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Using Monte Carlo simulations, we investigate the electrical conductivity of networks of hard rods with aspect
ratios 10 and 20 as a function of the volume fraction for two tunneling conductance models. For a simple,
orientationally independent tunneling model, we observe nonmonotonic behavior of the bulk conductivity as
a function of volume fraction at the isotropic-nematic transition. However, this effect is lost if one allows for
anisotropic tunneling. The relative conductivity enhancement increases exponentially with volume fraction in the
nematic phase. Moreover, we observe that the orientational ordering of the rods in the nematic phase induces an
anisotropy in the conductivity, i.e., enhanced values in the direction of the nematic director field. We also compute
the mesh number of the Kirchhoff network, which turns out to be a simple alternative to the computationally
expensive conductivity of large systems in order to get a qualitative estimate.
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I. INTRODUCTION

At the percolation transition, clusters of connected objects
merge to form one system-spanning network. This transition
was first studied in the context of the flow of water through
porous rock. By now, due to the technological relevance
of transport processes in disordered media, in general, as
well as the mathematical properties of percolation transition,
percolation has become a topic of interest in a wide range
of different research fields [1,2]. In this article, we focus on
the formation of networks of electrically conducting fibers,
as they would be used, e.g., in a composite material that is
designed to undergo a transition from an insulating state to a
conductive state. These types of composites have been studied
extensively for almost 50 years in experiment, simulation,
and theory. A complete literature overview is hence beyond
the scope of this paper. Instead, we refer the reader to a
selection of relevant articles in the context of the present
work: For reviews on conductive composites see Refs. [3–8],
for theoretical approaches to connectivity percolation in rods
see Refs. [9–24], for simulation see Refs. [25–36], and for
experiments see Refs. [37–47].

In suspension, anisotropic particles form liquid crystalline
phases. In particular, on increasing the concentration of rod-
like particles, they undergo a transition from an isotropic
phase to an orientationally ordered, but positionally disor-
dered, phase (called the “nematic” phase) [48,49]. In gen-
eral, the electrical conductivity of a suspension of aligned
particles is different from that of an isotropic system. The
effect of alignment on networks of conductive fillers has been
studied in experiment [50–54] and in theory and simulation
[55–59]. However, these studies considered alignment by
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means of an external field such as, e.g., shear and not align-
ment due to a phase transition that is intrinsic to the system.
To our knowledge, there is no systematic study of the behavior
of the conductivity across the isotropic-nematic (I-N) phase
transition yet. It is thus the aim of our study to fill this gap.

II. MODELS AND SIMULATIONS

We have modeled only the filler particles and neglected
the host environment of the nanocomposite. We used hard
spherocylinders (“rods”) with a cylindrical part of length L

and diameter D, capped on both ends with hemispheres of
diameter D. The rods are “coated” by a spherocylindrical pen-
etrable contact shell of diameter λ, which serves as a means of
establishing a geometric connectivity criterion between pairs
of rods, where if two rods have overlapping contact shells,
then they are considered to be a connected pair. By extension,
a cluster can be formed by a contiguous sequence of such
pairwise connected rods.

We have generated configurations of hard rods using
canonical Monte Carlo simulations (NVT-MC). The simula-
tions have been carried out for systems of aspect ratio L/D =
20 and 10, using a noncubic [60] and a cubic simulation box of
dimensions Lx,y = 3L,Lz = 4L, and Lx,y,z = 6L, respec-
tively. The particle numbers ranged from N = 1000 to 5000
for L/D = 20 and N = 6000 to 8000 for L/D = 10 in order
to cover a range of volume fractions that span configurations
in both the isotropic and the nematic phase. The volume
fraction is defined as η = Nvcore/V, with N being the number
of rods in suspension, V volume of the simulation box, and
vcore = πD2(L/4 + D/6) denotes the volume of one rod.

We work with two different contact shell diameters for
the case of L/D = 20, namely λ = 1.1D and λ = 1.2D. The
former is small enough such that irrespective of the volume
fraction we simulated, the suspensions never exhibited a
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percolating cluster (i.e., they appear as a sparse collection of
isolated clusters), while, conversely, for the latter choice of λ,

the rods were always in a percolating state (i.e., the suspension
is mostly composed of a large connected cluster spanning the
simulation box). Despite the fact that the electrical connec-
tions between the rods will be subsequently modeled by tun-
neling processes, which decay continuously with the interpar-
ticle distance and thus without a sharp cutoff, the motivation
behind the aforementioned λ choices and their corresponding
geometric percolation states is the fact that they provide us
with two contrasting connectivity states for the same liquid
state of the suspension. Ultimately, they exemplify two cases
of short and long tunneling decay lengths, which we will
touch on in more detail subsequently. However, in the case
of aspect ratio 10, we will only consider one contact shell
value, λ = 1.1D, which is large enough to ensure a similar
percolating state for all simulated volume fractions.

As a scalar order parameter to distinguish between the
isotropic and nematic phase, we use S2, the maximum eigen-
value of the orientation tensor Q as given by:

Qij = 1

2N

N∑

α=1

(
3vα

i vα
j − δij

)
, (1)

where vα
i and vα

j are the ith and j th components of the
normalized orientation vector of rod α, respectively, and δij

is the Kronecker delta.
For the conductance gij between a given pair of rods, we

use the commonly adopted model of single-electron tunneling
as the dominant process for electron transfer in composite
systems dispersed with nano-sized conductive filler particles
[32]. The general form of the model is given by a simple
exponential decay function g:

g(dij ) = g0 exp (−2dij /ξ ), (2)

where dij denotes the shortest distance between the surfaces
of rods i and j and ξ is the tunneling decay length (which
is usually taken to be in the order of magnitude of a few
nanometers and in our simulations it is simply taken as
difference between the penetrable shell diameter λ and the
impenetrable rod diameter D). Conventionally, we set the
conductance between two rods whose surfaces are touching
to be equal to unity which resolves the prefactor in (2) into
being unity as well: g(0) = 1. It is important to discuss the
range of validity of Eq. (2), which is sometimes also referred
to as normal tunneling. Briefly, the limit of validity of normal
tunneling as the dominant process of electron transport be-
tween nano-sized conductive filler particles is directly related
to the cross-section area of the tunneling junction between
them, namely the narrower the junction, the higher the prob-
ability for events of single uncorrelated electrons tunneling
through the junction barrier. The cross-section area depends
primarily on the shape of the electrodes, which in our case
are spherocylindrical. Furthermore, for the general working
temperature of nanocomposites, namely T < 500K, normal
tunneling is expected to remain valid. However, given that
hard systems are athermal, together with the fact that the area
of the junction is then dependent only on particle geometry
and relative orientation with a neighboring particle, the former
validity criterion can be translated into one on the aspect ratio,

L/D � 200. Thus, for our purposes the choices of L/D =
10, 20 remain reasonable if we are to adopt Eq. (2) in order
to describe pairwise conductances. For an in-depth discussion
on the validity of normal tunneling in systems of elongated
particles, we refer the reader to the work of Sherman et al.
[61].

Next to Eq. (2), we also applied a second conductance
model, which deviates from Eq. (2) by its explicit incorpo-
ration of the relative orientation between two given rods in
order to account for the cross section of the tunneling junction
between the pair. More precisely, Nigro and Grimaldi [62]
have recalculated the matrix element for electron tunneling
between rodlike particles and have shown that in general
the tunneling between two parallel rods (e.g., in the nematic
phase) is more probable by a factor of L/

√
ξD compared to

two rods perpendicular to one another. Moreover, they show
that for disordered phases (e.g., in the isotropic phase) the
orientationally dependent contributions to the conductance
become negligible once an averaging over all solid angles
is performed. However, for strongly oriented phases of sus-
pension of rodlike particles, the enhanced tunneling between
parallel rods is expected to have a significant influence on
the conductivity of the network of rods. In order to draw a
comparison with the results that are obtained according to
Eq. (2), we will adopt a simplified form of the anisotropic
tunneling conductance, which is obtained with the underlying
assumption that the centers of mass of two connected rods are
close to their line of shortest distance [63]:

g(dij , γij )/g0 = exp (−2dij /ξ )
2πDξ

L2 + sin2(γij )
, (3)

where the newly introduced variable γij denotes the angle be-
tween the long axes of the rods. We note that our comparison
merely aims at probing the effects on the bulk conductivity
resulting from a simple deviation from the common model
Eq. (2), one that would account in an explicit manner for
the relative orientation when estimating the tunneling conduc-
tance between two rods. Therefore, we take one of the sim-
plest forms of the corrections derived by Nigro and Grimaldi
[62], which offers the added advantage of maintaining the
numerical computations rather simple. Moreover, considering
that, on the one hand, we have only chosen to work with short
aspect ratio rods, namely of 20 and 10, contained in simulation
boxes of dimensions 4 and 6 times larger than L, respectively,
and that, on the other hand, only small tunneling decay lengths
(10–20% of rod diameter) are considered, the assumptions
behind Eq. (3) remain reasonable for our purposes.

Last, we briefly discuss our methodology for estimating the
network conductivity σ, a calculation which is only performed
on the largest cluster of a given simulated suspension. That
is, at a given volume fraction and irrespective of whether the
chosen contact shell diameter is below or above the percola-
tion threshold, we first reduce the corresponding configuration
(equilibrium suspension of hard rods) to its largest cluster,
where clusters are defined according to our geometric connec-
tivity criterion of overlapping penetrable shells of diameter λ.

In other words, the reduction to clusters ensures that we per-
form the conductivity calculations on subsets of rods where,
for any given rod, there is at least one neighbor such that the
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FIG. 1. Snapshots of percolating clusters at different volume
fractions.

shortest distance between their long axes is � ξ + D = λ.

Then, having identified the largest cluster, we proceed to the
construction of the tunneling resistor network. In Fig. 1 exam-
ples of percolating largest clusters in the isotropic and nematic
phase are visualized. The resistor (conductance) network is
built by assigning a node to each rod and a resistor between all
pairs of nodes in the system (composed of the largest cluster)
whose value is given by the inverse of their corresponding
conductance given by either Eq. (2) or (3). For measuring
the conductivity, two electrodes are placed on the most distant
nodes except in the study of the conductivity anisotropy in the
nematic phase where we additionally restrict their connecting
axis to be once parallel and once orthogonal to the common
director field of the rods.

In order to solve the Kirchhoff equations (i.e., to obtain the
equivalent resistance or equivalently the overall conductivity)
of the corresponding tunneling-based resistor network, we
measure the equivalent resistance between the two electrode-
nodes by performing a DC simulation on the network in
Qucs [64]. More precisely, in order to obtain the equivalent
resistance between the electrode nodes, a constant current
source of 1A is placed between them and the voltage across
the two nodes is measured during the simulation. As a second
method for comparison, in a handful of cases we also apply an
exact numerical decimation using the Star-Mesh transform,
which entails applying Rosen’s formula [65] until all nodes
except the electrode-nodes are eliminated. In order to reduce
the computational efforts due to the large number of tunneling
bonds in the network [∝ N (N − 1), with N here denoting the
number of rods in the largest cluster], we remove the tunneling
bonds between rods that are sufficiently apart, meaning their
tunneling conductance is negligibly small to be relevant in the
estimation of the bulk conductivity. Thus, their removal would
not be in conflict with any of our previous considerations, and
as long as the introduced cutoff is at least equal or greater
than λ, the resulting simplified network shares the same
connectivity properties, such as the nearest-neighbor distances
and, in particular, the same percolation state. Therefore, given
the rapid exponential decay of the conductances and the
known decay length scales, we introduced an artificial cut-off
distance of λ2/D, which considerably simplified the tunneling
network and in turn reduced the computational times needed
for the decimation routine. The final conductivity value for
each volume fraction is averaged over an ensemble of 200
independent largest clusters. It is important to point out that by
reducing the configuration of the rods to their largest cluster
in addition to the aforementioned cutoff serving to lower

computational costs, the resulting conductivity estimate will
consequently represent a lower bound for the corresponding
equilibrium suspension at a given volume fraction.

In an independent calculation, we also counted the number
of meshes of the simplified Kirchhoff network: We recorded
the edge-vertex-incidence matrix of the network correspond-
ing to the largest cluster considered as an undirected graph
and then computed the mesh number from the dimension of
its kernel, i.e., by subtracting its rank from the number of
resistors (size of the graph). In order to be consistent with
the conductivity calculations, we have again used the same
cutoff when setting the edges of the graph, i.e., it is interpreted
as a graph where a bond is placed between any two nodes
separated by a distance < λ2/D. It is important to note that the
mesh calculations and results are completely independent of
the choice of conductance model and instead depend only on
the geometric connectivity properties of the network formed
by the rods.

III. RESULTS

We start by discussing the bulk conductivity (σ ) as a
function of volume fraction (η) for values in the isotropic
and the nematic phase and for two contact shell diameters,
λ = 1.1 D, 1.2 D, and L/D = 20. In Fig. 2 we show results
for normal tunneling [Eq. (2)]. The conductivity increases
with volume fraction for the percolating case (for λ = 1.2 D),
while below the percolation threshold (λ = 1.1 D) we observe
a constant and negligibly small value for σ . In the latter case,
the conductivity of the nanocomposite would correspond to
that of the polymeric host material alone.

In Fig. 2 we also show the nematic order parameter S2 (red
dotted line, second y axis) of the entire system. At the onset
of the nematic phase (vertical solid line) and for λ = 1.2D,
despite the increase in volume fraction, we observe a clear

FIG. 2. Conductivity (in log10) for the normal tunneling model
Eq. (2) as a function of volume fraction for two different contact shell
diameters, λ = 1.1D (blue symbols, mean value as a dashed line) and
λ = 1.2D (green symbols, solid line). In addition, on the second y

axis the mean nematic order parameter (S2, red, dotted line) values of
the entire system (not just the connected clusters) is plotted, and the
vertical solid (brown) line indicates the coexistence volume fraction
in the nematic phase for L/D = 20.
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drop in σ relative to the last value observed in the isotropic
phase. After the drop at the onset, σ increases again with
η but less strongly than in the isotropic phase [66]. This
nonmonotonic behavior is due to the increase in orientational
order at the phase transition, which has the effect of reduc-
ing the excluded volume between neighboring rods. Con-
sequently, the latter translates into a weakened connectivity
of the resulting network (here interpreted as a graph where
the edges are assigned geometrically based on our cut-off
distance criterion). The said weakening has been successfully
captured in the plots of Fig. 3 in terms of the behavior of the
average degree and the nearest-neighbor distance of a rod as a
function of volume fraction. More precisely, in Fig. 3(a), the
average degree, simply taken as twice the number of edges
divided by the number of nodes (rods), exhibits the same

FIG. 3. (a) The average degree of a rod as a function of volume
fraction for L/D = 20 and λ = 1.2D. The average degree is simply
calculated as twice the size of the edge set divided by the number of
nodes in a given network. (b) The mean distance to a rod’s nearest
neighbor in the largest cluster as a function of volume fraction.
In both plots, the error bars are obtained by averaging over all
independent realisations of largest clusters per volume fraction.

nonmonotonic behavior as σ , where at the I-N transition the
number of connected neighboring rods can be clearly seen
to become smaller before increasing again. Furthermore, in
Fig. 3(b), the mean nearest-neighbor distance of a rod in a
cluster is shown to decrease with increasing volume fraction,
but the observed increase at the I-N transition suggests a
reduction in the largest conductance contribution per rod in
the network. Therefore, we observe a consistent correlation
between the weakened-geometrically interpreted connectivity
properties of the network of rods and its corresponding tun-
neling conductivity.

Next we compare the dependence of σ on η for the two
different tunneling conductance models given in Eqs. (2) and
(3). In Fig. 4, both below and above the percolation threshold,
we observe that the anisotropic tunneling model enhances
the conductivity, in particular in the nematic phase. The non-
monotonic behavior of the conductivity across the transition
is lost for the more realistic, anisotropic model. That is, the
conductance enhancement between aligned rods inherent to

FIG. 4. Comparison of the dependence of σ (in log10) on η for
the two tunneling conductance models as given in Eq. (2) (labelled
Iso.) and Eq. (3) (labelled Aniso.), and for L/D = 20. (a) λ = 1.1D,
(b) λ = 1.2D. The nematic order parameter S2 is shown on the
second y axis in each case.
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FIG. 5. Conductivity (in log10) for the anisotropic tunnel model
Eq. (3) as a function of volume fraction, for L/D = 10 and λ =
1.1D, which is above the percolation threshold for the entire of range
of chosen volume fractions here. The mean nematic order parameter
(S2) is plotted on the second y axis (red dashed).

the model dominates the previously characterized effect of the
weakened connectivity that the network undergoes at the I-N
transition. In Fig. 5, the latter behavior is also observed for
L/D = 10, based on the model Eq. (3) and using λ = 1.1D,

which is above the percolation threshold.
The enhancement of the conductivity in nanocomposites

across the I-N transition of the filler particles has been previ-
ously theoretically predicted [57] in the context of polymeric
fillers of very high aspect ratio (L/D = 100 and above) under
shear flow. Zheng et al. showed that the relative conductivity
enhancement [67], which is the relative conductivity change
in the polymeric bulk after and before the dispersion of
conductive filler particles, grows linearly with volume fraction
both in the isotropic and nematic stable regions.

In order to draw a closer comparison in addition to the gen-
eral qualitative agreement, we set the conductivity in the host
insulating material as σins = 〈σ 〉λ=1.1 and, similarly, the con-
ductivity in the conductive state to σco = σλ=1.2, i.e., σ in
the presence of percolating clusters. With the latter choices,
we define the relative conductivity enhancement as the ratio
ε = σco/σins. In Fig. 6, the relative enhancement based on
the anisotropic conductance model is plotted as a function of
η. We clearly observe that the relative enhancement is well
described in the nematic phase by an exponential function,
ε(η) ≈ exp(αη), with α > 0, i.e., we observe exponential
rather than linear scaling. In the inset plot of Fig. 6, a linear fit
applied to ln (ε) restricted to the volume fraction range in the
nematic phase yields α = 19.9 ± 0.9.

We note that due to the fact that in this comparison, neither
the aspect ratios, nor the considered conductivities in the
host insulating environment (more precisely the ratios of σ

after and before dispersion) are the same, a direct quantitative
comparison with Ref. [57] remains difficult to perform.

In particular, for the aligned phase of the rods in the bulk,
having already studied the enhancement of σ compared to
the disordered phase, next we briefly discuss our observations

FIG. 6. The relative conductivity enhancement in percentages for
the anisotropic tunneling model as a function of volume fraction,
which is calculated based on the data shown in Fig. 4. σco denotes
σ in the conductive state, i.e., in the presence of percolating clusters
(λ = 1.2D), and σins denotes the mean conductivity value in the
absence of percolating clusters (λ = 1.1D). The inset plot shows
ln σco/σins as a function of η restricted to the nematic phase, with
the linear fit shown in dashed.

on the induced anisotropy of σ . Using the model Eq. (3)
and λ = 1.2D, we compare σ as measured in parallel and
orthogonal directions to the common director field �n of the
rods in the nematic phase. The comparison is shown in
Fig. 7, where near the nematic coexistence volume fraction
we observe on average the same behavior for σ along the two
directions with respect to �n. On the other hand, for volume
fractions past this region, i.e., with increasing orientational
ordering of the rods, we notice a clear separation in trends
where σ values measured along the director field become

FIG. 7. Conductivity (in log10) in the nematic phase for L/D =
20, λ = 1.2D, using the model Eq. (3), as a function of volume
fraction. σ measured along the director �n of the rods (orange,
triangular), compared to σ measured in the orthogonal direction to
�n (blue, round).
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FIG. 8. Mean mesh numbers (red, star and dotted) and conduc-
tivity in log10 (second y axis, solid and dashed curves) as a function
of η, for L/D = 20 and λ = 1.2D.

increasingly larger with S2. This reflects the fact that the
increased orientational ordering in the stable region of the
nematic phase does introduce anisotropy (favored direction) in
the bulk conductivity, which has been a consistent observation
in various experimental works [50–54].

Finally, we compare the trend in σ with the mean number
of meshes corresponding to the largest clusters of rods (inter-
preted as graphs with edges assigned according to our intro-
duced cut-off distance) as a function of η. This comparison
is shown in Fig. 8. Restricted to either phases of the rods, we
observe that the mean mesh number follows the same increas-
ing trend with η as we have observed for σ. However, there

are clear qualitative differences in their functional form. More
importantly, given that the mesh count abstracts away from
the actual conductance model and depends solely on the geo-
metric connectivity state of the rods, it exhibits the same non-
monotonic behavior in η at the I-N transition that we have pre-
viously observed for the different graph properties (mean de-
gree and nearest-neighbor distance) and also for σ in the nor-
mal tunneling case. This offers the potential for a simpler and
computationally less expensive route to extracting the trend
of σ restricted to a given phase of the rods, without explicitly
solving the Kirchhoff equations of the tunneling network.

IV. CONCLUSIONS

We have studied the conductivity of networks of hard
spherocylinders in the isotropic and the nematic phases. For
the widely used normal tunneling model we observe non-
monotonic behavior of the conductivity at the phase transition.
However, for a more realistic anisotropic tunneling model, this
effect is lost. Furthermore, we observe that the conductivity
in the nematic phase is isotropic close to the phase transition
but becomes anisotropic at higher volume fractions. We also
analyzed the number of meshes in the geometrically inter-
preted network of rods and found it to be a very rough, but
fast-to-compute, estimator for the conductivity.
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