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Mechanical equilibrium of aggregates of dielectric spheres
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Industrial as well as natural aggregation of fine particles is believed to be associated with electrostatics. Yet like
charges repel, so it is unclear how similarly treated particles aggregate. To resolve this apparent contradiction,
we analyze conditions necessary to hold aggregates together with electrostatic forces. We find that aggregates of
particles charged with the same sign can be held together due to dielectric polarization, we evaluate the effect of
aggregate size, and we briefly summarize consequences for practical aggregation.
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I. INTRODUCTION

Electrostatic attraction is central to both industrial and nat-
ural aggregation. Industrially, this leads to profound problems,
for example, producing variations in active ingredient concen-
trations by as much as 100% in common pharmaceuticals [1].
Likewise sticking of thick layers of polymers to fluidized
bed risers [2,3] forces manufacturing shutdowns to scour
the risers. Particle aggregation also contributes to material
inhomogeneities that produce a documented 50% rejection
rate in manufactured ceramics [4]. In nature, planets emerge
in protoplanetary disks from the aggregation of dust particles.
In the size range below about 10 μm, particles can stick due
to van der Waals forces [5], and at sizes above centimeters,
gravity can account for aggregation [6]. Between these sizes,
it is unclear what produces observed aggregates [7–9].

Experiments [10,11], analytic calculations [12,13], and
numerical simulations [14–16] suggest that electrostatic inter-
actions could produce aggregation in this intermediate range;
however, like-charged grains should repel, and so electrostatic
attraction requires charge heterogeneity. It is currently unclear
how grains acquire sufficiently dissimilar charges to avoid
Coulomb repulsion, and how dissimilar these charges must be
to account for the formation of multiparticle aggregates.

Recent computations by Feng [15] provide insight into this
problem by demonstrating that two dielectric particles with
identical sign charges can attract if the magnitude of charges
on the particles differ significantly, and the particle permittiv-
ity is sufficiently high. The mechanism explored in Ref. [15] is
that induced dipole-dipole attraction can overcome Coulomb
repulsion if the former is large and the latter is small.

In the present work, we investigate whether this mecha-
nism can account for multiparticle aggregates, and we identify
conditions under which these aggregates can form. The paper
is organized as follows. In the next section, we introduce the
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model. We discuss the results in Sec. III and present some
final remarks in Sec. IV.

II. MODEL

To systematically investigate electrostatic forces on ag-
gregates as a function of their size, we consider spherical
dielectric particles with the same radius R and permittivity
εp, surrounded by a medium of permittivity ε0, as illustrated
in Fig. 1. We evaluate increasing numbers n of particles as
shown, where for n � 7, the particles are placed symmet-
rically around a central particle. For n > 7 complete shells
of particles are layered concentrically as shown. We fix the
charge of the surrounding particles at Q0 each and define the
single central particle to have charge Qc. Here we consider
that the charges are distributed uniformly on the surface of
each particle, and we evaluate the force on each particle by
solving the Poisson equation [17,18] for the electric field �E :

�∇ · [ε(�x) �E(�x)] = −�∇ · [ε(�x) �∇V (�x)] = ρ(�x), (1)

where V is the electrostatic potential, ρ is the charge density,
and ε is the permittivity.

All variables are made dimensionless by measuring dis-
tances in units of R, charges in units of Q0, dielectric
constants in units of ε0, and electrostatic forces in units of
Q2

0/[4πε0(2R)2]. Accordingly, all surrounding particles are
of unitary charge, and the central particle has charge Q =
Qc/Q0. Thus

ε(�x) �∇ · �E(�x) = ρ(�x) − �∇ε(�x) · �E(�x) = ρ(�x) + ρp(�x), (2)

where ρp(�x) = −�∇ε(�x) · �E(�x) is the polarization charge den-
sity. For particle permittivity εp, equal to vacuum permittivity,
ε0, the polarization charge density is zero. But when εp is
different from ε0, polarization charges arise that alter the
electric field and consequently forces between particles.

At the boundary, ∂�, of each particle we impose

Vin(�x) = Vout (�x)
for �x ∈ ∂�,�n · [κ �∇Vin(�x) − �∇Vout (�x)] = σ

(3)
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FIG. 1. Schematics of the aggregates considered, for numbers n

of particles indicated. Dielectric spheres have the same radius R and
dielectric constant εp . The charge of the central sphere (blue online)
is Qc, and the surrounding spheres (red online) have fixed charge Q0

each.

where �n is the unitary vector normal to the particle surface, σ

is the surface charge density of the particle, the subscripts in

and out denote the potential inside and outside the particle,
and κ = εp/ε0 is the dielectric constant with respect to ε0.
Notice that when κ = 1 the permittivity of the medium equals
that of the particles, and ρp = 0.

Far from the particles the electrostatic potential is dom-
inated by the monopole term. Thus we consider that at the
asymptotic boundary Sasymp, defined as a spherical shell of
radius Rmax = 20R, the electrostatic potential is

V (�x) =
∑

i

qi

|�xi − �x| for �x ∈ Sasymp, (4)

where we sum over all particles i with charge qi and center at
�xi .

The force that acts on each particle is obtained by integrat-
ing the Maxwell stress tensor [17] over its surface ∂�:

�F =
∫∫

∂�

[
�E ⊗ �E − 1

2
( �E · �E)I

]
�n dS, (5)

where ⊗ is the dyadic product and I is the identity matrix.
Following Ref. [12], the radial component of the force

acting on a surrounding particle due to the central one is given
by

Fr = κ + 2

κ − 1

1

R
a1

+ 1

κ − 1

∞∑
n=1

[(n + 1)(κ + 1) + 1]anan+1, (6)

where ai represents an infinite sum that is linear with respect
to Q. Thus, the radial component of the electrostatic force Fr

acting on a surrounding particle relates to the charge of the
central particle according to a second-order polynomial [19]

Fr (Q) = αQ2 − βQ + γ , (7)

where the constant β defines the Coulomb interaction [first
term in Eq. (6)], and the constants α and γ define the force due
to particle polarization. Here the coefficients of Eq. (7) are de-

FIG. 2. Equipotential lines for the case with n = 2 and κ = 8;
the particle in the left-hand side has charge five, and the other one
has unitary charge. The equipotential values are in increments of 0.3
from 0.3 to 4.8. The insets contain the mesh used on the boundary of
the particles and a detail of the potential near the particles.

termined numerically by least squares fitting the data obtained
for different charge values in the range Q ∈ [−10,+10].

We consider that the aggregate is in mechanical equilib-
rium when the radial component of the net electrostatic force
in the outer (red online) particles point toward the center. We
assume that particles are rigid and not deformable. Thus the
limits of the mechanical equilibrium correspond to the zeros
of Eq. (7), given by

Q = β ±
√

β2 − 4αγ

2α
. (8)

Note that the forces acting on the particles may change the
configuration of the aggregate, even without separating the
particles. For simplicity we we neglect particle rearrangement.

The spatial dependence of the electrostatic potential, inside
a sphere with radius 20R, and the electrostatic forces are
calculated with the finite element method using COMSOL
Multiphysics software [20,21]. The system is divided into
a mesh of tetrahedral elements whose size is varied across
the system according to accuracy needs. Inside the particles,
where the accuracy needs to be the highest to calculate the
electrostatic forces accurately, the elements are the smallest:
their size is smaller than 1.1R. Outside the particles the
elements get progressively larger. On the boundary, where less
a accurate field is required, the element size is larger than
0.36R. The mesh on the surface of two contacting particles
is represented in the inset to Fig. 2. The potential in each
element, with position (x, y, z), is described by a second order
polynomial

V (x, y, z) = a1 + a2x + a3y + a4z + a5xy

+ a6xz + a7yz + a8x
2 + a9y

2 + a10z
2, (9)

meaning there are 10 coefficients ai per element to be deter-
mined. To solve the linear system associated with the mesh
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FIG. 3. Radial component of the electrostatic force Fr acting on
the right-hand particle (of unitary charge) as function of charge Q of
the left-hand particle, for κ = 1 (triangles, red online), and κ = 8
(diamonds, green online). The lower half-plane defines attractive
forces between the pair of particles, i.e., Fr < 0 (shaded green
online).

and determine the coefficients, the MUMPS [22] solver was
used. A solution to the potential is found when the error
estimate, related to the residue of the linear system according
to Ref. [23], is smaller than 10−3.

III. RESULTS

Figure 2 shows the equipotential lines for two touching
particles, the particle on the left-hand side has charge five and
the other one has unitary charge, with κ = 8 (i.e., εp = 8ε0).
Due to the existence of polarization charges, the electrostatic
potential near the particles is distorted, as can be seen in the
inset. As we move away from the particles the electrostatic
potential gets less deformed since the polarization charges
became relevant than the charges of the particles.

Let us start the study of the electrostatic forces with the
case of two aggregated particles, as studied in detail by Feng
in Ref. [15]. Figure 3 shows the radial component of the elec-
trostatic force acting on the right-hand particle shown in the
inset as a function of the charge Q, on the left-hand particle.
Two dielectric constants are shown, κ = 1 and κ = 8. For
κ = 1, the interaction between particles follows Coulomb’s
law

Fr = Q

4πε0(2R)2
, (10)

so the attractive force between the particles scales linearly
with Q, i.e., α = γ = 0 in Eq. (7). In this case, the aggregate
coheres only if the particles have charges of opposite sign.
By contrast, given the appropriate conditions, for κ = 8 and
ρp �= 0, the aggregate coheres for particles with like charges.
In fact, ρp increases with the strength of the electric field, and,
consequently, for sufficiently large Q, polarization charges
dominate the electrostatic interaction and even same-sign
particles can attract, as can be seen in Fig. 3 for Q > 3.7.
Notice that the aggregate is cohesive for Q = 0: this is the
case of dielectrophoresis on a neutral particle.

Figure 4 shows the limits of cohesion of aggregates of up
to seven particles for several values of dielectric constant.
Cohesion (i.e., all particles are attracted) is defined by two
limits; in the region between the curves, shaded for κ = 8, the

FIG. 4. Plot of the limits for mechanical equilibrium, corre-
sponding to the zeros of Eq. (7), as function of the size n of
aggregates for different dielectric constants (values shown to the right
of each curve). Particle arrangements shown beneath each value of
n. In the region between the curves, shaded for κ = 8, the outermost
particles experience a net outward radial force; outside the curves, all
particles are radially attracted.

outermost particles experience net outward radial force. Due
to the aggregate symmetry, the radial component of the force
is the same for all of the outermost particles. For the lower
limit, Q is negative (except for n = 2 which we have already
discussed), thus the surrounding particles are attracted to the
central one due to a combination of Coulomb and polarization
forces. Note that above the upper curves, all particles have the
same charge sign, thus polarization is responsible for cohesion
of the aggregate. By contrast, since polarization grows with
the dielectric constant, the minimum value of Q for which the
aggregates are cohesive decreases with κ .

Evidently aggregates with eight or fewer particles can be
made electrostatically cohesive by the presence of a strongly
charged central particle. To explore larger particle numbers,
we simulate successive layers of particles as sketched in the
insets to Fig. 5. In the body of this figure, we show the
dependence of the limits of cohesion on aggregate size up to
n = 61. The behavior here is similar to that seen for smaller
aggregates, except that the magnitude of the central charge by

FIG. 5. Plot of the limits for mechanical equilibrium, corre-
sponding to the zeros of Eq. (7), as function of the size, n, of
aggregates for different dielectric constants, κ (the corresponding
values are close to the values for n = 37). In the region between the
lines, shaded for κ = 8, particles are repelled from the aggregate.
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necessity grows with the size of the aggregate. This is easily
understood: by symmetry, charges on each layer of surround-
ing particles must be identical, and so forces between sur-
rounding particles are never attractive [14]. Thus to maintain
a cohesive aggregate as more particles are added, attractive
forces due to the central particle must grow to compensate
for repulsion of surrounding particles. As a consequence,
charge on the central particle—and so the separation between
the upper and lower curves—must grow with the size of the
aggregate.

IV. FINAL REMARKS

In conclusion, we have numerically solved the Poisson
equation for aggregates of dielectric particles. We have con-
firmed that a central particle can attract large numbers of
surrounding dielectric particles, including particles all of the
same sign, provided that the charge on the central particle
is significantly larger than that on its neighbors. The mech-
anism at work is simply that the induced polarization on the
surrounding particles can overcome Coulombic repulsion.

We note in closing that the essential feature that distin-
guishes cohesive from noncohesive aggregates is therefore the
extent of charge heterogeneity present. Our simulations were
by design centrally symmetric, and so cohesive aggregates are
characterized by strong variation in radial charge distribution.

This could be viewed as concluding that a single highly
charged particle can attract large numbers of weakly charged
particles, and so we predict a highly charged particle can per-
mit planetesimals or industrial agglomerates to grow through
the intermediate size range mentioned in the introduction.

More generally, our central finding is that electrostatic
sticking is governed by strong heterogeneity in charge.
We observe that we chose to analyze symmetrically dis-
tributed particles, each containing a symmetrically distributed
charge, because this defines a well-characterized and unam-
biguous problem. Real particles are seldom symmetrically
charged [24] or arranged [25], and, to understand real aggre-
gate formation, deeper analysis of both charged particle ar-
rangements and charge distributions within particles is called
for.
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