6πηakBT )1/2 ∼ O(10−13) N where kB ≈ 1.38 ×
10−23(kg m2)/(s2K) is Boltzmann constant of host medium
and T ∼ O(102) K is temperature of ambient medium, the
effect of Brownian motion or random walk is negligible.

In addition, following the estimation of Refs. [100–
104], for acoustic viscous boundary layer thickness, δ, as
∼O([η/(ρω)]1/2) ∼ O(10−1) μm, and considering the situ-
ation of δ/a  1, we can disregard the effects of acoustic
streaming.

In following, our interest is to study the swimming ve-
locity which may be considered as an index of the perfor-
mance of the proposed self-propulsive device. Considering the
used reflection method, we aim to examine the convergence

of the method which is related to the aspect ratio, d/a.
Figure 5(a) shows the variation of swimming velocity, Vs ,
in its maximum state, �� = 90◦, with respect to normalized
frequency, ka, at constant aspect ratio, d/a = 4 and Fig. 5(b)
shows the variation of swimming velocity, Vs , in its maxi-
mum state, �� = 90◦, with respect to aspect ratio, d/a, at
constant nondimensional frequency, ka = 1, for three cases
of approximation up to first, third and fifth order of aspect
ratio index, O(ap1

1 a
p2
2 /dp1+p2 ), in Eq. (19). As it is clear, the

error between the three orders of approximations decreases
as the frequency and aspect ratio increases, while the errors
between the first order approximation and fifth one, at the
worst case in the given example (i.e., aspect ratio of d/a = 3
and the nondimensional frequency of ka ≈ 0.7) reports the
errors up to 30% . Moreover, the errors is in its maximum
states which occurs at the extremes of swimming velocity
function. From the given comparison, it may be concluded
that the approximation up to at least third order is necessary.

Figures 6(a)–6(c) repeat Figs. 4(a), 4(c), and 4(d), re-
spectively, for swimming velocity, Vs .The phase difference
is set, �� = 90◦, to focus on the maximum swimming ve-
locity state. The general pattern of variations with respect
to frequency and aspect ratio is similar to what happens for
the normalized driving force, YT . The swimming velocity is
plotted in its real dimension, μm/s, to provide a better sense
about the motion performance. Considering the achievable
order of magnitude for swimming velocity ∼O(102) μm/s,
it is proved that the proposed swimmer may travel its size in
a second. Comparing with many types of artificial or natural
living matter swimmers [6,7,19–25,105,106], the swimming
velocity is satisfactory.

For the given example, the Reynolds number is estimated
as, � = ρaVs/η ∼ O(10−2), which is in consistency with the
assumption of low Reynolds number in the presented theories
and reflection method.

From the design point of view, the optimal range of
the frequency of operation and the aspect ratio, to get the
maximum swimming velocity, are important. Figure 7 shows
the optimal frequency of operation for selected aspect ratios
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FIG. 6. (a) Three-dimensional (3D) plot of swimming velocity, Vs , as a function of nondimensional frequency, 0 < ka < 10, and
geometrical aspect ratio, 3 < d/a < 10, corresponding to the maximum swimming state. (b) Some selected slices of 3D plot of Vs for selected
aspect ratios, d/a = 4, 6, 10. (c) Some selected slices of 3D plot of Vs for three categories of wavelength to radius of spheres ratios as
λ/a = 10, 1, 1/3 [i.e., (2π )/10, 2π, 3(2π )] corresponding to low, medium, and high wavelength to size ratios. (Configuration 1.)

in the range of, 3 � d/a � 10. It is found that the optimal
range of frequency lies within the range of 0.5 < ka < 1.5,
or the wavelength to size ratio of 4.2 < λ/a < 12.6. For the
case of our numerical example, the optimal range of oper-
ating frequency is 1.18 MHz < ω/2π < 3.53 MHz. Consid-
ering the practical considerations and the design procedures
for construction of acoustic spherical radiators, the radially
polarized piezoelectric coated with compatible materials (e.g.,
chemically resistivity and biocompatibility) is the best choice
in which the required amplitude of radiation and frequency, is
feasible by imposing appropriate and practicable AC voltages
on the implemented electrodes [56,84,85,87,107].

The following paragraphs study the second configuration
composed of a single acoustic radiating sphere and a cargo
container, for the limited case of d/a1 = 4.

Figures 8(a) and 8(b) compare the three approximation
orders of swimming velocity, Vs , obtained from the reflection
method, up to first, third, and fifth order of aspect ratio
index, O(ap1

1 a
p2
2 /dp1+p2 ), as functions of nondimensional

frequency, ka1, and size ratio, a2/a1, respectively. In spite

of configuration 1, as the frequency increases, the errors
between the approximations increase. The same happens as
the size ratio of container to radiating sphere, a2/a1, increases.
In the worst state (i.e., ka1 = 10 and a2/a1 = 2), the first-
order approximation overestimate the swimming velocity up
to 70%, while the error between the third and fifth orders
of approximation does not exceed than 10%. It should be
noted that all approximation in reflection method, keep the
true patterns of variations. Therefore, by proper choosing
of maximum required order of approximation, the general
behavior of solution seems stable and robust; thus, there is no
vital need to provide exact solutions to estimate the swimming
velocity, in the first steps of design and feasibility studies.

Figure 9(a) illustrates the 3D pattern of swimming velocity
of swimmer, Vs , as a function of nondimensional frequency
of operation, 0 < ka1 < 10, and size ratio, 1 < a2/a1 < 2.
Figure 9(b) shows the top view of Fig. 9(a), in which the green
regions are corresponding to negative velocities (i.e., leftward
motion) and yellow regions indicate the positive values (i.e.,
rightward motion). Figure 9(c) depicts some selected 2D size
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FIG. 7. The optimal frequency of operation, to achieve maxi-
mum swimming velocity, for selected aspect ratios in the range of
3 � d/a � 10. (Configuration 1.)

ratio slices of Fig. 9(a) at a2/a1 = 1, a2/a1 = 1.5, a2/a1 = 2.
Figure 9(d) depicts some selected 2D frequency slices of
Fig. 9(a) at ka1 = 0.8, ka1 = 2, and ka1 = 10.

The order of magnitude of the maximum swimming veloc-
ity is ∼O(102) μm/s. The maximum attainable swimming ve-
locity is one-half of the case of configuration 1, ≈ 150 μm/s.
The swimming velocity pattern shows an increasing trend
with respect to size ratio, 1 < a2/a1 < 2, up to one order
of magnitude. It is not obvious since increasing the size of
cargo-container or body 2, may lead to higher drag force.
The observed behavior may be interpreted in the following
manner. Without body 2, the symmetric monopole (breathing
mode) radiation of radiating sphere induces just symmetric
pressure and momentum fields in host medium and there is
no reason for net motion. The existence of body 2 breaks
the symmetry. The emerged asymmetric fluctuation in the
induced acoustic field, leads to appearance and growth of
nonlinear interaction terms in driving acoustic radiation force
on the swimmer which has direct correlation to size ratio,

a2/a1. In a sensible analogy, the body 2 plays the role of
mainsail of the sailboat.

Another observed feature in Fig. 9(b) is the limited
frequency bandwidth in which the leftward motion or negative
values for swimming velocity is feasible. The order of
magnitude of the negative swimming velocity is
∼O(101) μm/s. Figure 10(a) shows the occurrence frequency
of maximum negative swimming velocity for selected aspect
ratios. It is clear that for frequencies higher than a specified
maximum for quantized size ratios, a2/a1, the swimming is
just in rightward direction, or the swimming velocity takes
positive values. Figure 10(b) shows the mentioned specified
maximum frequencies for quantized selected size ratios.
The obtained frequency ranges for our numerical example is
∼O(100) MHz, which is practical and feasible.

Making comparison with the case of configuration 1, it
may be concluded that the configuration 2 face with a seri-
ous challenge for directional maneuverability (i.e., directional
maneuverability means both states of rightward and leftward
motions along the desired direction can be achieved), due
to this fact that the leftward motion is not achievable at all
frequency ranges, but changing the frequency of radiation
may overcome this problem.

Considering the probable fluctuations in the host medium
which may cause deviation of the swimmer from its desired
path which should swim along it, or in the case of any need
for steering, both configurations 1 and 2 face to challenge.
It may be resolved by following suggestions. Assume the
configuration 1 and a desired path depicted in Fig. 11(a).
Changing the state of swimmer to �� = 180◦ (i.e., zero net
driving force) and switching on the external wave driver along
the desired path and operating with the same frequency of
radiating spheres (to avoid the multi-frequency field issues),
due to asymmetry, it is expected that an external torque,
normal to plane of motion (i.e., the plane composed of wave
propagation direction and z axis) induces so that make the
swimmer aligned on the desired path. Considering some ap-
proximations, an estimation of timescale required for align-
ment may be useful. Following Ref. [54], the time-averaged
acoustic external radiation force exerted on a radiating sphere

FIG. 8. The comparison between the three approximation orders of swimming velocity, Vs , obtained from the reflection method, up to
first, third, and fifth order of aspect ratio index, O(ap1

1 a
p2
2 /dp1+p2 ), as functions of nondimensional frequency, ka1, and size ratio, a2/a1.

(Configuration 2.)
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FIG. 9. (a) The 3D plot of swimming velocity of swimmer, Vs , in the case of configuration 2, as a function of nondimensional frequency
of operation, 0 < ka1 < 10, and size ratio, 1 < a2/a1 < 2. (b) The top view of 3D plot of swimming velocity, in which the green regions
are corresponding to negative velocities (i.e., leftward motion) and yellow regions indicate the positive values (i.e., rightward motion). (c)
Some selected slices of 3D plot of swimming velocity at a2/a1 = 1, a2/a1 = 1.5, a2/a1 = 2. (d) Some selected slices of 3D plot of swimming
velocity at ka1 = 0.8, ka1 = 2 and ka1 = 10. (Configuration 2.)

in its breathing mode, due to an incident plane wave field,
is found as 〈F〉 = 〈F〉0 + 〈F〉a sin(2πZ/λ + �φ) where Z

is the position coordinate along the wave-field propagation
direction or desired direction, λ is the wave length of the
radiated or incident wave fields, �φ is the phase difference
between the incident wave field and the radiator, 〈F〉0 is
the acoustic radiation force on the spherical body in its
passive state and 〈F〉a is the amplitude of fluctuation of
phase (position)-dependent radiation force term. Neglecting
the acoustic radiation interaction between the two same-sized
radiators, 〈F〉0 leads to translational motion of the device,
but 〈F〉a may lead to compensation of angular deviation,
due to the possible resistant torque exerted upon the de-
vice. For the considered configuration 1, and the external

forces due to the navigation wave field along the Z axis
are 〈F〉1 = 〈F〉0 + 〈F〉a sin(2πZ1/λ + �φ1) and 〈F〉2 =
〈F〉0 + 〈F〉a sin(2πZ2/λ + �φ2), which lead to external
torque as τe = [〈F〉ad sin(ε)/2][sin(2π (Z2 − d cos(ε))/λ +
�φ1) − sin(2πZ2/λ + �φ2)] where α is the deviation an-
gle between the symmetry axis of swimmer and the de-
sired path. For the case of configuration 1 which the ra-
diators are out of phase (i.e., �φ1 = �φ2 + π ) and for
the limiting range of d/λ  1, the external torque may
be approximated as τe ≈ −〈F〉ad sin(ε) sin(2πZ2/λ + �φ2).
The hydrodynamics resistant torque exerted upon the de-
vice, at low Reynolds number state, may be estimated as
τh ≈ −2α̇[8πμa3 + 6πμa(d/2)2] in which the first term is
due to the spin and the second term is due to the trans-
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FIG. 10. (a) The frequency of radiation for which the maximum negative swimming velocity occurs for selected aspect ratios, in the case
of configuration 2. (b) The specified maximum frequencies for which the negative swimming velocity or leftward motion is possible in the
case of configuration 2, for selected size ratios. (Configuration 2.)

lational motion due to the rotation [93]. Considering the
steady state condition and the torque balance, and assuming
the stable state of the device, we find τh + τa = 0, which
for small deviation angles leads to ε̇max ∼ −ζε, where ζ ∼
O(〈F〉ad/πμa[16a2 + 3d2]). The solution of the obtained
variation rate of deviation angle, is ε(t ) = ε0e

−ζ t , where
ε0 is the maximum deviation angle before the action of
navigation wave field. For the practical amplitudes of in-
cident wave field as P0 = 104 Pa, and following the ana-
lytical analysis of Ref. [54], we find O(〈F〉a ) ∼ O(〈F〉0)
∼ O(πa2P 2

0 Y/(2ρc2)) ∼ O(10−9) N where Y ∼ O(1) is the
nondimensional radiation force function. As an estimation for
timescale of alignment, the minimum required timescale for
alignment, ta , with the assumed condition of ε(ta ) = ε0/100,
is calculated as ta = (−1/ζ ) ln (ε(ta )/ε0) ∼ O(10−1) s. The
obtained timescale is satisfactory since the translational mo-
tion of the device during this steering process, is estimated
as ≈ Vsta ∼ O(〈F〉0ta/(12πμa)) ∼ O(102) μm. It should be
noticed that the above estimation should be updated and
modified considering the true hydrodynamics of the problem
and the interaction terms due to the nonlinear superposition
of the radiated, the scattered and the incident wave fields,
nevertheless, as an approximation may help to have a practical
sense. It is apparent that another state of zero driving force,

�� = 0◦, is prone to another stable orientation, normal to
the desired path, which is not desired. The emphasis on
the state of zero net motion during the steering is to con-
fine the unwanted translational motion of the swimmer and
providing the possibility of pure rotational motion of swim-
mer; nevertheless, due to the possible unbalanced interaction
of wave fields with radiating spheres, the unwanted transla-
tional motion during the rotational maneuvering is probable
[54,55]. Clearly, the presented approach for steering is not
optimal and should be enhanced in future. Also, the effects
of acoustic radiation torque should be taken into account.

Following the same methodology, for the case of config-
uration 2, especially its asymmetric state, a2 �= a1, the inher-
ent geometrical asymmetry leads to induction of stabilizing
torque as seen in Fig. 11(b). Therefore, the steering by using
an external source is achievable.

IV. CONCLUSION

In conclusion, we have presented a novel self-propulsive
swimming mechanism at low Reynolds number based on
nonlinear effects associated with the acoustic radiation force
phenomenon. The introduced microsized swimmer is com-
posed of two linked spheres, acoustically radiating in their

FIG. 11. (a) The schematic that shows the induced torque effect and the manipulability of the swimmer configuration 1, along the desired
path, by an externally driven temporary acoustic wave field. (b) The schematic that shows the induced torque effect and the manipulability of
swimmer configuration 2, along the desired path, by an externally driven temporary acoustic wave field.
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breathing mode. Analytically, it is shown that the interaction
of induced acoustic field with the spheres in nonlinear regime,
leads to a net frequency dependent driving force, propelling
the swimmer through the host medium. Decoupling the acous-
tic field from the hydrodynamics of the flow, the swimming
velocity is estimated using the reflection method assuming
nonslip boundary condition on the Stokes flow.

The driving force and swimming velocity are examined
as functions of size ratios and radiating conditions (i.e.,
nondimensional frequency, possible phase difference between
the radiators) for two different configurations. The first con-
figuration is arranged by two same size radiating sphere
which resembles as a double motorboat. It has been shown
that the maximum swimming velocity is achieved in the
phase differences of �� = ±90◦ and the directional steer-
ing is possible by shifting the phase difference as �� =
∓90◦. The second configuration, presents the case of a single
spherical radiator and a cargo container. The offered con-
figuration may serve as a safe carrier considering the con-
cerns and difficulties about the possible hazards of carrying
agent, material, or drug, which may require special specifica-
tions. Surprisingly, it has been observed that the swimming

velocity shows direct relation with the size of container due
to what we call sail effect. The leftward motion of this
single motor configuration is limited to specific bandwidth of
frequencies. However, in both configurations, the achievable
swimming velocity goes up to the order of swimmer length
per second, which is acceptable comparing with other types of
swimmers.

In the presented solutions, all simplification and assump-
tions may be supported by convincing justifications, but the
presented theories may be developed by considering the
coupling effects between the acoustic and hydrodynamics
fields. In addition, modifications due to the viscosity effects
of fluidic medium on the radiation force calculations may be
implemented in future works.

In conclusion, the versatility, simplicity, feasibility, con-
trollability, and satisfactory swimming performance of the
proposed self-propulsive or self-motile swimmer could at-
tract researchers to open an area of investigation toward the
generation of acoustic-driven swimmers, carriers, delivery
systems, mechanisms, robotics, manipulators, trappers, etc.,
and may advance the technology of micro- or molecular-sized
machines.
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