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Measurements of the velocity distribution for granular flow in a Couette cell
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In this paper, magnetic resonance velocimetry is used to measure the spatially resolved velocity and velocity
fluctuations for granular flow in a Couette cell for four different particle sizes. The largest particles studied
(dp = 1.7 mm) showed significant slip at the inner wall. The remaining particles showed no slip and all exhibit
the same behavior in the profiles of the mean velocity and variance of velocity. The measurements demonstrate
that the velocity and variance in velocity scale with the inner wall velocity U ; the variance does not scale with U 2.
The experimental data were compared with a kinetic theory based model of granular flow and a hydrodynamic
model. It was found that the shear rate scales with an exponent of 1.5–2.0 with respect to the velocity fluctuations√

〈u2
y〉, compared with the value of 1.0 expected from kinetic theory. The difference in the exponent is consistent

with the effect of collective dynamics as described by the hydrodynamic model.
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I. INTRODUCTION

Granular flows exist widely in nature, ranging from
avalanches to pyroclastic flow, and are also common in indus-
trial processes from pharmaceuticals to oil and gas production.
There are many theoretical models of the behavior of granular
materials, but a complete description remains out of reach.
One of the challenges of granular flows is that they exhibit
phenomena akin to those of solids, liquids, and gases, depend-
ing on the local conditions [1]. Continuum descriptions of
granular flows in the gaseous regime can be derived from the
kinetic theory of granular flow, while the solid regime is well
modeled using soil mechanics. In general it is the coexistence
or transition between granular flow regimes where continuum
granular models tend to break down [2,3]. These transitions
are governed by the local velocity or shear rate, the packing
density of the particles, and perhaps the fluctuations in the
particles’ velocities about the local mean velocity [4]. Further
development of a continuum description of granular flow
requires detailed experimental measurements of the motion
of particles in well-defined systems. Due to the difficulty of
studying granular systems there are relatively little experi-
mental data on the internal dynamics available; most insight
has been obtained from numerical simulations in which the
motion of each individual particle is tracked [2,5,6]. In this
paper, we present magnetic resonance (MR) measurements of
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the mean velocity and variance in the velocity about the mean
in a three-dimensional Couette geometry with a rotating inner
wall.

Modeling the granular flow in a Couette geometry is chal-
lenging as it is a dense granular flow, with a “granular liquid”
flow regime near the rotating wall and a “granular solid”
regime near the stationary wall [3]. There has been some suc-
cess in developing continuum models for dense granular flows
using a simple visco-plastic approach [7]. For inclined plane
flows, the visco-plastic model predicts a constant volume
fraction of particles with height and a Bagnold scaling for the
velocity, as seen experimentally [3]. In a Couette geometry,
the visco-plastic model predicts the formation of shear bands
approximately at the transition between the granular liquid
and granular solid [8]. However, experimental observations
indicate that the size of the shear bands is largely independent
of the shear velocity while visco-plastic rheology models
suggest a dependence on shear velocity [9].

It has been proposed that a nonlocal description of granular
flow is required to overcome the limitations of the visco-
plastic model [2]. Such a nonlocal rheology model may
require an understanding of the fluctuations in the velocity
about the local mean and the spatial distribution of the ve-
locities [4]. For example, the spatially dependent variance of
these velocity fluctuations 〈u2

k〉 provides information about the
energy transport and dissipation across the sample, and is the
basis of the concept of granular temperature [10]. Fluctuations
that are generated at moving walls are transported through
and dissipated in the body of the granular material. The
distribution of the magnitude of the fluctuations and the rate
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of decay across the gap may be related to the transition from
a granular gas (higher energy) through to a granular solid
[11–13]. However, a consensus has not yet been established
for how such effects should be incorporated into a continuum
model [2,3].

A variety of techniques exist to characterize the velocity
fluctuations [14–19]. However, to date, measurements in a
Couette cell have typically been restricted to optical images of
the top or bottom surface [17,18], or to observations of only
a few particles at very low shear [19]. Observations of the
top surface have been justified as being representative of the
bulk on the basis that the velocity profile is independent of
the height of the bed, as shown using MR experiments [18].
However, measurements at the top surface have indicated that
the variance in the velocity fluctuations decays exponentially
[17] while measurements at the bottom surface indicated
nonexponential decay [20]. The experimental setups in these
experiments differ significantly, but these differences may
indicate that the flow on the top and bottom surfaces is not
equivalent to that in the bulk.

Magnetic resonance imaging (MRI) can be used to observe
the particle dynamics in three-dimensional granular flows.
MRI has been used to characterize the velocity in Couette
cells and rotating horizontal drums. Initially, such measure-
ments used a spin-tagging approach where an image will show
distortion wherever there is motion in the sample [18,21,22].
This approach is limited to observations of the average veloc-
ity of particles and extraction of quantitative data is challeng-
ing. Pulsed gradient spin echo (PGSE) measurements provide
a means of measuring the velocity and velocity distribution
in a readily quantitative manner [23]. PGSE measurements
are designed such that the phase of the MR signal obtained
from each particle is proportional to the strength of an applied
gradient and to the displacement of the particle over a fixed
time. The mean phase of all particles in a given region is
measured and hence the mean velocity of the particles is
obtained [24]. PGSE measurements have been used to study
the mean flow velocity in both Couette and rotating drum
geometries [25–29]. Though not as common as measurements
of the mean velocity, it is also possible to determine the
distribution of the velocities, and hence the fluctuations, if
the experiment is repeated with different gradient strengths.
Such measurements have been reported for liquids in many
systems [24,30]. For granular materials, these measurements
have been reported in rotating drum geometries and fluidized
beds [23,27,31], but not in a Couette cell.

In this paper, MR will be used to measure the velocity and
variance around the mean velocity for dense granular flow in
a Couette cell geometry. Measurements are performed in the
center of the geometry, as opposed to on the top or bottom
surface. The top surface of the particles is free to expand as the
system is sheared, allowing significant dilation of the particles
near the moving wall. Measurements are performed with four
particle types ranging from 0.44 to 1.7 mm in diameter.

II. MR THEORY

In studying granular flow, it is important to measure both
the mean velocity and the distribution of velocities about the

mean. The velocity of an individual particle, vp, is character-
ized using Reynolds decomposition as

vp = v + u, (1)

where v is the local mean velocity in the sample and u is
the difference from the local mean velocity, or fluctuation
velocity, for particle p. The MR signal measured in a PGSE
experiment is sensitive to both the mean velocity in a sample
and the corresponding distribution around the mean veloc-
ity. There are many texts that detail the theory behind MR
measurements of motion in a sample [23,24,30,32]; however,
few studies consider the fluctuations in velocity in granular
systems and so the measurement of these by MR will be
summarized here.

In an MR experiment, if we consider the time dependent
position of a spin to be given by the series r(t ) = r0 + vpt +
apt2 + . . ., the phase of the MR signal, φ, for a single spin
following a PGSE experiment, is given by

φ(t ) = γ

∫
g(t ′) · (r0 + vpt ′ + apt ′2 + . . .)dt ′, (2)

where γ is the gyromagnetic ratio, g(t ′) is the applied mag-
netic field gradient, r0 is initial position, vp is particle veloc-
ity, and ap is particle acceleration. For a PGSE experiment,∫

gdt = 0, which means the r0 term becomes zero. We as-
sume the contribution of acceleration is negligible, therefore,
if we define a vector, p = γ

∫
t ′g(t ′)dt ′, the MR signal may

be written

S(p) =
∫

ρ(r)exp(ip · v + ip · u)dV, (3)

where ρ(r) is the spin density, or number of protons, at a given
position r and we have neglected acceleration and higher or-
der terms. If the distribution of the velocity fluctuations in the
volume is defined to be given by the probability distribution,
η, then the variable of integration can be changed from the
volume to the range of velocities. The velocity measurement
is only sensitive to motion in the direction of the applied
gradient, k, hence η = η(uk ). Assuming that the fluctuation
velocity distribution is Gaussian with mean zero and variance
〈u2

k〉, integrating the signal over uk and normalizing by the
signal with pk = 0, S(0) gives

S

S(0)
= exp(ipkvk )exp

(−1

2
p2

k

〈
u2

k

〉)
. (4)

Thus, the phase of the signal acquired from a PGSE pulse
sequence describes the mean velocity in the sample and the
magnitude is related to the variance around the mean velocity.
Therefore, if a series of experiments is acquired for which
the duration of the magnetic field gradient pulses δ, and
separation �, are kept constant, while the gradient magnitude
in direction k given by gk is incremented for both pulses
together, the mean velocity can be determined from a fit of
a linear equation to the phase, and the variance in velocity can
be determined from a fit of a parabola to the natural logarithm
of the magnitude of the signal. It is worth noting that Eq. (4)
holds for small pk; for large pk the acceleration and higher
order terms become significant and a deviation from parabolic
behavior is observed.
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The MR measurement is time averaged, thus fluctuations
in the velocity can arise from variations in the velocity of
individual particles about the mean, or from variations of
the mean velocity itself over time. In this system, under
steady shear, the mean velocity was approximately constant
and hence the spatial variance of the velocity fluctuations is
estimated by quantifying the signal magnitude at different
gradient strengths. In practice, we localize the signal to small
volume elements (voxels) within the sample by combining
a PGSE experiment with a conventional slice selective one-
dimensional (1D) MRI experiment.

III. MATERIALS AND METHODS

Three different types of plant seeds, lobelia, petunia, and
mustard, and one size of spherical oil-filled plastic beads were
used as solid particles for the granular flow. Plant seeds were
used for the solid phase as the MRI signal may be acquired
from the oil contained within the seeds, similar to the oil-filled
particles [21]. The particles were selected for their range in
sizes and relatively high sphericity. The diameter and aspect
ratio of the lobelia seeds were measured using a Morphologi
G3 particle characterization system (Malvern Instruments,
Ltd.). Lobelia seeds are visibly oblong in shape. The measured
diameter was 0.44 ± 0.03 mm in diameter, averaged along
both axes, and the projected aspect ratio was 0.7. The petunia
seeds were measured using an optical microscope and are
approximately spherical with a projected aspect ratio of 0.9
and a diameter of 0.63 ± 0.06 mm. The mustard seeds have
very high sphericity with no consistent visual variation from
this shape; the diameter of the mustard seeds was measured
using calipers to be 1.7 ± 0.4 mm. The NMR relaxation times
for all varieties of seeds are approximately T1 = 500 ms and
T2 = 25 ms. The oil-filled particles are 1 mm in diameter and
the size distribution was well below the threshold of the mea-
surement, ±0.1 mm. The oil-filled particles are very uniform
and have a sphericity of approximately 1. The relaxation times
for the oil-filled particles are T1 = 500 ms and T2 = 40 ms.

A. Experimental setup

Experiments in this paper were performed using a Bruker
superwide bore superconducting magnet with a 1H reso-
nance frequency of 300 MHz networked to an AVANCE III
spectrometer. The superwide bore imaging probe was used
with a maximum gradient strength of 3.7 G mm−1. A 60-mm
birdcage rf coil was used for excitation and detection of the
signal.

A concentric cylinder rheo-NMR device was used to pro-
vide shear across the sample by rotating the inner cylinder.
The inner diameter of the larger outer cylinder was 47.3
mm for all experiments. The outer diameter of the smaller
inner cylinder varied depending on the particle size. The
diameter of the inner cylinder was 32 mm for the lobelia and
petunia seeds, 30.2 mm for the oil-filled particles, and 22.2
mm for the mustard seeds giving gap widths of 7.65, 8.55,
and 12.55 mm, respectively. The gap size increased as the
particle size increased to allow for more particles across the
gap reducing the potential for jamming. For each sample, a
layer of seeds was secured to both the inner and outer walls

of the concentric cylinders using double-sided tape to avoid
total slip or solid body rotation. Thus, the gap size was 15
dp (dp being the seed diameter) for the lobelia seeds, 11 dp

for petunia seeds, 6.5 dp for oil-filled particles, and 5.4 dp for
mustard seeds.

It is noted that the velocity at the inner wall U = riω

where ri is the inner radius and ω is the angular velocity
of the inner cylinder. Each sample was run for U = 17 and
41 mm s−1. The oil-filled particles were also run at a third
shear to give U = 10 mm s−1. In addition, experiments on
each sample were run while the sample was stationary.

B. Methods

The gap between the concentric cylinders of the rheo-NMR
device, depicted in Fig. 1(a), was filled with sample. The
Couette cell was 105 mm deep with a fill depth of 95 mm. The
center of the cell was approximately aligned with the center
of the magnet, such that measurements were performed at a
depth of approximately 45 mm. A PGSE pulse sequence was
used with double slice selection as shown in Fig. 1(b). The
first part of the pulse sequence, shown in black, is the PGSE
portion of the sequence for motion encoding of the spins. The
two motion-encoding gradients, applied in y, are each on for
time, δ. Each gradient pulse is trapezoidal with a ramp time
of 150 μs. The displacement observation time, �, defines the
time from the start of one flow encoding gradient pulse to the
start of the next. The motion encoding during the observation
time is applied to the whole sample. A 10-mm axial slice was
selected between the two orange planes in Fig. 1(a) around
the central region of the Couette cell. The second narrow slice
of 1-mm thickness is selected in y, as shown by the blue
planes in Fig. 1(a). The narrow slice in the direction of motion
encoding ensures that the curvature of the sample does not
have a significant effect on the motion measured providing
a mapping vy = vθ of the Cartesian to cylindrical velocity
components [33]. The signal is detected from the ensemble
average of all spins in the excited slice outlined by the black
dashed line in Fig. 1(a). The image is averaged over the slice in
z and y and is acquired along the x dimension, as shown by the
red arrow in Fig. 1(a). This provides a spatial velocity profile
of vy (x) = vθ (r ). The field of view, defined by the gradient
in the x direction, is 65 mm. There were 512 points acquired
across the sample leading to a spatial resolution of 127 μm
per pixel.

Experiments were performed for observation times, �,
ranging from 1.8 to 7 ms, with the flow gradient duration and
strength optimized for each observation time. The velocity
fluctuations decreased with increasing observation time, but
for observation times less than 4 ms the change in mean
velocity and velocity fluctuations were small (<10%). Hence,
an observation time of 3 ms was used for all experiments with
δ set to 1 ms. The total echo time for the sequence was about
18 ms. A delay of 2.5 s was allowed for T1 signal recovery and
32 averages were used with a two-step phase cycle. The flow
encoding gradients were ramped from −3.5 G mm−1 through
zero to 3.4 G mm−1 in 64 increments for full sampling of the
distribution of velocity. The uncertainty in the measurement
of the velocity and velocity fluctuations was calculated from
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FIG. 1. (a) Schematic diagram of the Couette cell used in this paper. The black dashed line indicates the slice over which data are acquired
and the red arrow indicates the direction of spatial resolution. (b) The double slice selective PGSE pulse sequence used to image the velocity
distribution across the slice. Motion encoding is shown in black at the beginning of the sequence. The two slice selective pulses are colored
and matched with the spatially selected slices in (a). The solid portion of the gradients represents the homospoil pulses, extended beyond the
soft slice selection. The data are spatially resolved in x, as shown by the red gradient pulses.

the standard error in the fit of the phase and magnitude of the
signal, respectively, at each point.

The signal magnitude across the Couette cell varies, likely
due to an interaction of B1 with the B0 field creating a
heterogeneous effective magnetic field. This variation is
present in both flowing and stationary experiments. To correct
for this effect, the complex, spatially resolved, frequency
domain data for all experiments were divided by a measure-
ment acquired under stationary conditions. There is also an
apparent reduction in magnitude near the inner wall, which
is dependent on the inner wall velocity. The signal intensity is
reduced in part due to the lower density of seeds where motion
is highest. However, in these experiments the main causes of
the reduced signal intensity are the velocity shear across a
pixel, or fluctuations in the velocity of particles about the local
average velocity [34]. Each of the gradients in the system can
act as motion encoding gradients and hence imparts a phase
to the signal arising from each particle. If the velocity of
the particles in a given position is not constant, then these
phases will add incoherently and hence reduce the signal
intensity. Here the most significant motion encoding from the
imaging gradients arises from the read gradient. The faster
the motion of the sample, the faster the signal dephases and
the lower the signal magnitude. This additional attenuation
of the signal makes quantitative measurement of the solid
fraction challenging. Therefore, only measurements of the
mean velocity and the variance around the mean velocity are
considered in this paper.

IV. RESULTS

A. Mean velocity

Velocity profiles are shown in Fig. 2 for inner wall veloc-
ities of U = 17 and 41 mm s−1. The signal intensity for U =
41 mm s−1 is shown as a solid gray line as visual reference
of the position of the gap. A reduction in signal magnitude
near the moving wall is observed, as mentioned in the previous
section. The velocity profiles shown are for the y component
of the velocity, i.e., perpendicular to the direction of the image

and effectively vθ of the cylinder. As the inner cylinder is
rotating, the particles in the left-hand gap appear to be moving
away from the observer and those on the right-hand side are
moving toward the observer. This leads to a negative velocity
profile on the left-hand side of the gap and a positive velocity
profile on the right-hand side of the gap. The shape of the
profile shows a maximum at the inner wall, where a seed has
been secured to prevent slip at the boundary. The velocity
quickly decays to approximately zero, well before reaching
the outer wall, where again the seeds have been secured to the
wall to prevent solid body rotation of the sample.

Figure 3 shows the velocity profiles for all four types
of particles used in this paper for inner wall velocities of
17 and 41 mm s−1. The velocity profiles were normalized
by dividing obtained velocities by the inner wall velocity.
Error bars give the 95% confidence interval for the fit to
the phase of the signal. Figure 3(a) shows velocity profiles
for lobelia seeds in blue, Fig. 3(b) shows those for petunia
seeds in purple, Fig. 3(c) shows those for oil-filled particles
in black, and Fig. 3(d) shows those for mustard seeds in
yellow. This color scheme will be used through the remainder
of the results to differentiate the different particles. In Fig. 3
an inner wall velocity of 17 mm s−1 is indicated by (+),
that of 41 mm s−1 is indicated by (o), and, for the oil-filled

FIG. 2. Velocity and signal magnitude profiles across the gap
are shown for two different inner wall velocities, U = 17 mm s−1

(dashed) and U = 41 mm s−1 (dotted). The normalized 1D signal
intensity profile for U = 41 mm s−1 is shown in gray. For both shear
rates the velocity profile decays to approximately zero well before
the stationary outer wall.

062901-4



MEASUREMENTS OF THE VELOCITY DISTRIBUTION FOR … PHYSICAL REVIEW E 98, 062901 (2018)

FIG. 3. Normalized velocity profiles for each type of particle
(a) lobelia seeds, (b) petunia seeds, (c) oil-filled particles, and (d)
mustard seeds at different inner wall velocities of 17 mm/s (+) and
41 mm/s (o). A third velocity of 10 mm/s (�) is shown in (c) for the
oil-filled particles. The x position of the first free moving particle is
set to zero, hence the red line shows the outer edge of the particle
attached to the wall. The velocity profiles are independent of shear
for all particles. The mustard particles are much larger than the other
three particles and show slip between the particle attached to the wall
and the first free particle.

particles, that of 10 mm s−1 is indicated by (�). For the three
smaller particles used, Figs. 3(a)–3(c), the velocity profiles all
show a smooth decrease in the velocity of the particles from
the inner wall. The velocities measured scale with the inner
wall velocities. The shape of the velocity profiles for both
shear rates is indistinguishable, confirming previous results
for the top and bottom surface of a Couette that the shape
of the velocity profile across the gap does not depend on the
shear rate [17,18,35]. However, the normalized profiles for
mustard seeds are not consistent with the profiles for the other
particles. The velocity profile shows a step change between
the particle stuck to the wall and the next particle, one away
from the wall. This step change is indicative of slip between
the particles attached to the wall and the first free particle.
The mustard seeds were used with the largest available gap,
but there were still only 5.4 particles across the gap. Either
the large gap size or the small number of particles was such
that slip dominated at the inner wall. Interestingly, the velocity
of the particles immediately next to the inner wall was still
approximately proportional to the inner wall velocity, even
in the presence of significant slip. However, from this point
forward, only data for the three smaller particles, the lobelia,
petunia, and oil-filled particles, will be analyzed to avoid
complications arising from slip.

Figure 4 shows the normalized velocity profiles rescaled
against dimensionless distance x/dp, where dp is the average
particle diameter. The velocity profiles collapse onto the same
curve close to the inner wall. In this region, the scaled veloci-
ties follow an exponential decay with dimensionless distance.
The characteristic length scale associated with the decay in

FIG. 4. Velocity profiles are plotted against the number of par-
ticles across the gap. Lobelia are shown in blue, petunia in purple,
and oil filled in black. Lobelia and petunia seeds are shown for inner
wall velocities of 17 mm/s (+) and 41 mm/s (o). Oil-filled particles
are shown for 10 mm/s (�) in addition to the other wall velocities.
All particles show a similar rate of decay for the first five particles.
Further from the wall, the petunia and oil-filled particles show a more
rapid decay than the lobelia seeds.

velocity is 1.3–2 dp. Previous research in Couette cells has
found the decay constant for the velocity to be between 2 and
5 [17,20].

Previous measurements in the Couette geometry show
exponentially decreasing velocity initially with the rate ap-
proaching a Gaussian decay further from the rotating wall for
both spherical and nonspherical particles [36]. Exponential
behavior is generally associated with correlated dynamics,
while Gaussian behavior is associated with noncorrelated
dynamics [37]. In the context of granular flow, correlated
dynamics may arise when the particles are driven with a
fixed velocity and the solid fraction is such that there are
relatively few collisions between particles. On the other hand,
noncorrelated dynamics may be associated with particles vi-
brating within a relatively fixed set of neighbors, analogous to
caging in glassy materials. The results presented here suggest
that near the moving wall particles may exhibit correlated
dynamics. Away from the moving wall, approximately 5 dp

for oil-filled and petunia, and 8 dp for lobelia, the rate of
decay increases. We hypothesize that the ellipsoidal shape
of the lobelia seeds causes increased correlation and delays
the transition to a nonexponential decay. Such a delay could
arise from the rotational dynamics of the particles causing a
decrease in packing efficiency, analogous to the Jeffrey orbits
for rotation of ellipsoidal particles under shear [38].

B. Variance of velocity

Figure 5 illustrates the measurement of the spatial variance
of the velocity fluctuations from the signal intensity of the
velocity encoded MR measurement. The experimental data
are for a sample of lobelia seeds at U = 17 mm s−1. Fig-
ure 5(a) shows the signal intensity profile across the gap with
no gradient applied, gy = 0 G mm−1, and for a gradient of
gy = −3.5 G mm−1. The left-hand side of Fig. 5(a) is aligned
with the inner rotating wall, while the right-hand side is the
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FIG. 5. Illustration of the calculation of the variance in velocity from flow encoded 1D profiles to for lobelia seeds with � = 3 ms and an
inner wall velocity U = 17 mm s−1. (a) Profiles across a gap for two different gradient strengths. The green squares mark a high shear region
and the purple squares mark a lower shear region. (b) Change in signal intensity with py for high flow (green) and low flow (purple) points
as were depicted on profiles shown in (a). The squared coefficient of the parabolic fit is used to calculate the variance in the velocity 〈u2

y〉 and
is plotted as a function of the position across the gap in (c) with error bars representing the 95% confidence interval of the fit. The green and
purple squares indicate the respective fits from (b) and the gray shaded region indicates the region below the lower limit of detection in these
measurements.

outer stationary wall. On the left-hand side of the gap, where
the particle velocities were greatest, it is easy to distinguish
between the two measurements. Toward the right-hand side
of the gap, where there is almost no flow, no significant differ-
ence can be seen between the signal intensities, indicating the
fluctuations decrease toward zero in the region of no flow.

To illustrate the calculation of the variance in the velocity,
two points are selected in Fig. 5(a), a green point in the
high flow region and a purple point in the low flow region.
Experiments are run with 64 gradient strengths incremented
from gy = −3.5 to 3.4 G mm−1. The signal magnitude is nor-
malized to the maximum signal acquired for a flow gradient of
gy = 0 G mm−1. Figure 5(b) shows the log of the normalized
signal plotted against py where py = γ δ�gy for both the
green and purple markers in Fig. 5(a). The green squares on
the left-hand side of Fig. 5(a) are in a region with high velocity
and high variance in the velocity. This is shown by the green
points in Fig. 5(b), which outline a clear parabolic shape. The
purple squares, nearer the middle of Fig. 5(a), are in a region
with very slow flow. The purple points in Fig. 5(b) show
the change in the signal magnitude with increasing gradient
magnitude outlining a very shallow parabolic shape indicating
almost no variance in the velocity at such low flow. Also note
that here we calculate py from the PGSE gradient strength
only; however, there is also a contribution from the slice
gradient which causes the first-order offset seen in Fig. 5(b).
The two sets of data are fit to a Gaussian, as shown in Fig. 5(b),
and the coefficient of p2

y is proportional to the variance in the
velocity, 〈u2

y〉, as given in Eq. (4). The variance in the velocity
is calculated for each point across the gap shown in Fig. 5(a)
and these coefficients are plotted in Fig. 5(c) with error bars
representing the 95% confidence interval. The green square
represents the green fit from Fig. 5(b) and the purple square
represents the purple fit.

It is important to consider the limitations of detection of the
measurement. The decay of the signal in static samples gives
a lower detection limit of 0.8 mm2 s−2 for the variance of the
velocity. This limit of detection likely arises from acoustic

vibration [39]. In addition to the local fluctuations in velocity,
shear contributes to the observed variance of velocity due to
the spread of velocities across the voxel [40]. If we assume
a constant velocity gradient with a difference in velocity
�v across a voxel, this corresponds to a contribution to the
variance of 〈u2

y〉 = (�v)2

12 . Figure 3 indicates that shear gives
a difference in velocity across a pixel of at most 2 mm s−1,
so the contribution to the variance of velocity arising from
shear is 0.3 mm2 s−2. This variance is below the limit of
detection, and hence velocity fluctuations dominate in these
experiments. The maximum velocity fluctuation that can be
measured is limited by attenuation arising from the imaging
gradients themselves. Attenuation caused by the imaging
gradients does not directly influence the measurement, as
we calculate attenuation from changes in signal intensity
with respect to changing flow encoding gradient strength.
However, if the variance of the particles velocities is too
great, the imaging gradients alone will cause the signal to
decay close to the noise. For this reason, measurements
of the variance of velocity in excess of 200 mm2 s−2 were
unreliable here. At 41 mm s−1, variances in the velocity of
this size occurred for particles within 1 mm of the inner
wall for all particles and for most of the gap for the oil-
filled particles. For this reason, experiments with the oil-filled
particles were repeated for U = 10 mm s−1, and the U =
41 mm s−1 results are not shown. Thus, the experiments are
able to measure variances in the velocity between about 0.8
and 200 mm2 s−2.

Figure 6 shows the variance of the velocity fluctuations for
each particle type and for U = 10, 17, and 41 mm s−1. The
error bars indicate the 95% confidence interval of the fit shown
in Fig. 5(b). The variances in the velocity initially increase
in the vicinity of the moving wall, but then decrease with
distance from the moving wall. The decay is nonlinear and
appears to follow an approximately exponential trend. The
variance in the velocity increases with increasing inner wall
velocity and increases slightly with increasing particle size.
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FIG. 6. The variance in the velocity is shown for (a) lobelia, (b) petunia, and (c) oil-filled particles for U = 10.0 mm s−1 (�), U =
17 mm s−1 (+), and U = 41 mm s−1 (o). The shaded regions indicate the region above the limits of the measurement technique.

Figure 7 shows the variance as a function of the dimen-
sionless distance across the gap. The variance here was nor-
malized by U (gdp )0.5, where g is gravitational acceleration
[36]. Using this comparison, the curves for the lobelia seeds,
petunia seeds, and oil-filled particles all collapse onto almost
the same line, independent of the shear rate and particle size
or type. Thus, the variance of the fluctuations scales with the
wall velocity, U , and not U 2. The decay for the petunia and
lobelia seeds can be measured over more particles due to their
smaller diameter. The measurements show that the variances
in the velocity remain approximately exponential across the
gap from 1 to 6 dp, indicating that the fluctuations transmit
themselves in a correlated fashion over the measurable range.
The characteristic length scale associated with this exponen-
tial decay is approximately 1–1.5 dp, slightly less than the
decay length for the velocity and significantly less than the
decay length seen in previous experiments using glass beads
[17]. The deviation from an exponential decay observed in the
velocity profiles in Fig. 4 is not seen in these measurements
of the variance. This is likely due to the measurements of

FIG. 7. The normalized variance in velocity is shown for lobelia
(blue), petunia (purple), and oil-filled particles (black) for U =
10.0 mm s−1 (�),U = 17 mm s−1 (+), and U = 41 mm s−1 (o). The
decay of the variance plotted against the number of particles across
the gap is independent of inner wall velocity and particle size.

the variance being below the threshold of the measurement at
distances in excess of ∼6 dp, which corresponds to the point
at which the decay in the velocity profile, shown in Fig. 4,
deviates from an exponential decay. Interestingly, at distances
in excess of ∼4 dp, the decay of fluctuations for the lobelia
seeds slows from the initial exponential rate. It is unclear at
this stage whether this change is related to the persistence of
the exponential decay in the mean velocity seen in Fig. 4 for
these particles.

V. DISCUSSION

There has been extensive work on the rheology of granular
flows, and the related area of soft condensed matter, much
of which has recently been reviewed [41]. It is interesting to
consider our measurements in light of this work and hence
explore the apparent rheology suggested. Here we consider
the region in which an exponential decrease in velocity and
variance in velocity with gap position were observed. It is
expected that the rheology will depend on the shear rate,
local solid packing, confining pressure, and the variance in
the velocity of the particles. From our experiments, the local
shear rate γ̇ is obtained from the gradient of the velocity
profile:

γ̇ = dvθ (r )

dr
, (5)

where vθ is the local mean velocity of the particles in the
azimuthal direction. Here we use a fourth-order noise-robust
method to calculate the shear rate from the velocity measure-
ments [42]. In a Couette geometry at steady state and with
no variation in velocity around the annulus or with height, a
momentum balance in cylindrical coordinates shows that r2τ

is constant everywhere, τ being the shear stress at a given r .
Hence a local shear stress τ at any position r can be calculated
from the inner wall shear stress τiw according to

τ = r2
iwτiw

r2
, (6)

where riw is the position of the inner wall. Although it was not
possible to measure the torque, and hence shear stress at the
wall, with the present setup, Eq. (6) is used to determine the
shear stress to within a constant anywhere across the gap. The
experiments performed here could not yield the solid fraction.
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FIG. 8. Plot of inverse shear against the rms variance in the velocity for (a) lobelia, (b) petunia, and (c) oil-filled particles. For each particle
type two inner wall velocities are analyzed, U = 17 mm s−1 (+) and U = 41 mm s−1 (o), and for oil-filled particles U = 10.0 mm s−1 (�). The
fit to the data is shown as a solid line for U = 17 mm s−1, dashed line for U = 41 mm s−1, and dotted for U = 10 mm s−1. The insets show the
same data plotted according to Eq. (9).

Thus, we consider two simple rheological models of granular
flow in the context of the shear stress, shear rate and velocity
fluctuations.

First, we consider the typical granular rheology model
which takes the form

τ = μP, (7)

where μ relates the shear and normal stresses and P is
the normal stress (pressure). This formulation is potentially
consistent with both dense phase kinetic theory [41] and
nonlocal rheology [44] models. It is expected that μ will be
a function of the solid fraction, confining pressure, shear rate,
and variance in velocity. For example, for simple shear flow,
the kinetic theory of granular flow yields [5,43]

μ = τ

P
= dpγ̇ F (φ, e)√〈

u2
y

〉 , (8)

where F (φ, e) is some function of the solid fraction φ and
the coefficient of restitution e. Noting that the pressure is
approximately constant across the cross section, and ignoring
variation in solid fraction, Eqs. (6) and (8) are combined to
yield

γ̇ r2 ∝
√〈

u2
y

〉
. (9)

Thus, following kinetic theory, we expect the shear rate to
scale with the square root of the velocity fluctuations.

Alternatively, the problem may be approached using a
hydrodynamic model, as in [17]:

τ = ηγ̇ , (10)

where η is an apparent viscosity that will be a function
primarily of the solid packing and velocity fluctuations. It
is expected that the viscosity will diverge as it approaches
the close packing limit in the dense regions of the bed. Follow-
ing [17], the viscosity is assumed to diverge as it approaches
the close packing limit with a power β, where β = 1 under the
Enskog model but is expected to be greater than 1 if collective
dynamics are important. Under these conditions, the shear rate

is expected to scale with the velocity fluctuations according to

γ̇ ∝
√〈

u2
y

〉(2β−1)

. (11)

Previous research has found β ∼= 1.5 for photoelastic disks
and 1.8 for glass beads, consistent with the presence of
collective dynamics in dense granular flows [17]. These values
imply an exponent greater than unity, whereas the model given
by Eq. (9) implies a value of unity.

Here, each of these models is considered by plotting the
relationship between shear rate and velocity fluctuations in
Fig. 8 [i.e., Eq. (11)] along with the plot for Eq. (9) (inset).
Here only the component of the velocity in the y direction was
measured, hence the comparison with the theoretical models
implicitly assumes isotropy of the fluctuations. These figures
show that for the faster moving particles the apparent viscosity
follows a power-law model with respect to the variance in
the velocity for all three particle types. At lower velocities
and smaller variance in the velocity, the data show a distinct
curvature on the log scale. This curvature is likely due to
the density approaching the close packing limit, causing a
strong divergence of the viscosity. Further experiments are
required in which quantitative measurements of φ are possible
to clarify this effect.

The exponential decay regions of the plots shown in Fig. 8
were fitted with a power-law model. The petunia and oil-
filled particle results indicate the shear rate γ̇ scales with
the square root of the velocity fluctuations (√〈u2

y〉) with an
exponent of 2.0 ± 0.1 and the lobelia scales with an exponent
of 1.5 ± 0.1. The calculated exponent was independent of
the shear rate for all three particle types. The scaling is also
independent of the form of the equation, i.e., the inset yields
a similar slope to the main figure, since in this case the gap is
small relative to the radius and the r2 term is approximately
constant. Thus, it is expected that both Eqs. (9) and (11) could
be applicable here. The measured exponent is greater than
that predicted by Eq. (9) (which predicts an exponent of 1).
From Eq. (11), the measured exponent is consistent with a
value for β = 1.5 ± 0.1 for petunia and the oil-filled particles
and β = 1.3 ± 0.1 for lobelia. The results for petunia and
oil-filled particles are consistent with the analysis in [17].
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The lower β value for the lobelia seeds may be linked to
the particle shape, given the different exponents measured for
the spherical and nonspherical particles here. However, in any
case, these results indicate that the granular material exhibits
cooperative dynamics and a faster divergence than the Enskog
model alone predicts on approach to the close packing limit.

VI. CONCLUSIONS

This paper has used MRI to non-invasively measure ve-
locity and velocity fluctuation profiles across the gap in the
center of a three-dimensional Couette cell. The measure-
ments demonstrate that the velocity scales with the inner
wall velocity U , while the variance scales approximately with
U (gdp )0.5. Four particle types were measured and the data
indicate that the same relationship holds for the three smallest
particles, where no slip was observed, while the largest parti-
cles (mustard seeds) exhibited significant slip and hence a dif-
ferent behavior. The results of the experiments are largely con-
sistent with previous experimental observations of the top and
bottom surface of a Couette, and with numerical simulations.

The measurements were also used to infer that the apparent
rheology of the granular material followed a power-law model
with respect to the local variance in the velocity of the

particles, at least in regions where the particles were moving
freely. The power-law relationship indicates scaling of the ve-
locity fluctuations with an exponent greater than 1, in contrast
to kinetic-theory analysis; it is consistent with the hydrody-
namic model in which collective dynamics are significant. The
analysis of the rheology presented here was restricted to the
power-law region of the shear rate–velocity variance curve. A
deviation from this behavior was seen close to the stationary
wall, perhaps indicative of shear banding or shear localization
[41]. In the future, measurements such as those presented here
could be used to investigate the connection between shear
banding, yield stress, and the velocity fluctuations.
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