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Phonon transport and vibrational excitations in amorphous solids
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One of the long-standing issues concerning the thermal properties of amorphous solids is the complex pattern
of phonon transport. Recent advances in experiments and computer simulations have indicated a crossover from
Rayleigh scattering to �2 law (where � is the propagation frequency). A number of theories have been proposed,
yet critical tests are missing and the validity of these theories is unclear. In particular, the precise location of the
crossover frequency remains controversial, and more critically, even the validity of the Rayleigh scattering has
been seriously questioned. To settle these issues, we focus on a model amorphous solid, whose vibrational
eigenmodes were recently clarified over a wide frequency regime: a mixture of phonon modes and soft localized
modes in the continuum limit and disordered and extended modes in the boson peak regime. The present work
demonstrates that Rayleigh scattering occurs in the continuum limit and �2 damping occurs in the boson peak
regime, and these behaviors are therefore linked to the underlying eigenmodes in the corresponding frequency
regimes. Our results unambiguously determine the crossover frequency. Furthermore, we establish characteristic
scaling laws of phonon transport near the jamming transition, which are consistent with the prediction of the
mean-field theory at higher frequencies but inconsistent in the low-frequency, Rayleigh scattering regime. Our
results therefore reveal crucial issues to be solved with regard to the current theory.
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I. INTRODUCTION

An understanding of the low-temperature thermal proper-
ties of crystalline solids is well established [1,2]. The heat
capacity C and the thermal conductivity κ follow the universal
laws of C ∝ T 3 and κ ∝ T 3 (where T is the temperature),
which are explained by the Debye theory and the phonon
gas theory, respectively. In contrast, amorphous solids show
thermal properties that are markedly different from those of
crystalline solids [3–5]. The heat capacity increases linearly
with temperature, C ∝ T , at T � 1 [K]. As T increases, C

approaches the T 3 dependence of the Debye law, but the
reduced heat capacity C/T 3 exhibits a peak at T ∼ 10 [K],
which is called the boson peak (BP). In addition, the thermal
conductivity increases as κ ∝ T 2 at T � 1 [K] and exhibits a
plateau at T ∼ 10 [K]. These anomalous temperature depen-
dencies are surprisingly universal; they are shared by many
different amorphous solids, regardless of their constituents
[3–5].

The anomalies in the thermal properties of amorphous
solids originate from anomalies in their vibrational properties.
The BP in the heat capacity indicates that the vibrational den-
sity of states (vDOS) g(ω) (where ω is the frequency) does not
follow the Debye law, g(ω) ∝ ω2. In fact, many amorphous
solids universally exhibit a peak at ω = ωBP ∼ 1 [THz] in
the reduced vDOS g(ω)/ω2 [6–8]; this peak is also called
the BP. The complex temperature dependence of the thermal
conductivity indicates that the phonon transport in these ma-
terials is very different from that in crystalline solids. Recent
advanced experiments [9–14] have observed that the sound
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speed exhibits a drop near the BP frequency, at � ∼ ωBP

(where � is the propagation frequency), which is referred to
as sound softening. They have also reported that the sound
attenuation rate � depends on � in a complex manner. When
� is fitted to a power law, � ∝ �n, the exponent n depends on
the � regime: n ≈ 2 (anharmonic damping) at low � � ωBP,
n ≈ 4 (Rayleigh scattering) at intermediate � � ωBP, and n ≈
2 (�2 law) at high � � ωBP. Understanding these vibrational
properties is of key importance because they explain the
thermal properties of amorphous solids.

So far, a number of theoretical explanations have been
proposed, which are qualitatively different from each other.
One approach is based on the proposed concept of elastic
heterogeneities [15–23]. In this approach, spatially fluctuating
local elastic moduli [24–26] give rise to the vibrational proper-
ties of amorphous solids and, hence, their thermal properties.
A second approach is based on a two-level system and a soft
potential model [27–33]. In this approach, two-level systems
[34–38] and soft localized vibrations [39–44] are essential
ingredients in producing the vibrational and thermal anoma-
lies. A third approach is based on the mean-field theory of
jamming [45–60], in which isostaticity and marginal stability
are crucial. It is not easy to judge the validity of these theories
because critical tests are difficult to conduct due to the pres-
ence of phenomenological fitting parameters. In this regard,
an exception might be the mean-field theory of jamming, as
its predictions regarding scaling laws can be precisely tested,
as we will discuss in detail.

Numerical simulations would be an ideal tool for study-
ing vibrational properties because they enable us to directly
investigate the vibrations of particles. However, this is not
as easy as it sounds because one needs to analyze large
systems to access a wide range of frequencies, particularly the
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low-frequency regime. Only recently have large-scale simu-
lations of amorphous solids been performed on, which have
enabled progress in the understanding of their vibrational
properties. As we will describe in the Preliminaries sec-
tion, the vDOS and the vibrational eigenmodes have been
elucidated over a vast frequency range. In particular, our
previous works [61,62] observed that phonon modes coexist
with soft localized modes in the low-frequency regime. The
nature of these soft localized modes was studied in detail in
Refs. [44,63–65]. In addition, a recent work [66] reported that
the soft localized modes can hybridize with the phonon modes
as the system size increases. (We will discuss effects of the
hybridization in the Conclusion section.)

However, phonon transport has been less extensively stud-
ied and remains controversial. It has been reported that the
sound speed exhibits a drop at � ∼ ωBP and that the at-
tenuation rate shows a crossover at � ∼ ωBP from Rayleigh
scattering, � ∝ �4, to �2 law, � ∝ �2 [17,19,21]. Although
these results are consistent with experimental observations
[9–14], the precise location of the crossover frequency has not
yet been settled. Moreover, the length scale of the structural
disorder responsible for the Rayleigh scattering remains un-
clear [51]. Furthermore, and more critically, even the validity
of the Rayleigh scattering law has been seriously questioned
in recent work [22]. The authors of Ref. [22] claimed that
both the numerical results and the experimental datasets can
be fitted to � ∝ −qd+1 log q (where q is the wave number
and d is the spatial dimension). They also argued that the
logarithmic correction to the Rayleigh law might originate
from the long-range nature of elastic disorder [67].

The present work aims to settle all of these issues and
establish a comprehensive understanding of the phonon trans-
port in amorphous solids. To this end, we focus on randomly
packed soft particles near the jamming transition as a model
of an amorphous solid [68] and perform large-scale numerical
simulations. We accomplish the following two goals. (1) We
capture the complex phonon transport properties of amor-
phous solids in simulations. We then explain these phonon
transport properties in terms of the underlying vibrational
eigenmodes. This is possible because we have already re-
vealed the nature of the eigenmodes of the present model [61].
(2) We establish the scaling laws of the phonon transport prop-
erties near the jamming transition. This enables us to directly
test (without any phenomenological fitting parameters) the
predictions of the mean-field theory of jamming [53,55]. We
show that the scaling law of the mean-field theory works well
at higher frequencies but breaks down in the low-frequency,
Rayleigh scattering regime.

II. PRELIMINARIES

We first review some basic features of the vibrational
eigenmodes in the present model of an amorphous solid. Our
model is composed of randomly jammed particles interacting
via the following finite-range, purely repulsive potential [68]:

φ(r ) = ε

2

(
1 − r

σ

)2
H (σ − r ), (1)

where σ is the particle diameter and H (r ) is the Heaviside
step function (see also Section III A). This model exhibits

a jamming transition at the packing fraction ϕJ , at which
the particles lose their contacts and rigidity. We note that
ϕJ ≈ 0.64 and ≈ 0.84 in three-dimensional (3D) and two-
dimensional (2D) spaces, respectively. Near the jamming
transition, the packing pressure scales as p ∝ (ϕ − ϕJ ). In
this work, we employ the pressure p as the control parameter.

Previous numerical studies [47,48,59,61] have established
that the vDOS of this model obeys the following scaling laws
in a 3D space:

g(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α∗ (ω � ω∗),

αBP

(
ω

ω∗

)2

(ω ∼ ωBP),

A0ω
2 + αloc

(
ω

ω∗

)4

(ω � ωex0),

(2)

where α∗, αBP, and αloc are constants and A0 is the Debye
level. Note that A0 scales with p as A0 ∝ p−3/4 in the
3D case. The three characteristic frequencies, ωex0, ωBP,
ω∗ (ωex0 < ωBP < ω∗), follow the scaling law ωex0 ∝ ωBP ∝
ω∗ ∝ p1/2. (We explicitly plot these characteristic frequencies
as functions of p in Fig. 12.) The nature of the vibrational
eigenmodes varies as ω changes [61]: (i) At high ω > ω∗,
the vibrational modes share similarities with floppy modes
and are characterized by disordered and extended vibrations.
(ii) As ω decreases, the reduced vDOS g(ω)/ω2 exhibits
a BP at ω ∼ ωBP. The vibrational modes are similar to
those at ω > ω∗ but show more phonon-like characteristics.
(iii) At low ω � ωex0, the vibrational modes split into two
types: phonon modes and soft localized modes [69]. The
phonon modes follow the Debye law, g(ω) = A0ω

2, whereas
the soft localized modes follow a non-Debye law, g(ω) ∝ ω4.
We refer to this frequency regime (ω � ωex0) as the continuum
limit [70].

III. NUMERICAL METHODS

A. System description

The present systems are the same as those studied in our
previous work [61]: a three-dimensional (3D, d = 3) model
and a two-dimensional (2D, d = 2) model of amorphous
solids composed of randomly jammed soft particles. Particles
i and j interact via a finite-range, purely repulsive, harmonic
potential, φ(r ), as given in Eq. (1). The 3D system consists of
monodisperse particles with a diameter of σ , whereas the 2D
system is a 50%-50% binary mixture with a size ratio of 1.4
(where the diameter of the smaller species is denoted by σ ).
The particle mass is m. Length, mass, and time are measured
in units of σ , m, and τ = (mσ 2/ε)1/2, respectively.

The control parameter of this system is the packing pres-
sure p. We note that the temperature T is held at zero, T ≡ 0.
This amorphous system exhibits a(n) (un)jamming transition
[68]: as p decreases, the particles lose their contacts at
p = 0. In the vicinity of the jamming transition, the system is
governed by various power-law scalings with p for quantities
such as the elastic moduli K and G and the frequency ω∗
[47,68]. We prepared the system with a wide range of p =
5 × 10−2 to 1 × 10−4, as done in our previous work [61].

To access the low-frequency regime, including the con-
tinuum limit ω < ωex0 (ω < ω0), we employed large system
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sizes: N = 1 024 000, 2 048 000, and 4 096 000 for the 3D
case and N = 1 024 000 for the 2D case. (We denote the
frequency of continuum limit as ω0 in the 2D case [61].)
Here, we always removed rattler particles, namely, those in
contact with fewer than d other particles. Note that the present
work studies harmonic vibrational properties, where the rattler
particles play no roles. However, we expect that the rattlers
make some impacts on anharmonic vibrational properties.

In the present system, the interparticle forces are al-
ways positive, −φ′(r ) > 0. For this reason, we refer to this
original system as the stressed system. In addition to the
stressed system, we also study the unstressed system. In the
unstressed system, we retain the stiffness φ′′(r ) but drop the
forces, setting −φ′(r ) ≡ 0 in the analysis. Since the posi-
tive forces make the system mechanically unstable, dropping
the forces causes the originally stressed system to become
more stable [46,55,71]. We note that in the unstressed system,
ω∗ coincides with the BP frequency, ω∗ = ωBP. In addition,
the soft localized modes are significantly suppressed in the
unstressed system [61,65].

B. Phonon transport analysis

To measure the phonon transport, we employed the nu-
merical simulation method used in Ref. [22], in which the
vibrational dynamics around the equilibrium configuration
(inherent structure) are analyzed within the harmonic ap-
proximation. Below, we denote the position of particle i

(i = 1, 2, 3, . . . , N) in the inherent structure by ri and the
displacement from ri by ui .

We first excite a phonon at the initial time t = 0 by
perturbing the velocity u̇i of particle i:

u̇i (t = 0) = u̇0
i ≡ aα sin (q · ri + ψ ), (3)

where q is the wave vector; q ≡ |q| is the wave number; α

denotes the polarization, with α = L indicating longitudinal
waves and α = T indicating transverse waves; and ψ is
set to 0 or π/2. The polarization vector (unit vector) aα is
determined as follows: aL = q/q for the longitudinal case and
aT · q = 0 for the transverse case.

We next solve the linearized equation of motion:

üi =
N∑

j=1

Dij · uj + u̇0
i δ(t ), (4)

where Dij is the dynamical matrix [1,2], and δ(t ) is the Dirac
δ function. From the time history ui (t ), we calculate the
normalized velocity-velocity correlation function:

C(t ) ≡
(∑N

i=1 u̇i (t ) · u̇0
i

)
(∑N

i=1 u̇0
i · u̇0

i

) . (5)

The function C(t ) represents the propagation and attenuation
behaviors of the initially excited phonon u̇0

i .
We performed repeated simulations of a phonon u̇0

i with
a wave number q and a polarization α with the following
settings: q = (q, 0, 0), (0, q, 0), and (0, 0, q ) in the 3D case
or q = (q, 0) and (0, q ) in the 2D case and ψ = 0 and π/2. In
addition, for the 3D case, there are two transverse waves with
different polarization vectors, aT1 and aT2 , which were also
simulated independently. The final value of C(t ) for a given

-1

-0.5

0

 0.5

1

0  500  1000  1500  2000  2500

Simulation
fitting

(a)

t

C
(t

)

-1

-0.5

0

 0.5

1

0  100  200 300 400  500

Simulation
fitting

(b)

t

C
(t

)

FIG. 1. Time evolution of the velocity-velocity correlation func-
tion. Plots of the correlation function C(t ) as a function of t , for
transverse waves (α = T ). The system is the 3D model system.
(a) q = 0.088, � = 0.026 (<ωex0), and �T = 3.8 × 10−4. (b) q =
0.39, � = 0.11 (≈ωBP), and �T = 3.0 × 10−2. The symbols repre-
sent simulation data. To quantify the frequency � and the attenuation
rate �T , the simulation data were fitted with the functional form
C(t ) ≡ cos(�t )e−�α t/2; the fitting results are shown as solid lines.

q and α was obtained by averaging over these cases. Note
that since we implemented periodic boundary conditions in
all directions, q takes discrete values of q = (2π/L)n, where
L is the system size and n = 1, 2, 3, . . . is an integer.

We finally fit the functional form of

C(t ) ≡ cos(�t )e−�αt/2, (6)

to the simulation data and quantified the propagation fre-
quency �, the sound speed cα ≡ �/q, and the attenuation
rate �α (see Fig. 1). The scattering length was obtained as

α = 2cα/�α . We note that the values of �, cα , and �α are
functions of the wave number q; alternatively, we can treat cα

and �α as functions of � by transforming q into � via the
relation � = �(q ).

C. Generalized Debye model

In this section, we formulate the vDOS in the framework of
the generalized Debye model [15–18]. In this framework, we
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assume the phonon approximation, � 	 �α , which is shown
to be valid in the low-frequency regime � � ωBP below the
BP (see Appendix B).

The Green function is defined as [2]

G(t ) ≡
∑N

i=1 ui (t ) · u̇0
i∑N

i=1 u̇0
i · u̇0

i

=
∫

C(t )dt. (7)

Using the functional form of C(t ) in Eq. (6), we obtain

G(t ) ≈
{

sin(�t )

�

}
e−�αt/2H (t ), (8)

where H (t ) is the Heaviside step function. The Fourier trans-
form of G(t ) is formulated as

G̃α (q, ω) =
∫ +∞

−∞
G(t )eiωtdt ≈ 1

−ω2 + q2ĉα (q, ω)2
, (9)

where ĉα (q, ω) is the complex sound speed:

ĉα (q, ω) = cα (q )

{
1 − i

ω�α (q )

�(q )2

}1/2

. (10)

The ω-functional form of G̃α (q, ω) in Eq. (9) is the damped
harmonic oscillator model, which has been employed in many
previous works [13,14,19,21,72]. We also note that the present
simulation method [22] analyzes the Green function that is
considered in the relevant theories [15–18,53,55], not the
dynamical structure factor S(q, ω) that is accessible through
scattering experiments [9–14]. From S(q, ω), we measure
the resonant sound speed cαres and the attenuation rate �αres.
However, as long as we focus on the low-� excitations
and the phonon approximation is valid, we can expect cα �
cαres and �α � �αres. This point was discussed in detail in
Ref. [55].

Following Ref. [17], we approximate ĉα (q, ω) by dropping
the dependence on the wave number q, as follows:

ĉα (q, ω) ≈ ĉα (q = �−1(ω), ω),

= cα (ω)

{
1 − i

�α (ω)

ω

}1/2

,
(11)

where �−1 denotes the inverse function, cα (ω) ≡ cα (q =
�−1(ω)), and �α (ω) ≡ �α (q = �−1(ω)). This approxima-
tion is valid in the phonon approximation, �(q ) 	 �α (q ).
Note that a recent experiment [14] tested this approximation
and confirmed its validity below the BP frequency. We then
formulate G̃α (q, ω) as

G̃α (q, ω) ≈ 1{
1 − i �α (ω)

ω

}{−ω2 + q2cα (ω)2} . (12)

By using the Green function G̃α (q, ω), the vDOS can be
formulated as

g(ω) = (
2ω/πqd

D

)

×
∫ qD

0
dqqd−1Im{(d − 1)G̃T (q, ω) + G̃L(q, ω)},

(13)
where qD = d

√
2dπd−1ρ̂ (ρ̂ = N/Ld is the number density)

is the Debye wave number. Using G̃α (q, ω) in Eq. (12), we

derive the following for the 3D case (d = 3):

g(ω) =
(

2

c3
T q3

D

+ 1

c3
Lq3

D

)
ω2

+ 2

π

{
2�T

c2
T q2

D

[
1 +

(
ω

2cT qD

)
log

(
cT qD − ω

cT qD + ω

)]

+ �L

c2
Lq2

D

[
1 +

(
ω

2cLqD

)
log

(
cLqD − ω

cLqD + ω

)]}
. (14)

Similarly, we derive the following for the 2D case (d = 2):

g(ω) =
(

1

c2
T q2

D

+ 1

c2
Lq2

D

)
ω + 1

π

[
�T

c2
T q2

D

log

(
c2
T q2

D

ω2
− 1

)

+ �L

c2
Lq2

D

log

(
c2
Lq2

D

ω2
− 1

)]
. (15)

The first and second terms in Eqs. (14) and (15) define
g1(ω) ≡ f1[ω; cα (ω)] and g2(ω) ≡ f2[ω; cα (ω),�α (ω)] in
Eq. (19), respectively. Note that the second term g2(ω) repre-
sents the nonphonon vDOS, gnonphonon(ω) (see the discussion
in Sec. IV D).

IV. RESULTS AND DISCUSSION

A. Phonon transport properties

We now study the phonon transport in the 3D amorphous
solid. We excite a phonon with wave number q at the initial
time and analyze the decay profile of the velocity autocor-
relation function to extract the propagation frequency � and
the attenuation rate � (see Sec. III B). The packing pressure
is fixed at p = 5 × 10−2 (the packing fraction is ϕ ≈ 0.73).
Figure 2(a) shows the obtained sound velocities cα (�) ≡ �/q

and the attenuation rates �α (�) for transverse (α = T ) and
longitudinal (α = L) waves. Note that our measurement is in
the zero-temperature harmonic limit.

We first focus on the BP regime, � ∼ ωBP. In this regime,
cα shows a minimum value; i.e., the dispersion curve �(q )
deviates from a straight line. This is the so-called sound soft-
ening phenomenon, which is often observed in experiments
[9–14]. �α shows an �2 dependence, �α ∝ �2. We also find
that the Ioffe-Regel (IR) limit for transverse waves is �TIR ≈
ωBP (see Appendix B; see also Figs. 11 and 12). These results
indicate that the phonon does not propagate as a plane wave
but rather exhibits dynamics characteristic of viscous damping
[72,73]. This can be understood in terms of the underlying
vibrational eigenmodes as follows. Because the eigenmodes
at � ∼ ωBP correspond to disordered and extended vibrations
[45–48,61] and the initially excited phonon is decomposed
into these vibrational eigenmodes [74], it immediately at-
tenuates to become diffusive. References [75,76] referred to
this vibrational behavior as diffuson (nonpropagating, delo-
calized vibration). Note that above the BP, cα increases with
increasing �, which is referred to as sound hardening and was
recently discussed in Ref. [77].

As � decreases to the continuum limit, � � ωex0, we
observe a clear crossover to Rayleigh scattering. cα converges
to the macroscopic value predicted by the continuum me-
chanics: cT 0 = √

G/ρ and cL0 = √
(K + 4G/3)/ρ, where ρ

is the mass density and K and G are the bulk and shear
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FIG. 2. Phonon transport in the amorphous solid models. Plots of the sound speed cα (�) and the attenuation rate �α (�) as functions of
�, for transverse (α = T , red circles) and longitudinal (α = L, blue squares) waves. (a, left panels) The 3D model system (d = 3). (b, right
panels) The 2D model system (d = 2). The packing pressure is p = 5 × 10−2. In the top panels, the characteristic frequencies of ωex0 (3D),
ω0 (2D), ωBP, and ω∗ are indicated by arrows. The insets in the top panels compare the longitudinal speed cL(�) with the value predicted from
the transverse speed cT (�) as follows:

√
K/ρ + 4cT (�)2/3 (3D) or

√
K/ρ + cT (�)2 (2D). The horizontal lines in the top panels indicate the

macroscopic sound speeds, cT 0 = √
G/ρ and cL0 = √

(K + 4G/3)/ρ (3D) or cL0 = √
(K + G)/ρ (2D). The insets in the bottom panels show

�α (�)/�d+1 as a function of �. Both transverse and longitudinal waves exhibit behaviors of �α ∝ �d+1 (Rayleigh scattering) at � � ωex0

(3D) or � � ω0 (2D) and �α ∝ �2 (�2 law) near � ∼ ωBP.

moduli, respectively. Note that we calculate K and G in the
zero-temperature harmonic limit, by using the harmonic for-
mulation described in Ref. [78]. �α shows an �4 dependence,
�α ∝ �4. These observations reflect the Rayleigh scattering
mechanism underlying the phonon propagation at � � ωex0.
This can again be understood in terms of the underlying vibra-
tional eigenmodes as follows. The eigenmodes at � � ωex0

consist of phonon modes and soft localized modes. Because
the initially excited phonon is decomposed mainly into the
phonon modes [79], it attenuates slowly.

The crossover between �2 law and Rayleigh scattering
has been observed in both experiments [9–14] and numerical
simulations [17,19,21]. A recent work [80] also found the
crossover between diffusive regime and propagative regime by
investigating the atomic response to a wave-packet excitation.
However, the precise location of the crossover frequency
remains controversial. The present work unambiguously links
these two modes of phonon transport to the vibrational

eigenmodes in the corresponding frequency regimes. There-
fore, we are able to identify the crossover frequency as the
continuum limit frequency ωex0, at which the nature of the
underlying eigenmodes changes. This result is consistent with
the predictions of mean-field theories [15–18,53,55].

We note that the IR limit for longitudinal waves, �LIR,
is much higher than that for transverse waves [81]: �LIR 	
�TIR ≈ ωBP (see Appendix B and Figs. 11 and 12), so a
longitudinal wave can propagate even at � > ωBP. This re-
sult indicates that although the disordered vibrational modes
are dominant at � > ωBP, the longitudinal phonon modes
also exist in this frequency regime. However, as pointed out
by Refs. [17,19], longitudinal waves show similar transport
properties as those of transverse waves. Indeed, we determine
the same crossover frequency ωex0 for both transverse and
longitudinal waves. Heterogeneous elasticity theory [15–18]
assumes that the shear modulus heterogeneity dominates com-
pared with the bulk modulus heterogeneity, which is true in
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FIG. 3. Phonon transport at different pressures. Plots of the scaled sound speed ĉα = cα/cα0 and the attenuation rate �̂α = �α/ω
nα∗ as

functions of the scaled frequency �̂ = �/ω∗, for transverse (α = T , circles) and longitudinal (α = L, squares) waves. (a, left panels), The 3D
model system (d = 3). (b, right panels), The 2D model system (d = 2). The packing pressure ranges from p = 5 × 10−2 to 1 × 10−4. In the top
panels, the characteristic frequencies of ω̂ex0 = ωex0/ω∗ = 0.066 (3D), ω̂0 = ω0/ω∗ = 0.066 (2D), ω̂BP = ωBP/ω∗ = 0.21 (3D), ω̂BP = 0.28
(2D), and ω̂∗ = ω∗/ω∗ ≡ 1 are indicated by arrows. The horizontal lines in the top panels show the macroscopic values, ĉα = 1. The insets in
the bottom panels show �̂α/�̂

d+1 as a function of �̂. The scaled ĉα and �̂α values collapse to a single curve at �̂ � ω̂BP (and at p � 5 × 10−3

for 2D), with exponents of nT = 1.0 and nL = 1.4 (3D) or nT = 1.0 and nL = 1.6 (2D). For clarity, we multiply �̂L by 0.5 (3D) or 0.2 (2D)
in the plots. See also Fig. S1 of the Supplemental Material [84] for the collapse of �̂T .

the present amorphous system [82]. In this framework, the
shear modulus heterogeneity induces the anomalous behav-
iors for both transverse and longitudinal waves [83]. To check
the validity of this scenario, we calculate the longitudinal
sound speed as

√
K/ρ + 4cT (�)2/3, in which the effects

of the bulk modulus heterogeneity are neglected. The inset
at the top of Fig. 2(a) shows that this value is close to the
true longitudinal speed cL(�) and thus supports this scenario.
However, Ref. [21] reported that this property depends on the
amorphous system and on the preparation procedures applied.

B. Packing pressure dependence

We repeat the phonon transport calculations for various
pressures over a wide range from p = 5 × 10−2 to 1 × 10−4.
Below, we attempt to summarize the pressure dependence
results in the form of scaling laws with p. To this end, we
introduce the scaled frequency �̂ ≡ �/ω∗. We recall that

the three characteristic frequencies follow the same scaling
law ωex0 ∝ ωBP ∝ ω∗ ∝ p1/2. More quantitatively, we can
express the other two frequencies in scaled form as follows:
ω̂ex0 ≡ ωex0/ω∗ = 0.066 and ω̂BP ≡ ωBP/ω∗ = 0.21 [61]. We
explicitly plot these characteristic frequencies as functions of
p in Fig. 12(a).

The top panel of Fig. 3(a) presents the scaled sound speed
ĉα ≡ cα/cα0 as a function of �̂ for different pressures (where
cα0 is the macroscopic value). The results show a nice collapse
to a universal curve at �̂ � ω̂BP; therefore, we obtain the
scaling function for cα in the following form:

cα (�) =
{
cα0fαmin (� ∼ ωBP),
cα0 (� � ωex0), (16)

where fT min = 0.96 and fLmin = 0.99 are constants that mea-
sure the reduction in cα near the BP. Note that cT 0 = √

G/ρ ∝
ω

1/2
∗ and cL0 = √

(K + 4G/3)/ρ ∝ ω0
∗ [78]. We also plot the
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scaled attenuation rate �̂α ≡ �α (�)/ωnα∗ in the bottom panel
of Fig. 3(a). Here, we use the exponent nα as a fitting pa-
rameter and find that �̂α nicely collapses to a universal curve
with nT = 1.0 (transverse waves) and nL = 1.4 (longitudinal
waves). (Figure S1(a) of the Supplemental Material [84] plots
(�T /ωnT∗ )/�̂4 versus �̂ for several different values of nT ,
from nT = 1.5 to 0.5, where we see the best collapse with
nT = 1.0.) This suggests the following form for the scaling
function of �̂α:

�α (�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BαBPω
nα∗

(
�

ω∗

)2

(� ∼ ωBP),

Bα0ω
nα∗

(
�

ω∗

)4

(� � ωex0),

(17)

where BT BP = 1.1, BLBP = 0.48, BT 0 = 74, and BL0 = 24
are constants that represent the strength of attenuation.

Effective medium theory [53,55] predicts scaling laws with
p or ω∗ ∝ p1/2. We therefore test the validity of this theory
by comparing the scaling laws indicated by our numerical
results with the theoretical predictions. To directly compare
our results with theoretical predictions of Ref. [55], we plot
the scattering length 
α ≡ 2cα/�α in Fig. S2(a) of the Supple-
mental Material [84]. Our results yield the following scaling
laws for transverse waves:


T (�) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2C0

BT BP

ω
3/2
∗

�2
∝ ω

3/2
∗

�2
(� ∼ ωBP),

2C0

BT 0

ω
7/2
∗

�4
∝ ω

7/2
∗

�4
(� � ωex0),

(18)

where we use cT ≈ cT 0 ∝ √
G ∝ ω

1/2
∗ , which is numerically

confirmed to correspond to cT 0 = C0ω
1/2
∗ with C0 = 0.47

[78]. In the BP regime, our scaling result is consistent with the
theoretical prediction [55]. However, in the Rayleigh scatter-
ing regime, the theory predicts 
T (�) ∝ ω3

∗/�
4 [55], which is

different from our result by a factor of ω
−1/2
∗ . This means that

the theory significantly overestimates the scattering length
(underestimates the strength of the phonon scattering) and
the difference between the theory and numerical result even
diverges at the jamming transition.

C. Generalized Debye model

We next apply the generalized Debye model to calculate
the vDOS of the vibrational eigenmodes [15–18]. We will
show that the generalized Debye model well reproduces the
vDOS from the data of cα and �α , and therefore, it relates the
phonon transport properties to the vDOS of the underlying
vibrational modes.

As already mentioned, the IR limit for transverse waves,
�TIR, is located near the BP. The phonon approximation,
� 	 �α , is therefore valid below the BP, at � � ωBP. In this
approximation, the generalized Debye model gives the Green
function G̃α (q, ω) in terms of cα (ω) and �α (ω), as shown
in Eq. (12). The vDOS g(ω) is then formulated as shown in
Eq. (14) for the 3D case:

g(ω) = g1(ω) + g2(ω),

≡ f1[ω; cα (ω)] + f2[ω; cα (ω),�α (ω)], (19)

where g1(ω) ≡ f1[ω; cα (ω)] is a functional of cα (ω), whereas
g2(ω) ≡ f2[ω; cα (ω),�α (ω)] is a functional of both cα (ω)
and �α (ω). Please refer to Sec. III C and Eq. (14) for the 3D
and Eq. (15) for the 2D, for detail of formulations.

Figure 4(a) compares the reduced vDOS g(ω)/ω2 cal-
culated with Eq. (19) and the numerical values reported in
Ref. [61] at p = 5 × 10−2. Note that these numerical values
were obtained through vibrational mode analysis, i.e., by con-
sidering the statistics of the vibrational eigenmodes. The gen-
eralized Debye model overall captures the numerical values of
g(ω). (The quantitative difference from the numerical values
might arise from the phonon approximation that is adopted
when formulating Eq. (19) [Eq. (14)] in the generalized Debye
model.) In particular, Eq. (19) captures the BP at ω = ωBP.
Previous works [11,19] have argued that the BP originates
from the deformation of the dispersion curve, i.e., from the
first term g1(ω) ≡ f1[ω; cα (ω)]. However, our results show
that g1(ω)/ω2 exhibits only a tiny peak near ωBP, which
cannot explain the BP. To express the BP correctly, we need
to consider the second term g2(ω) ≡ f2[ω; cα (ω),�α (ω)],
which arises from the sound broadening �α . We note that al-
though the phonon approximation is valid at low frequencies,
ω � ωBP, Eq. (19) seems to reproduce the numerical values
even at higher frequencies, ωBP < ω � ω∗.

Equation (19) captures the numerical values in the contin-
uum limit ω � ωex0, where the vibrational modes are com-
posed of phonon modes and soft localized modes. g1(ω)/ω2

converges to the Debye level A0, whereas g2(ω)/ω2, which
represents the nonphonon contribution, converges only slowly
to zero. g2(ω) originates from �α or, more specifically, �T for
transverse waves, which is much larger than its longitudinal
counterpart �L. Because the nonphonon modes in this fre-
quency regime are detected as soft localized modes [44,61],
g2(ω) should correspond to the vDOS of the soft localized
modes. Indeed, the inset of Fig. 4(a) and Eq. (14) (in the low-ω
limit) indicate that g2(ω) ∝ �T ∝ ω4, which fully coincides
with the ω4 law for soft localized modes.

D. Phonon scattering and non-Debye scaling law

We now extend the analysis of the vDOS of the generalized
Debye model to different pressures p and establish the scaling
behaviors of the vDOS. We will show that the non-Debye
scaling laws for the vDOS are intimately related to the
phonon scattering laws for �2 law, �α = BαBPω

nα∗ (�/ω∗)2,
and Rayleigh scattering, �α = Bα0ω

nα∗ (�/ω∗)4.
Figure 5 plots g(ω) and the reduced g(ω)/ω̂2 as func-

tions of the scaled ω̂ ≡ ω/ω∗ for various p. Near the BP,
at ω̂BP = 0.21, the vDOS follows a non-Debye scaling law,
g(ω) = αBP(ω/ω∗)2 with αBP = 0.49. In addition, Fig. 6 plots
the scaled ĝ1 ≡ g1(ω)/A0ω

2
∗ and g2(ω) separately. We ob-

serve that ĝ1(ω) and g2(ω) collapse to universal functions
of ω̂ for different pressures. In the continuum limit ω̂ �
ω̂ex0 = 0.066, g1(ω) converges to the Debye vDOS, g1(ω) =
A0ω

2, whereas g2(ω), which corresponds to the vDOS of
the soft localized modes, converges to another non-Debye
scaling law, g2(ω) = αloc(ω/ω∗)4 with αloc = 28. At higher
frequencies, g2(ω) becomes much larger than g1(ω), and the
total vDOS becomes g(ω) ≈ g2(ω). At ω ∼ ωBP in particular,
g2(ω) = α2BP(ω/ω∗)2 with α2BP = 0.41, which confirms that
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FIG. 4. Comparison between the numerical vDOS values obtained through vibrational mode analysis and the vDOS of the generalized
Debye model. Plots of the reduced vDOS g(ω)/ωd−1 as a function of ω. (a) The 3D model system (d = 3). (b) The 2D model system (d = 2).
The packing pressure is p = 5 × 10−2. The inset in (a) shows g(ω). The symbols represent the numerical values from the vibrational mode
analysis reported in Ref. [61]. For the 3D system in (a), the vDOS of the extended modes, gex(ω) for the participation ratio P k > 10−2, and
that of the localized modes, gloc(ω) for P k < 10−2, are also plotted. The lines represent the vDOS of the generalized Debye model as given in
Eq. (19) [Eq. (14) for the 3D and Eq. (15) for the 2D]. The vDOS in Eq. (19) is composed of two terms, one related to the dispersion curve
(g1(ω) ≡ f1[ω; cα (ω)]) and the other related to the sound broadening (g2(ω) ≡ f2[ω; cα (ω),�α (ω)]). The horizontal lines indicate the Debye
value A0 as calculated from the macroscopic elastic moduli.

g2(ω) ≈ g(ω) = αBP(ω/ω∗)2 (α2BP = 0.41 is close to αBP =
0.49). We can therefore describe the nonphonon vDOS as
gnonphonon(ω) ≈ g2(ω) = G(ω/ω∗), where G(ω̂) = αBPω̂

2 for
ω̂ ∼ ω̂BP = 0.21 and G(ω̂) = αlocω̂

4 for ω̂ � ω̂ex0 = 0.066.
All of these results are completely consistent with the results
of the vibrational mode analysis in Eq. (2) [61].

These results enable us to directly relate the attenuation
rate �α in Eq. (17) to the nonphonon part of the vDOS
gnonphonon(ω) in Eq. (2) as follows. Since cT < cL and �T 	
�L, we neglect the contribution from longitudinal waves in
Eq. (19) [Eq. (14)]. We can then express gnonphonon(ω) ≈

FIG. 5. The vDOSs of the generalized Debye model at different
pressures in the 3D model system. g(ω) is plotted against the scaled
frequency ω̂ = ω/ω∗. The inset is the same as the main panel but
for the reduced vDOSs g/ω̂2. At low pressures and near ω̂BP = 0.21,
the vDOSs collapse to the following non-Debye scaling law: g(ω) =
αBPω̂

2 with αBP = 0.49.

g2(ω) as

gnonphonon(ω) ≈ 4

πq2
D

�T (� = ω)

c2
T 0

,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4BT BP

πq2
DC2

0

(
ω

ω∗

)2

∝
(

ω

ω∗

)2

(ω ∼ ωBP),

4BT 0

πq2
DC2

0

(
ω

ω∗

)4

∝
(

ω

ω∗

)4

(ω � ωex0).

(20)

This expression suggests that there are relationships between
the parameters in the scaling functions for the phonon trans-
port modes and those of the vDOS: 4BT BP/(πq2

DC2
0 ) ∼ αBP

and 4BT 0/(πq2
DC2

0 ) ∼ αloc. We confirm that the values of
4BT BP/(πq2

DC2
0 ) = 0.38 and 4BT 0/(πq2

DC2
0 ) = 25 are in-

deed comparable to those of αBP = 0.66 and αloc = 58 as
evaluated through vibrational mode analysis [61]. (We cannot
expect that values of 4BT BP/(πq2

DC2
0 ) and 4BT 0/(πq2

DC2
0 ),

obtained from the generalized Debyel model that assumes
the phonon approximation, exactly coincide with those of
αBP and αloc, obtained from the statistics of the vibrational
eigenmodes, respectively.) Equation (20) demonstrates that
the term �T /c2

T 0 ≈ 2/(
T cT 0) determines both the ω and p

dependences of gnonphonon(ω).
We therefore conclude that the attenuation rate and the

nonphonon vDOS are intimately related. In the continuum
limit ω � ωex0, the existence of the soft localized modes
enhances the attenuation rate, which, in turn, results in the
excess value of the vDOS represented by the term g2(ω).
Notably, mean-field theories [15–18,53,55] neglect the vDOS
of the soft localized modes and concomitantly underestimate
the Rayleigh scattering amplitude. In particular, the theory
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FIG. 6. The vDOSs of the generalized Debye model, g1(ω) and
g2(ω), in the 3D model system. (a) Plot of the scaled vDOS ĝ1 =
g1(ω)/A0ω

2
∗ against the scaled frequency ω̂ = ω/ω∗. (b) Plot of

g2(ω) against ω̂. The insets are the same as the main panels but for the
reduced vDOSs, ĝ1/ω̂

2 in (a) and g2/ω̂
4 in (b). Below ω̂ex0 = 0.066,

the vDOSs collapse to g1(ω) = A0ω
2 and g2(ω) = αloc(ω/ω∗)4 with

αloc = 28. In addition, near ω̂BP = 0.21, g2(ω) = α2BP(ω/ω∗)2 with
α2BP = 0.41.

of [53,55] predicts gnonphonon(ω) ∝ (
T cT 0)−1 ∝ ω4/ω
7/2
∗ at

ω � ωex0, which differs from our result by a factor of ω
1/2
∗ .

E. The unstressed system

The unstressed system is defined as the system with all
of the particles’ contacts replaced with relaxed springs (see
Sec. III A). Previous works [61,65] have shown that in the
unstressed system, the soft localized modes are strongly
suppressed, and the vDOS rapidly converges to the Debye
level. Therefore, one may expect that the phonon scattering
in the unstressed system will be much weaker than that in
the original stressed system. The results of the unstressed
system are presented in Figs. S3 to S13 of the Supplemental
Material [84].

We first calculate the sound speed cα (�) and the attenua-
tion rate �α (�) of the unstressed version of the configuration
at p = 5 × 10−2. We observe the Rayleigh scattering law,

�α ∝ �4, even in the unstressed system [see Fig. S3(a)]. How-
ever, as quantitatively estimated below, the coefficient of the
Rayleigh scattering law is much smaller than in the original
system. This result supports the intimate connection between
the strong attenuation and the presence of soft localized modes
in the original stressed system.

We next analyze the pressure dependences of cα and �α

[see Fig. S4(a)]. We obtain the same pressure dependences of
cα , �α , and 
α given in Eqs. (16), (17), and (18), respectively.
In the Rayleigh scattering regime ω < ω0 in particular, �α

follows the scaling law �α = Bα0ω
nα∗ (�/ω∗)4 [nT = 1.0 and

nL = 1.4, see also Fig. S5(a)] even in the unstressed system.
The only difference between the stressed and unstressed sys-
tems lies in the magnitudes of the prefactors: BT 0 = 0.13 and
BL0 = 0.10 in the unstressed system, which are two orders of
magnitude smaller than the values of BT 0 = 74 and BL0 = 24
in the stressed system. This result is somewhat surprising
and suggests that effective medium theory [53,55] does not
correctly describe the phonon scattering even in the unstressed
system.

We also apply the generalized Debye model to calculate the
vDOS of the unstressed system [see Figs. S6(a) and S7]. The
reduced nonphonon vDOS g2(ω)/ω2 decreases rapidly with
decreasing ω and becomes negligible in the continuum limit,
ω � ω0. Accordingly, the total g(ω)/ω2 converges to the
Debye level A0. This result is consistent with the numerical
values found through vibrational mode analysis [61]. How-
ever, we remark that this rapid convergence occurs simply
because the prefactors of BT 0 and BL0 are very small. Because
the scaling behaviors of the phonon transport modes are
unchanged between the stressed and unstressed systems, the
generalized Debye model predicts the same scaling behavior
of the nonphonon vDOS, gnonphonon(ω) ≈ g2(ω) ∝ (ω/ω∗)4,
even in the unstressed system [see Fig. S9(a)].

F. Length scales in the amorphous solid

In this section, we will discuss our observations with regard
to the characteristic length scales in the amorphous solid. We
first look at the continuum limit of phonon transport, which
is measured with respect to the wavelength at � = ωex0,
λα0 ≡ 2πcα0/ωex0:

λT 0 ∝ ω−1/2
∗ ∝ p−1/4, λL0 ∝ ω−1

∗ ∝ p−1/2. (21)

Early work [47] studied the wavelengths at � = ω∗, which
follow the same scaling laws as those of λT 0 and λL0. λT 0

and λL0 are naturally expected to correspond to the continuum
limit of elastic response that has been studied in previous
works [71,85–87]. In particular, Ref. [86] observed that the
elastic response to a local force converges to the continuum
limit (as predicted by continuum mechanics) at the length
scales of ξT ∝ p−0.25 and ξL ∝ p−0.4 for the transverse and
longitudinal components, respectively. The scaling behaviors
of ξT and ξL are consistent with those of λT 0 and λL0,
respectively.

For the transverse length scale ξT , Ref. [71] claimed that
the elastic response is dominated by anomalous vibrational
modes at ω∗. Effective medium theory [53,55] and, more
recently, the variational argument [88] predict that the
spatial correlation of the particle displacements in these
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modes should extend over the length scale 
c ∝ p−1/4. It has
therefore been argued that ξT is related to 
c, as ξT ∝ 
c ∝
p−1/4 [71]. 
c is also related to the scattering length at ωBP,
as 
T (� = ωBP) ∝ ω

−1/2
∗ ∝ p−1/4 [49,50]. In addition, we

recently observed the length scale 
c by measuring the size of
a localized region in the soft localized modes [89].

Furthermore, we study two additional length scales, DT

and DL, for transverse and longitudinal waves. At � � ωex0,
we can define a length D that characterizes the structural
disorder responsible for the Rayleigh scattering [51]. To do
this, we solve the scattering problem for elastic waves [90].
Let us consider a situation in which an elastic wave propagates
in an elastic medium with scattering sources. If we assume
that its wavelength is much longer than the length D of the
scattering sources, we can derive the Rayleigh scattering law
and formulate the attenuation rate as follows [51,90,91] (see
Eq. (D9) in Appendix D):

�α = δγ 2
α

4π

(
Dα

cα0

)3

�4 ∝
(

Dα

cα0

)3

�4, (22)

where δγα represents the strength of the elastic inhomo-
geneity (the scattering sources): δγT = δG/G and δγL =
δ(K + 4G/3)/(K + 4G/3) are for transverse and longitudi-
nal waves, respectively (see Appendix D). We remark that
transverse and longitudinal waves are scattered by different
elastic inhomogeneities, namely, shear (G) and longitudi-
nal (K + 4G/3) moduli inhomogeneities, respectively [92].
Hence, the lengths DT and DL of these scattering sources are
different. We also note that for the case of a polycrystalline
solid, D is given by the typical grain size [90,91]; however, in
an amorphous solid, D cannot be directly observed from the
static structure but instead can be determined in an indirect
manner from the elastic response and the phonon transport.

By comparing Eq. (22) with our simulation results as given
in Eq. (17), we obtain

DT ∝ ω−0.5
∗ ∝ p−0.25, DL ∝ ω−0.87

∗ ∝ p−0.43. (23)

These scaling laws for DT and DL are consistent with those
for λT and λL in Eq. (21) and with those for ξT and ξL

[71,85–87]. This coincidence suggests that the size of the
Rayleigh scattering sources is related to the length scale of the
continuum limits of phonon transport and elastic response. For
transverse waves, λT , ξT , and DT might be controlled by the
correlation length 
c of the vibrational modes at ω∗ [71,88].
In the previous Sec. IV E, the phonon transport modes were
shown to be the same in the stressed and unstressed systems
apart from the large difference in their prefactors. This result
is consistent with the discussion in this section, because the
scaling behavior of 
c is similarly known to be the same
between the stressed and unstressed systems apart from a large
difference in the prefactors [55,71].

G. Two-dimensional system

We also study a 2D amorphous system model (see
Sec. III A). The results are presented in Figs. 2(b), 3(b), 4(b),
7, and 8. The phonon transport modes share similar properties
between the 2D and 3D cases. In the BP regime, � ∼ ωBP,
we see a dip in the sound speed cα and the �2 law, �α ∝ �2

[see Fig. 2(b)]. In the continuum limit, � � ω0, characteristics

FIG. 7. The vDOSs of the generalized Debye model at different
pressures in the 2D model system. g(ω) is plotted against the scaled
frequency ω̂ = ω/ω∗. The inset is the same as the main panel but for
the reduced vDOSs g/ω̂. At low pressures, the vDOSs collapse to
a universal function of the scaled frequency ω̂. Below ω̂0 = 0.066,
g(ω) converges to the Debye vDOS, g(ω) = A0ω.

of Rayleigh scattering behavior, cα = cα0 and �α ∝ �3, are
observed. We also obtain similar laws for the scaling with the
pressure p as in the 3D case [see Fig. 3(b)]:

cα (�) =
{
cα0fαmin (� ∼ ωBP),
cα0 (� � ω0), (24)

�α (�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BαBPω
nα∗

(
�

ω∗

)2

(� ∼ ωBP),

Bα0ω
nα∗

(
�

ω∗

)3

(� � ω0),

(25)

with the exponents of nT = 1.0 (transverse waves) and nL =
1.6 (longitudinal waves). Here fT min = 0.97, fLmin = 0.99,
BT BP = 1.3, BLBP = 0.80, BT 0 = 17, and BL0 = 7.5.

FIG. 8. The nonphonon vDOSs of the generalized Debye model
in the 2D model system. The vDOSs g2(ω) are plotted against the
scaled frequency ω̂ = ω/ω∗ for different pressures. Around ω̂BP =
0.28, g2(ω) ∝ (ω/ω∗)2 is observed. Below ω̂0 = 0.066, the vDOSs
collapse to g2(ω) ∝ (ω/ω∗)3.
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A notable difference from the 3D case is that the vDOS
of the generalized Debye model converges to the Debye
level at ω � ω0 [see Fig. 4(b)], as do the numerical values
found through vibrational mode analysis [61]. This difference
is understood by the fact that g1(ω) is much larger than
g2(ω) at ω � ω0 in the 2D case. This is then rationalized
by considering that g1(ω) is dominated by the Debye vDOS
that is a linear function of ω/ω∗, i.e., the phonon modes are
much more abundant in 2D than in 3D. This also means that
the total vDOS is expressed as a function of ω/ω∗, as indeed
demonstrated in Fig. 7. Interestingly, although the direct anal-
ysis of vibrational eigenmodes cannot separate the nonphonon
modes from the phonon modes in 2D [61], the generalized
Debye model enables us to determine the nonphonon vDOS
gnonphonon(ω) as g2(ω), whose ω and p dependencies are
controlled by the term �T /c2

T 0 [see Eq. (15)]:

gnonphonon(ω) ≈ 1

πq2
D

�T (� = ω)

c2
T 0

log

(
c2
T 0q

2
D

ω2

)
,

∝

⎧⎪⎪⎨
⎪⎪⎩

(
ω

ω∗

)2

log
(ω∗
ω2

)
∝

(
ω

ω∗

)2

(ω ∼ ωBP),(
ω

ω∗

)3

log
(ω∗
ω2

)
∝

(
ω

ω∗

)3

(ω � ω0).

(26)

Figure 8 plots g2(ω) ≈ gnonphonon(ω) and demonstrates
Eq. (26).

H. Logarithmic scaling of sound attenuation

The recent work [22] suggested a logarithmic scaling of
�α ∝ −qd+1 ln q with the wave number q and questioned
the validity of the Rayleigh scattering law �α ∝ qd+1. They
also argued that the logarithmic correction to the Rayleigh
law might originate from the long-range correlation of elastic
modulus [67]. To elucidate this point, we perform additional
simulations in 2D at the pressure p = 5 × 10−2, by using
larger systems of up to N = 4 096 000. Figure 9 shows �α/q3

against q in a semilog plot. We can find that the suggested
logarithmic scaling works in the BP regime, q ∼ qαBP ≡
ωBP/cα0; however, this scaling becomes invalid at the wave
number corresponding to the continuum limit, q � qα0 ≡
ω0/cα0, where �α ∝ q3 clearly appears. We therefore demon-
strate that with decreasing q (or �), the Rayleigh scattering
law emerges in the continuum limit. It is important to em-
phasize that these behaviors are not affected by the system
size (data from different system sizes of N = 1 024 000 to
4 096 000 coincide within error bars). We also analyze the
unstressed systems (in both 2D and 3D) and plot �α/qd+1

against q in Fig. S10 of the Supplemental Material [84].
We can cleanly observe the Rayleigh scattering law without
logarithmic correction in the low wave-number regime, q <

qα0. We therefore conclude that the Rayleigh law is valid in
the 2D system and the 3D and 2D unstressed systems, and
expect that it can be also valid in the 3D system.

In addition, we study the spatial correlations in stress field
and (affine) elastic modulus field (see Appendix C) and plot
the results in Fig. 13. The present amorphous solid shows the
long-range correlation in stress field, but not any long-range

FIG. 9. Wave-number dependence of the sound attenuation rate
for the 2D model system. Plots of �α/q

3 as a function of q, for
transverse (α = T , circles) and longitudinal (α = L, squares) waves.
The packing pressure is p = 5 × 10−2. Data are plotted for different
system sizes of N = 1 024 000, 2 048 000, 4 096 000. In the panels,
the characteristic wave numbers of qα0 ≡ ω0/cα0, qαBP ≡ ωBP/cα0,
and qα∗ ≡ ω∗/cα0 are indicated by arrows. The horizontal line shows
the value of �α/q

3 = Bα0ω
nα−3
∗ c3

α0, where Bα0ω
nα−3
∗ is the coefficient

of �α in the Rayleigh scattering regime, �α = Bα0ω
nα∗ (�/ω∗)3 [see

Eq. (25)]. The error bars are estimated by using the values from
different propagating directions of x and y and different initial
phases of ψ = 0 and π/2. A logarithmic scaling of �α ∝ −q3 ln q

is observed near qαBP ; however, this logarithmic scaling terminates
at qα0 .

correlation in elastic modulus field, which is in contrast to the
system studied in Ref. [22]. We also confirm no long-range
correlation in elastic modulus field in the unstressed systems
(see Fig. S13 of the Supplemental Material [84]). Our results
therefore do not exclude the possible relation between the
logarithmic correction to the Rayleigh law and the long-range
nature of elastic modulus, as proposed by Ref. [22].

V. CONCLUSION

By means of large-scale numerical simulations, we
achieved a consistent understanding of the phonon trans-
port and vibrational eigenmodes in amorphous solids. Near
the BP, at � ∼ ωBP, �2 law (with �α ∝ �2) is observed,
which is linked to the disordered and extended nature of the
eigenmodes. In the continuum limit, at � < ωex0, Rayleigh
scattering (with cα = cα0 and �α ∝ �4) is observed, which is
linked to a mixture of phonon modes and soft localized modes.
In this regime, the soft localized modes play the role of defects
to enhance the phonon scattering. The crossover frequency is
therefore identified as ωex0. Our results also unambiguously
demonstrate the occurrence of Rayleigh scattering without
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logarithmic correction and thus shed new light regarding the
argument for a logarithmic scaling law presented in the recent
work [22]. We would argue that the Rayleigh law is valid
in the present amorphous solid; however, it might be altered
by the long-range nature of (affine) elastic modulus which is
absent in the present system.

We also established the jamming scaling laws for the
phonon transport properties. We find that the cα and �α values
measured over a wide range of pressures can be seen to
collapse when they are scaled properly by ω∗ ∝ p1/2. Based
on these results, we reveal the length scale Dα of the sources
responsible for the Rayleigh scattering. The scaling behaviors
of Dα coincide with those of the length scales characterizing
the continuum limits of elastic response and phonon trans-
port. This result suggests that all of these length scales are
controlled by the correlation length scale 
c of the vibrational
eigenmodes at ω∗ [71,88]. In addition, by applying the gen-
eralized Debye model, we find that the non-Debye laws for
nonphonon modes are intimately related to the phonon scatter-
ing laws in the form, gnonphonon(ω) ∝ �T /c2

T 0: gnonphonon(ω) ∝
(ω/ω∗)4 at ω < ωex0 and ∝ (ω/ω∗)2 at ω ∼ ωBP.

The results of the jamming scaling laws enabled us to
directly test the mean-field theory of jamming. We find that
in the BP regime, the jamming scaling laws are consistent
between our simulation results and the predictions of effective
medium theory [53,55]. However, we find inconsistencies
in the continuum limit regime, with the theory significantly
underestimating the strength of the Rayleigh scattering. One
important issue is that the effect of the soft localized modes
is neglected in the theory. Nevertheless, we also notably show
that the theory does not correctly describe the phonon scat-
tering even in the unstressed system, where the soft localized
modes are strongly suppressed [61,65]. Our results therefore
reveal crucial issues that must be solved with regard to the
current version of the theory [53,55].

Here we make some remarks on the other theoretical
approaches; the elastic heterogeneities, and the two-level
system and the soft potential model. The mean field theory
of elastic heterogeneities [15–18] uses the effective medium
technique to predict the Rayleigh scattering and �2 law, as
does the mean-field theory of jamming [53,55]. Since effect
of the soft localized modes is also missing in the theory
of elastic heterogeneities, this theory has the same issue as
the mean-field theory of jamming; the phonon scattering is
significantly underestimated. For the two-level system and the
soft potential model [27–33], it could be an important subject
to clarify anharmonic nature of the vibrational properties that
the mean-field theories of jamming and elastic heterogeneities
do not take care of. Anharmonicities are expected to play
crucial roles in the low-temperature thermal properties below
1 [K] [3–5].

Finally, we mention the hybridization effect due to phonon
broadening. In a recent work [66], it was reported that the
soft localized modes hybridize with the phonon modes as
the system size increases. The size of our investigated sys-
tem in 3D is still too small for us to observe this effect
directly. Yet, we speculate that this hybridization does not
exert a qualitative influence on the phonon transport, and
the crossover frequency ωex0 can be determined through the
phonon transport. Indeed, the Rayleigh scattering has been

observed in many experimental works and should be free of
system size effects [9–14]. Also, although the soft localized
modes strongly hybridize with the phonon modes in our
2D case, we still observe the Rayleigh scattering and can
determine the crossover frequency ω0 [Figs. 2(b) and 3(b)].
These observations imply that the phonon transport does not
qualitatively change due to the hybridization. We therefore
speculate that even if the hybridization takes place, we can
determine the frequency ωex0 in 3D at which vibrational prop-
erties (vibrational eigenmodes as well as phonon transport)
show the crossover. However, it will certainly be important to
investigate the effects of hybridization in future work.
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APPENDIX A: SYSTEM SIZE EFFECTS

To study the system size effects, we analyzed additional
system sizes of N = 128 000 and 512 000 for the 3D case
and N = 256 000, 2 048 000, and 4 096 000 for the 2D case,
at the packing pressure p = 5 × 10−2. Figure 10 compares
the results for different system sizes and confirms no apparent
differences among them (see also Fig. 9 for the 2D case). We
therefore conclude that no apparent system size effects appear
in our results.

APPENDIX B: THE IOFFE-REGEL (IR) FREQUENCY

We define the IR frequency �αIR (α = T or L) as
π�α (�αIR)/�αIR = 1, where �α (�) is considered a function
of � (see Fig. 11). Above � = �αIR, the phonon decay time
(=�−1

α ) becomes shorter than half of the vibrational period
(=π/�); i.e., the phonon decays within half of the duration of
one period. The IR frequency �αIR therefore corresponds to
an upper bound on the propagation frequency of a phonon as
a plane wave.

Figure 12 plots �αIR as a function of the pressure p. At any
p, �TIR for transverse waves coincides with the BP frequency,
�TIR ≈ ωBP ∝ p1/2. This coincidence has been also observed
in other glassy systems [9,19,21,72]. Note that �LIR of the
longitudinal waves is located at the higher frequency, �LIR 	
�TIR ≈ ωBP, that has been reported for a similar system as
the present one [81]. We therefore conclude that the phonon
persists as a plane wave below the BP and that the phonon
approximation, � 	 �T , which is assumed in the generalized
Debye model in Sec. III C, is valid for � � ωBP.

It is worth to note that the fitting function in Eq. (6) (i.e., the
damped harmonic oscillator model) may not be appropriate
to measure the phonon transport properties in the frequency
regime above the IR frequency [80]. A recent work [93]
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FIG. 10. Effects of system size on phonon transport. Plots of the sound speed cα (�) and the attenuation rate �α (�) as functions of �, for
transverse (α = T , circles) and longitudinal (α = L, squares) waves. (a, left panels) The 3D model system (d = 3). (b, right panels) The 2D
model system (d = 2). The packing pressure is p = 5 × 10−2. Data are plotted for different system sizes of N = 128 000, 512 000, 2 048 000,
and 4 096 000 for the 3D case and N = 256 000, 1 024 000, 2 048 000, and 4 096 000 for the 2D case. The data for N = 2 048 000 and 4 096 000
(3D) and for N = 1 024 000 (2D) are the same as those presented in Fig. 2. We confirm no apparent differences among systems of different
sizes.

proposed a theoretical expression to measure the attenuation
rate by using the mechanical spectroscopy. Here we do not
go into this direction more, because the present work mainly
focuses on the frequency regime � � ωBP, i.e., below the IR
frequency, where we can safely use the fitting function in
Eq. (6).

APPENDIX C: SPATIAL CORRELATIONS OF ELASTIC
MODULUS AND STRESS FIELDS

Following Ref. [22], we study the spatial correlations of
the (affine) elastic modulus and the stress for the 2D case.
We define the particle-based, affine elastic modulus CAα (α =
1, 2, 3, 4, 5) for the particle i as

CA1(ri ) =
∑
j∈∂i

hij ,

CA2(ri ) =
∑
j∈∂i

hij cos(2θij ),

CA3(ri ) =
∑
j∈∂i

hij sin(2θij ), (C1)

CA4(ri ) =
∑
j∈∂i

hij cos(4θij ),

CA5(ri ) =
∑
j∈∂i

hij sin(4θij ),

where hij = φ′′(rij )rij
2 − φ′(rij )rij with rij the distance be-

tween particles i and j , rij /rij = (cos θij , sin θij ), rij =
rj − ri , and

∑
j∈∂i

denotes the summation of particles
j that interact with the particle i. We note that CAα

is the affine modulus, not including the nonaffine com-
ponent [78]. CA1/4 corresponds to the bulk modulus,
and (CA1 + CA4)/8 and (CA1 − CA4)/16 are two shear
moduli.
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FIG. 11. The Ioffe-Regel (IR) frequency of phonon transport. The ratio π�α/� is plotted as a function of �, for transverse (α = T , red
circles) and longitudinal (α = L, blue squares) waves. (a) The 3D model system (d = 3). (b) The 2D model system (d = 2). The packing
pressure is p = 5 × 10−2. The frequency at which this ratio is equal to one (π�α/� = 1) is defined as the IR frequency, �αIR. Figure 12 plots
the dependence of �αIR on the pressure p.

We also define the particle-based stress σα (α = 1, 2, 3) for
the particle i as

σ1(ri ) =
∑
j∈∂i

pij ,

σ2(ri ) =
∑
j∈∂i

−pij cos(2θij ), (C2)

σ3(ri ) =
∑
j∈∂i

−pij sin(2θij ),

where pij = −(1/2)φ′(rij )rij . σ1 corresponds to the pressure,
and σ2 and σ3 are two shear stresses. We then calculate the
spatial autocorrelation functions of the elastic modulus field
CAα (r) and the stress field σα (r).

Figure 13 plots the autocorrelation functions,
〈CA3(r)CA3(0)〉 and B2〈σ3(r)σ3(0)〉, at the packing
pressure p = 5 × 10−2. Here B = 4KA/P is the ratio of
the global affine bulk modulus KA = (1/2L2)

∑
i CA1(ri )/4

and the pressure P = (1/2L2)
∑

i σ1(ri ) [22]. The stress
field shows the power-law correlation ∝ r−2, while the
elastic modulus field does not show such the long-range
correlation. This situation is different from that in Ref. [22].
Because the interparticle potential studied in Ref. [22] is the
inverse-power-law and hij ∝ pij , the power-law correlation
in stress causes the analogous correlation in elastic modulus
as 〈CA3(r)CA3(0)〉 ∝ 〈σ3(r)σ3(0)〉 ∝ r−2. However, the inter-
particle potential of the present system does not show such
the property: the stress shows the long-range correlation, but
it does not induce the analogous correlation in the elastic
modulus, as is demonstrated in Fig. 13. We also confirm

FIG. 12. Packing pressure dependences of the characteristic frequencies. Plots of ωex0 (ω0), ωBP, ω∗, �TIR, and �LIR as functions of p.
(a) The 3D model system (d = 3). (b) The 2D model system (d = 2). The data for ωex0 (ω0), ωBP, and ω∗ are the same as those presented in
Ref. [61]. The lines represent the power-law scaling ∝ p1/2. For all pressures p, the IR frequency �TIR for transverse waves almost coincides
with the BP frequency, �TIR ≈ ωBP. However, the IR frequency �LIR for longitudinal waves is much larger than �TIR ≈ ωBP.
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FIG. 13. Spatial correlations of elastic modulus and stress in the
2D amorphous solid. (a) Spatial autocorrelation functions of the
elastic modulus field CA3(r) and the stress field σ3(r). (b) Cut of
the correlation functions along the π/4 axis. The packing pressure
is p = 5 × 10−2. In (b), the spatial correlation of the stress shows a
clear r−2 scaling, while the elastic modulus does not.

that the unstressed system shows almost the same spatial
correlation in elastic modulus, as the original stressed system
(see Fig. S13).

APPENDIX D: SCATTERING THEORY
OF AN ELASTIC WAVE

Here, we review the scattering theory of an elastic wave
in a three-dimensional space [90]. Our goal here is to eval-
uate the rate of attenuation due to the presence of scatter-
ing sources, i.e., elastic inhomogeneities. Let us consider
an elastic wave propagating in an isotropic elastic medium
embedded with a single scattering source. The displacement
field s(r, t ) (where r is a spatial vector and t is time) is written
as s(r, t ) = u(r)ei�t , where � is the propagation frequency.
We consider the inhomogeneity in the elastic modulus as the
scattering source. The modulus tensor is described as a sum
of two terms, Cijkl + δCijkl (r). Cijkl = (K − 2G/3)δij δkl +
G(δikδjl + δilδjk ) is the isotropic modulus tensor with the
bulk modulus K and the shear modulus G. δCijkl (r) is the
elastic inhomogeneity; it takes a constant, non-zero value at
r ∈ V , and otherwise, δCijkl (r) = 0, where V denotes the
volume of the scattering source. We start with the equation
of motion:

(Cijkl + δCijkl )
∂2uk

∂xj ∂xl

+ ρ�2ui = 0, (D1)

where ρ is the mass density of the elastic medium, which is
assumed to be spatially uniform, r = (x, y, z) = (x1, x2, x3),
and the Einstein summation convention is employed.

We suppose that the displacement u(r) can be decomposed
into components corresponding to the incident wave and
the scattered wave: u(r) = uin(r) + usc(r). In addition, we
consider that the incident wave propagates in the z direction
and that its wave vector is qin = qq̂in = q(0, 0, 1): uin(r) =
aine−iqin·r = aine−iqz. ain is the polarization vector, where
ain = ain

T = (ax, ay, 0) for a transverse wave and ain = ain
L =

(0, 0, az) for a longitudinal wave. The equation of motion for
the incident wave is

Cijkl

∂2uin
k

∂xj ∂xl

+ ρ�2uin
i = 0, (D2)

which yields a linear dispersion relation, �/q =
cT 0 = √

G/ρ for a transverse wave and �/q = cL0 =√
(K + 4G/3)/ρ for a longitudinal wave. We can therefore

calculate the incident energy per unit time and area for a
transverse wave (α = T ) or a longitudinal wave (α = L) as
follows:

Ein
α = cα0ρ�2|sin(r, t )|2 = ρc3

α0q
2
∣∣ain

α

∣∣2
. (D3)

We next assume that δCijkl/Cijkl � 1 and |usc|/|uin| � 1
in Eq. (D1) and obtain the equation of motion for the scattered
wave usc(r) [90]:

Cijkl

∂2usc
k

∂xj ∂xl

+ ρ�2usc
i = −δCijkl

∂2uin
k

∂xj ∂xl

. (D4)

We denote the wave vector of the scattered wave by qsc =
qq̂sc (q̂sc is a unit vector). Then, the scattered wave can be
described as usc(r) ∝ e−iqq̂sc·r and can be decomposed into
a transverse component usc

T and a longitudinal component
usc

L , as follows: usc
T = usc − usc

L and usc
L = (q̂sc · usc)q̂sc. Here,

we introduce the quantities �sc = ∇ × usc and �sc = ∇ · usc,
which are related to usc

T and usc
L as follows: |usc

T | = |�sc|/q
and |usc

L | = |�sc|/q. From Eq. (D4), we obtain the equations
for �sc and �sc:

∇2�sc +
(

�

cT 0

)2

�sc = ∇ × (ainq2δγT e−iqz),

(D5)

∇2�sc +
(

�

cL0

)2

�sc = ∇ · (ainq2δγLe−iqz),

where δγT = δG/G and δγL = δ(K + 4G/3)/(K + 4G/3)
represent the strengths of the scattering source (inhomogene-
ity) for transverse and longitudinal waves, respectively. To
derive Eq. (D5), we assume that δCxzzz = δCyzzz = δCyzxz =
δCzzxz = δCxzyz = δCzzyz = 0. We also remark that trans-
verse and longitudinal waves are scattered by different elastic
inhomogeneities, δG(r) and δ(K + 4G/3)(r), respectively.
The volumes of these scattering sources are generally differ-
ent, and we use VT to denote the volume of δG(r) and VL to
denote the volume of δ(K + 4G/3)(r).
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The particular solution to Eq. (D5) is an outward-going
spherical wave [90]. For a wave with a wavelength λ = 2π/q

that is much larger than the length scale of the scattering
source, D = V 1/3, we obtain the following solution:

�sc(r) ≈ (iq3q̂in × ain )δγT VT

e−iqr

4πr
,

(D6)

�sc(r) ≈ (iq3q̂in · ain)δγLVL

e−iqr

4πr
.

We finally obtain the energy scattered in all directions per unit
time as follows:

Esc
α = cα0ρ�2

∫
|ssc(r, t )|2r2d�,

= ρc3
α0q

2
∣∣ain

α

∣∣2 δγ 2
α

4π
V 2

α q4 = Ein
α

δγ 2
α

4π
V 2

α q4, (D7)

where d� is the solid angle. The scattering cross section σ tot
α is

therefore calculated as the ratio between the scattered energy

and the incident energy:

σ tot
α ≡ Esc

α

Ein
α

= δγ 2
α

4π
V 2

α q4. (D8)

This demonstrates the occurrence of Rayleigh scattering be-
havior, σ tot

α ∝ q4, in the long-wavelength and low-frequency
regime.

Up to now, we have studied the scattering of an elastic
wave by a single scattering source. In an amorphous solid,
however, many scattering sources should be considered to
scatter an elastic wave. Here, we assume that the number
density of these scattering sources is nα = V −1

α , as in the
case of polycrystalline solids [90,91], and that these scattering
sources independently scatter the elastic wave. We can then
formulate the fraction of the scattered energy per unit time,
i.e., the attenuation rate, as follows:

�α = σ tot
α nαcα0 = δγ 2

α

4π
Vαq4cα0,

= δγ 2
α

4π

(
Dα

cα0

)3

�4 ∝
(

Dα

cα0

)3

�4. (D9)
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