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Universal diagram for the kinetics of particle deposition in microchannels
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Why do particles, suspended in a fluid and traveling in a channel, deposit onto walls? The question has
far-reaching implications in different domains (filtering, syringeability, fouling, etc.). Close to a channel wall,
particles are subject to a variety of effects, which control their trajectories: hydrodynamic forces, diffusion, van
der Waals adhesion forces, and electrostatic forces. The existing theories and phenomenologies, due to their
inherent limitations, and the numerical and experimental studies, due to their scarcity, did not allow thus far
to establish a general description of the deposition process. By coupling microfluidic experiments, theory, and
numerics, we succeed in establishing a general description of the phenomenon. We discover that the problem is
particularly rich. We show the existence of three regimes: van der Waals, Debye, and diffusive, each including
various subregimes. Within each main regime, particle deposition is dominated respectively by (attractive) van
der Waals forces, (repulsive) electrostatic forces, or diffusion. We establish the scaling laws governing the
collector efficiency, S, in each regime. The ensemble of the regimes and their transitions can be displayed in
diagrams. We focus on the case A

kT
∼ 1 (the case of most practical interest), in which the diagram involves

two dimensionless numbers, P (incorporating the Debye layer characteristics) and ξL (a function of the flow
speed, diffusion constant, and the geometry). In this case, the three main regimes organize around a cantilever
beam, in which the vertical support is defined by the condition P = 4e−2, and the horizontal beam is located at
ξL = A

kT
, where A, k, and T are the Hamaker constant, the Boltzmann constant, and the absolute temperature,

respectively. The present work allows understanding of empirical observations thus far left unexplained and
provides a paradigm enabling engineering of devices in a way that reduces or enhances particle deposition.

DOI: 10.1103/PhysRevE.98.062606

I. INTRODUCTION

Particle deposition on solid walls represents one of the few
phenomena, in physics, where kinetics is controlled by a large
range of scales, extending from the intermolecular scale to
the size of the system in which the suspension is driven, thus
spanning several decades. Particle deposition is involved in
many applications, in a favorable, unfavorable, and sometimes
catastrophic manner. To mention a few examples, in mem-
brane filtration, particle deposition is exploited to retain solid
matter [1]; in the pharmaceutical industry, it is minimized for
efficient medical administration in syringe needles [2]. In the
oil industry, asphaltene deposition in reservoirs reduces or
even blocks the production [3]. In most situations, the pro-
longed deposition of individual colloidal particles on naked
surfaces leads to the eventual accumulation of multiple layers
that often cause clogging [1,4–7], which results in loss of
permeability [8] in confined geometries (microchannels and
pores) [9] or complete obstruction of suspension flow [3,6,7].
Clogging leads to particulate fouling, which evidently reduces
efficiency [10] and even loss of the device [2].

Over the last three decades, a number of theoretical, nu-
merical, and experimental investigations have been under-
taken [5,11–13]. However, for a long time, theoretical studies

*Corresponding author: cesare.cejas@espci.fr

addressed situations difficult to substantiate experimentally,
modeling was heavily phenomenological, and the numerical
and experimental work provided descriptive studies from
which it was challenging to extract information of broad
interest. Recently, with the development of microfluidics, a
new generation of experimental studies has been conducted,
providing well-documented analyses of deposition kinetics
of colloidal polystyrene (PS) spheres on surface walls of
microchannels with flows driven by pressure gradients or
electrokinetic forces [6,7,11,12,14,15]. In addition, studies
on particle deposition as a precursor to clogging phenomena
[1,4,5,14–16] have been undertaken. These studies have gen-
erated substantial amounts of well-controlled data; as a whole,
they reported interesting information in specific cases and, in
the meantime, underlined the complexity of the phenomenon.
Still, they were essentially descriptive or phenomenological
and, with them, it is difficult to establish a general picture of
the phenomenon.

Deposition involves diffusion, advection, adhesion, elec-
trostatics, geometry, and confinement; it is therefore a compli-
cated phenomenon, somehow reflected by the descriptive level
of the literature. As previously mentioned, the phenomenon
involves a range of scales spanning several decades, from the
size of the channels through which the suspension is driven
to the nanometric scales of the intermolecular forces that
govern the interactions between the particles and the walls.
Since several mechanisms come into play, it is legitimate to
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FIG. 1. Scheme showing a concentration of particles, C(x, z),
of radius r inside a rectangular channel of height h. Particles and
channel walls in aqueous solutions exhibit an electrostatic double
layer of length, λD , with ζ potentials ζw (wall) and ζp (particle).
Fluid flow follows a parabolic profile with near-wall velocity, Ur ,
calculated from a Poiseuille profile of average velocity, UP , and shear
effects. The van der Waals adhesion forces act when the particle is
within z distance from the wall.

hypothesize that there exist different regimes of deposition,
each of them dominated by one particular mechanism and
characterized by a specific law. In an n-dimensional diagram,
these regimes, along with the surfaces or hypersurfaces that
define the transitions between them, could provide the global
view of the deposition phenomena that is still lacking in the
literature. In a recent work [14], we analyzed one particular
regime of deposition, namely, the van der Waals regime, in
which the van der Waals forces dominate over electrostatics
and diffusion. This work was restricted to high salinities, for
which electrostatic forces are screened, and large particles,
for which diffusion is negligible. However, in many cases of
practical interest, salt concentrations are small or moderate,
and particles are Brownian. Moreover, this work [14] did not
address the question we raise here, i.e., whether a diagram
could represent all the regimes of deposition, thus providing a
unified view on the existing numerical and experimental work
and, perhaps, inspiring strategies for reducing or enhancing
deposition. The present work focuses on figuring out such
a diagram for channels of rectangular cross sections. In the
present paper, by coupling theory, experiments, and numerics,
we succeed to establish it.

II. THEORY

Here we consider a channel of rectangular cross section
(Fig. 1) and, for the sake of simplicity, restrict ourselves to the
case of shallow channels, i.e., h � w. We look for stationary
fields C(x, z) representing concentrations of particles (i.e., the
number of particles per unit of volume) of dilute suspensions,
injected at fixed flow rates at the entry of a channel. The rate
of injection of the particles in the channel, i.e., the number

of injected particles per unit of time, is ϕQ

vP
, where ϕ is

the volumetric concentration of the particles, Q is the flow
rate, and vP is the particle volume. Far from the sidewalls,
and in the region z < h

2 (for symmetry, we restrict ourselves
to this region), C(x, z) is governed by the following mass-
conservation equation [17–20]:

UP

∂C

∂x
= ∂

∂x

(
Dβx (z)

∂C

∂x

)
+ ∂

∂z

(
Dβz(z)

∂C

∂z

)

− ∂

∂z

(
Dβz(z)

(
− Ar

6kT (z − r )2

+ χ

λD

exp

(
−z − r

λD

))
C

)
, (1)

in which UP (z) = γ (z)U (z) (where U (z) is the flow speed
is the particle speed and γ (z) is given in Appendix A), D is
the bulk diffusion coefficient of the particles, βx (z) and βz(z)
are dimensionless functions expressing the dependence of
the longitudinal and transverse particle diffusion coefficients
to the wall with z, k is the Boltzmann constant, T is the
temperature, A is the Hamaker constant, λD is the Debye
length, and r is the particle radius. From the literature, we
have βx (z) = 1 − 9/16z + 1/8z3 − 45/256z4 − 1/16z5 and
βz(z) = 6(z−r )2+2r (z−r )

6(z−r )2+9r (z−r )+2r2 [21,22]. We also have

χ = 4πεε0ζwζpr, (2)

in which ε and ε0 are respectively the relative dielectric con-
stant of the fluid transporting the particles and the permittivity
of free space, and ζw and ζp are respectively the zeta potentials
of the channel wall and the particle. The left-hand-side term of
Eq. (1) is an advective term. On the right-hand side, there are
four contributions. The first and second terms represent longi-
tudinal and transverse diffusion, respectively, and the third and
fourth terms represent, respectively, the flux of particles driven
by van der Waals forces and that driven by electrostatic forces
in the Debye layer (in the linear approximation). Here, we
restrict ourselves to the case A > 0 and negative ζ potentials
(repelling case), which represent the experimental situation.
Nonetheless, the analysis we carry out here could be extended
to the cases where the Hamaker constant is negative and signs
of the ζ potentials are different.

We suppose that the concentration is homogeneous at the
channel entry x = 0 (C = 1) and the particles irreversibly
adsorb on the walls z = 0. Considering particles cannot phys-
ically cross the walls and using plane symmetry reasons at
z = h

2 , the boundary conditions (BCs) read [14]

x = 0, C = 1; z = r, C = 0; z = h

2
,

∂C

∂z
= 0.

(3)

There is an other approach, equivalent to Eq. (1) and well
established in the literature [23–26], that consists in determin-
ing the trajectories of each particle by writing that, for each of
them, their speed is equal to the forces applied on it times its
mobility. This Lagrangian approach provides equations easier
to compute, and, in many cases, easier to solve analytically.
For the same geometry as above, the Lagrangian equations,
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which have the form of a dynamical system, are defined by
the following equations (see Appendix B):

ẋ(t ) = γU (z) + βxδ(t ), (4)

ż(t ) = βzδ(t ) + dβz

dz
D + βz

D

kT
(FvdWz + Felz), (5)

in which

FvdWz = − Ar

6(z − r )2
and Felz = χ

λD

exp

(
−z − r

λd

)
. (6)

Here x and z are the particle coordinates, and δ(t ) is a zero
mean step random function with amplitude

√
2Dτ , where τ is

a (supposedly infinitesimal) incremental step. Given the case
of shallow channels (h � w), we assume that the geometry is
invariant in the y direction.

For the rest of the paper, we assume continuous injection at
rate ϕQ

vP
. In order to work with simple formulas, we introduce

a function S defined as [14]

S =
(

h
2 − r

r

)
vp

ϕQt
NA(t ), (7)

in which NA(t ) is the number of particles collected by the
walls z = ± h

2 as a function of time. The function r
h
2 −r

S is

the collector efficiency, which represents the fraction of the
injected particles that are collected by the system. It is an
important quantity in engineering literature [27,28]. Thus, our

factor S is
h
2 −r

r
times this fraction.

Whenever it is possible, we treat Eqs. (4) and (5) analyti-
cally. We also compute them, using a first order discretization
in time. The details of the numerical technique are provided
in Appendix B.

A. The three regimes of deposition

Since three transport mechanisms control the particle tra-
jectories, namely, diffusion, electrostatics of the Debye layer,
and van der Waals forces, we may hypothesize that there exist
three fundamental regimes in which one mechanism domi-
nates over the two others and for which, hopefully, explicit
expressions for S can be figured out.

Here we analyze these regimes separately.

1. Debye regime

In this regime, the system of Eqs. (4) and (5) reduce to the
following equations:

ẋ(t ) = γ (z)U (z), (8)

ż(t ) = βz(z)
D

kT λD

χexp

(
−z − r

λd

)
. (9)

Equation (9) shows that ż > 0. This implies that, after their
injection, particles move away from the wall. Thereby, we
have

S = 0. (10)

Therefore, no particle sticks to the wall in such a regime.

2. van der Waals regimes

These regimes are described by the following equations:

ẋ(t ) = γ (z)U (z), (11)

ż(t ) = −βz(z)
D

kT

Ar

6(z − r )2
. (12)

At this stage, one must distinguish between two situations: in
situation or case (i), the collected particles travel far from the
wall z = 0 (i.e., z/r � 1, where z is the distance of the centers
to the wall, i.e., their altitudes), while in situation or case (ii),
they stay close to the wall during their travel, i.e., their centers
remain at an altitude z ≈ r .

(a) van der Waals 1. In this case, as said above, the
particles injected in the capture layer travel, in terms of the
ratio altitude z over radius, far from the wall. Consequently,
βz and γ are equal to 1, and Eqs. (11) and (12) can be solved
analytically. We find

S ≈
(

2A

3kT
ξL

)1/4

, (13)

in which

ξL = LD

Urr2
, (14)

where Ur = U (r ). Consequently, the distribution profile
along the channel axis (the so-called retention profile, given
by the derivative of S with respect to x, with x standing for L)
reads

p(x) ∼ x−3/4. (15)

(b) van der Waals 2. This case was analyzed in Ref. [14].
It was shown that, in this regime, the expression for S is

S ≈
(

A

2.1kT
ξL

)1/2

. (16)

Consequently, the distribution profile along the channel reads

p(x) ∼ x−1/2. (17)

3. Diffusive regimes

For these regimes, we restrict ourselves to scaling argu-
ments for determining our collection factor S. As particles
travel downstream, they move along the streamlines on which
they were initially located, but, owing to diffusion, they also
move normally to them. In the average, after a time τ , particles
initially located on the same streamline move away from it by
a distance ∼√

Dlτ , where Dl is the local diffusion coefficient.
With a local speed Ul , the time τ it takes for the particle to
reach the exit of the channel can be estimated by L

Ul
. Thereby,

in the average, particles injected in the channel at a distance

δ ∼
√

Dl
L
Ul

from the wall will touch it before they reach the

exit and, consequently, be collected. This relation defines the
thickness of the “capture layer” δ. By noting that S ∼ δ

r

the general expression for S reads

S ∼ 1

r

√
Dl

L

Ul

. (18)

Now, similarly to the preceding section, one must distinguish
between two cases.
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(a) Diffusive 1. In this case, the particles wander far from
the wall, in terms of the ratio distance over radius. This is
precisely the situation addressed by Smoluchowski-Levich
[18,20,29]. The expression for S is obtained by replacing Dl

by D and Ul by Ur
δ
r

in Eq. (18). One obtains

S ∼ ξ
1/3
L . (19)

This estimate is consistent with the classical expression
of Smoluchowski-Levich [18,20,29], which establishes the
transfer rate of particles towards the wall [20,30]. The cor-
responding distribution of particles along the channel is then

p(x) ∼ x−2/3. (20)

(b) Diffusive 2. In this case, the particles remain at an alti-
tude z ≈ r during their travel along the channel. By replacing
Dl by D δ

r
and Ul by Ur (in a way similar to case (i) of the van

der Waals regime), one obtains

S ∼ ξL. (21)

The distribution profile along the channel is given by

p(x) ∼ Cst. (22)

Note that in the diffusive 1 regime, we have δ � r , while
in the diffusive 2 regime, since the particles travel close to the
wall, the capture layer thickness δ should be considered much
smaller than r . This implies that in the former case, S ∼ δ

r
�

1 while in the latter, S � 1.
The four subregimes discussed above have been studied

numerically, in some detail (see Appendix C). Figures 8 and 9
(in Appendix C) show that the scaling laws we establish here
agree well with the numerics. Their prefactors could moreover
be calculated. For the diffusive 1 regime, we found

S ≈ 0.8ξ
1/3
L . (23)

For the diffusive 2 regime, we obtained

S ≈ 0.5ξL. (24)

For the other regimes, the theoretical prefactors agreed well
with the numerics.

The four subregimes can be represented in the diagram
shown in Fig. 2, using ξL and A

kT
as coordinates. In such

a diagram, each frontier is determined by writing that, at
the boundaries between two regimes, the values of S match.
The corresponding equations of the frontiers ξL = f ( A

kT
) are

indicated in the caption of Fig. 2. The diagram of Fig. 2 has
been well confirmed numerically (see Fig. 9 in Appendix C).
An earlier work [14] focusing on van der Waals 2 is in
agreement with regards to its position in Fig. 2.

B. The transition between Debye and van der Waals regimes

The region, in the parameter space, where Debye and van
der Waals forces both play a role, is governed by the following
equations:

ẋ(t ) = γU (z), (25)

ż(t ) = βz

D

kT

(
− Ar

6(z − r )2
+ χ

λD

exp

(
−z − r

λD

))
. (26)

FIG. 2. Phase diagram of the four subregimes: (i) diffusive 1,
where S ∼ ξ

1/3
L ; (ii) diffusive 2, where S ∼ ξL; (iii) van der Waals

1, where S = ( 2A

3kT
ξL)

1/4
; and (iv) van der Waals 2, where S =

( A

2.1kT
ξL)

1/2
. The frontier between diffusive 1 and diffusive 2 is

ξL = 1. The frontier between diffusive 1 and van der Waals 1 is
ξL ∼ ( A

kT
)
3
. The frontier between diffusive 2 and van der Waals 2

is ξL ∼ A

kT
. The frontier between van der Waals 1 and van der Waals

2 is ξL ∼ ( A

kT
)
−1

.

By introducing the variables η = (z−r )
λD

and t ′ = t D
kT

χ

λ2
D

, one
obtains an adimensionalized form of Eq. (25):

η̇(t ′)
βz(η)

= F (η) = − P

η2
+ exp(−η), (27)

in which we have

P = Ar

6χλD

. (28)

The behavior of the system, i.e., whether particles are
attracted or repelled by the wall, is controlled by the sign of
η̇(t ′), which, in turn, is controlled by F (η). The shape of F (η)
is sketched in Fig. 3. Two possibilities exist:

(i) P > PC = 4 exp(−2). In this regime, the function
F (η) is always negative. Thus, in this case, similarly as in
the van der Waals regimes, there exists a “force” that drives
the particles towards the wall, favoring their collection.

(ii) P < PC = 4 exp(−2). The force is positive within a
range of values of η, defined by the roots η1, η2 of the
following equation:

η2exp(−η) = P. (29)

One root (η1) is smaller than ηC = 2, while the other (η2) is
larger than ηC = 2. Above the larger root, the “force” F (η)
is attractive, and consequently particles initially injected at
η > η2 start moving towards the wall as they travel down-
stream. However, for η < η2, F changes sign and particles are
repelled. Therefore, they accumulate at the location η = η2,
and exit the channel without being collected. Particles injected
at η1 < η < η2 undergo the same process. Only those injected
at η < η1 are attracted towards the wall. If we assume (owing
to their proximity to the wall) that all are collected, the factor
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FIG. 3. Sketch of F (η) [Eq. (27)] as a function on η based on
numerical simulation results. The condition P > PC (dash-dotted
red line), where PC = 4 exp(−2), demonstrates a negative force re-
sulting in attractive interaction between two surfaces. The condition
P < PC (solid blue line) demonstrates a positive force within a range
of η. Finally, the condition P = PC (dashed black line) represents a
critical case between two regimes.

S can be estimated by the expression

S ≈ η1
λD

r
. (30)

To summarize, when P > PC = 4 exp(−2), particles are
collected in a manner similar to van der Waals regimes, while,
when P < PC = 4 exp(−2), particles split into two subpopu-
lations, one concentrated along the line η = η2 and the other
collected at the channel wall. Because of the presence of a
barrier, one may expect that the quantity of particles collected
at the wall is much larger when P > PC than in the opposite
case. The equality P = PC thus represents a frontier between
a regime where van der Waals forces dominate, favoring
collection, and another one where electrostatic forces prevail,
preventing collection. We take this equality to define the
boundary between the van der Waals and Debye regimes.

C. The transition between Debye and diffusive regimes

Figure 3 can be also used to discuss the transition between
Debye and diffusive regimes, in a manner similar to the
stability of colloidal suspensions, based on DLVO theory [11].
When P < PC , most particles do not approach the wall be-
cause of a barrier located at P = PC . Still, owing to Brownian
motion, a few of them can cross this barrier and deposit on the
wall if their thermal “force” has an intensity comparable to
or larger than the barrier height. When P � PC , the barrier
collapses and thermal fluctuations can drive all the particles
towards the wall without being blocked by electrostatic forces.
The flux towards the wall will thus be much more abundant.
This reasoning indicates that P = PC represents a frontier
between a regime dominated by electrostatic repelling forces
and another dominated by thermal fluctuations. As above, we
take the condition P = PC to define the boundary between
the Debye and diffusive regimes. Remarkably, this frontier is

FIG. 4. The universal diagram of particle deposition represented
as ξL [Eq. (14)] in the y axis as a function of dimensionless number
P [Eq. (28)] in the x axis. The transition from diffusive 1 to van der
Waals 2 is marked by ξL ∼ 1 and that from Debye to diffusive 1 or
van der Waals 2 corresponds to P = 4e−2.

located at the same position as that separating the Debye from
the van der Waals regimes.

D. Universal diagram for A
kT ∼ 1

The preceding results can be summarized in Fig. 4, which
shows the range of existence of the various regimes as a
function of ξL [Eq. (14)] and P [Eq. (28)].

As explained below, in our experiments, with the materials
we use [PS beads and hydrophobic polydimethylsiloxane
(PDMS)] we work at a fixed value of A/kT ≈ 2. Therefore,
as we change the parameters of the experiment, the system
evolves along a vertical line of Fig. 4, that essentially crosses
the van der Waals 2 and diffusive 1 regimes, the transition
taking place at ξL ∼ 1. The other subregimes (van der Waals
1 and diffusive 2), which are difficult to access experimentally
with the materials currently used in microfluidics, are not
investigated in the present paper.

To establish the diagram of Fig. 4, we thus restricted our-
selves to A

kT
∼ 1. Consequently, only one diffusive (diffusive

1) and one van der Waals regime (van der Waals 2) appear on
Fig. 4.

This diagram takes the form of a cantilever beam, with a
vertical support located at P = 4 exp(−2) and a horizontal
bar located at ξL ≈ 1. It is interesting to note that, according
to the theoretical results of the preceding sections and the
remark made above on the value of the ratio δ/r , each regime
is associated to the following conditions on S:

(i) The van der Waals regime is associated to S
SvdW

≈ 1 (in

which SvdW = ( A
2.1kT

ξL)
1/2

) and S = δ/r < 1.
(ii) The diffusive regime is associated to S

Sdiff
≈ 1 (in

which Sdiff ≈ 0.8ξ
1/3
L ) and S = δ/r > 1.

(iii) The Debye regime is associated to S ≈ 0.
These relations will serve as criteria to determine, without

a priori knowledge, to which regime a particular set of flow
conditions belongs. In practice, to identify the regime, we
measure S and determine in which of the three above intervals
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FIG. 5. Scheme of the PDMS-based microfluidic chip consisting
of parallel rectangular channels, of dimension hwL. The channels
are flanked by inlet and outlet reservoirs of height hres. The channels
are 150 μm apart to avoid cake formation so each channel acts
independently from one another.

the quantity lies, taking the experimental uncertainty into
account.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup

The experimental setup is shown in Fig. 5. We use a
microfluidic chip to experimentally investigate the different
deposition regimes with microchannels having dimensions of
400 μm (L), 10 and 20 μm (h), and 100 μm (w) between
entry and exit reservoirs. The total length of the chip is about
2 mm, including the entry and exit reservoirs. The reservoirs
have a height hres ∼ 30 μm. The chip actually consists of a se-
ries of parallel rectangular channels. The channels are 150 μm
apart to avoid cake formation that could disrupt flow. At this
distance, each channel acts independently from one another.
The chips are made from silicon wafer molds, fabricated using
standard soft lithography techniques. The chips are made of
PDMS using a 10:1 polymer:cross-linker ratio. The polymer
solution is commercial grade Sylgard 184 silicon elastomer
base (Dow Corning GmbH, Germany) while the cross-linker
is Sylgard 184 silicon elastomer curing agent (Dow Corning
GmbH, Germany). Once prepared, the polymer solution was
then poured into the silicon wafer mold and the solution was
degassed to remove bubbles. Once the bubbles were removed,
the mold was transferred to an oven at 65◦C. Once the PDMS
solution had hardened, the cured PDMS was peeled off the
silicon wafer mold. The chips were cut to shape and punched
with holes for inlet and outlet tubes. Using plasma treatment,
the chips were then bonded onto PDMS-coated glass slides.
The plasma treatment induces siloxane bonds, temporarily
rendering the PDMS hydrophilic. After about 2–3 h, the
PDMS returned to its hydrophobic condition. We used a Veeco
optical profilometer to characterize the surface roughness of
PDMS substrates. A typical channel has a root-mean-squared
average roughness of Rq = 3.12 nm.

Colloidal particles are transported onto the channel by a
pressure difference set by a pressure controller (Fluigent).

The glass slide upon which the PDMS structure is attached is
spin-coated with PDMS. We keep the surface treatments of the
channel walls hydrophobic (device heated at 95◦C for at least
4–5 h). We determine the flow rate Q by measuring average
particle speeds, from a fixed distance from the channel entry.
We perform experiments at low Reynolds numbers (Re ∼
0.03–0.89). We vary parameters such as U , L, ϕ, and h by at
least one order of magnitude. The suspensions are dilute, with
concentrations (w/v) ranging between 0.003% and 0.3%. The
salt concentrations range from 10−4M to 1M NaCl, i.e., over
four orders of magnitude.

We use different commercial particles: in a first series of
experiments, particularly for the van der Waals regime, we
use monodisperse PS microparticles (Sigma-Aldrich) with
diameter d = 5 μm. The micrometric particles are density
matched with water so they do not sediment during the
experimental observation window. In addition, the particles
have different refractive indices than water and this refractive
index mismatch permits contrast and facile observation of the
deposited particles on the wall. These particles are unfunction-
alized, though they are negatively charged due to remaining
initiator fragments after polymerization [31]. The Hamaker
constant, A, for these particles on PDMS surfaces in saline
aqueous suspension was determined to be A = 8 × 10−21 J
[14] (and therefore A

kT
≈ 2). In the literature, comparison

with Lifshitz or pairwise additivity theory often suggests that
the Hamaker constant can vary, by several tens of percent
[11,20,32–35] with the salt concentration. Although, some
studies [36] have pointed out that for certain materials the
Hamaker constant is ultimately independent of electrolyte
concentration. For simplicity, we take the same constant for
all the concentrations we consider, whenever it is needed for
interpreting the measurements.

In another series of experiments, particularly for the dif-
fusive regime, we use colloidal nanoparticles of diameter
d = 500 nm. The nanoparticles are carboxylated functional-
ized polystyrene particles (Thermo Fisher Scientific) and are
fluorescent for increased visibility. Theory [32,37,38] sug-
gests that, with the presence of a surface layer, the Hamaker
constant characterizing the wall and functionalized particles
slightly changes in comparison with the naked particle. Com-
parison with literature [37,38] shows that at relatively large
particle-wall separations, the vdW interactions are dominated
by the property of the bulk particle and not by the surface
modification. For simplicity, we neglect such a change and
also take A = 8 × 10−21 J for the Hamaker constant for these
polystyrene-based particles, whenever the Hamaker constant
is needed for interpreting the measurements.

Salt concentrations were prepared by dissolving the ap-
propriate quantity of sodium chloride, NaCl (ReagentPlus
� 99.5%, Sigma Aldrich) in a specific volume of deionized
water. The salt concentrations prepared ranged from 0.0001M

to 1M salt. The pH was also tested especially for high salt
concentrations and the pH remained approximately constant
at pH ∼ 6.5. When the suspending fluid contains substantial
concentrations of salt, the suspension stability is problematic,
especially for nanoparticles. To avoid clustering, we sonicated
the suspensions for about 45–60 min before experiments and
our solutions were dilute enough to minimize interparticle
aggregation. Nevertheless, in order to control the absence
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of aggregation during the time the particles travel in the
device, we collected the suspension at the outlet of the device
and performed dynamic light scattering (DLS) measurements
(Malvern Zetasizer Instruments; see SI-1 in the Supplemen-
tal Material [39]). The results were compared to the size
given by the commercial company, and to DLS measurements
performed prior to the injection, after sonication within the
same duration. Results showed that, at the maximum salinity
(1M NaCl) using dilute particle concentrations, 80% of the
particles have not aggregated. We conclude that clustering is
negligible.

The use of fluorescence in the visualization of smaller
particles means that some experiments can be subject to pho-
tobleaching, which is described as a reduction in fluorescence
emission intensity [40,41]. This could have an influence on
particle count and visualization especially if particles can
no longer be easily detected during image treatment. We
performed a photobleaching curve correction on the pixel-
intensity values to recover lost signals and increase detection.
With the use of 500-nm particles, high aperture objectives are
needed and it is difficult to simultaneously observe both the
bottom (floor) and top (ceiling) of the channel in the z direc-
tion, even at 40× magnification. Thus, images of adsorbed
particles only show one side of the channel. To verify the
symmetry of particle deposition, i.e., an approximately equal
number of adsorbed particles in both the floor and ceiling of
the channel, we perform experiments where, in the course of
the flow, we change the focus from the floor to the ceiling.
Results (see SI-2 in the Supplemental Material [39]) show
symmetric deposition in both floor and ceiling and we take
this symmetry factor into account when determining the total
number of adsorbed particles. It should be noted that with
particles d = 5 μm and h = 20 μm, because objectives of
lower numerical aperture are used, sticking events can be
observed simultaneously in both the floor and ceiling of the
channel. But it is not the case with the 500-nm particles.

We use Leica or Zeiss optical microscopes for observing
fluid flow and particle deposition, injected by pressure differ-
ence set by a pressure controller (Fluigent). Cameras used in
data acquisition include RD Vision and Photron Fastcam SA3,
which are connected to the optical microscopes. Throughout
the studies, we harness the advantages of microfluidics by
performing multiple experimental runs for each case, thereby
improving statistics. Each experiment is repeated a minimum
of three times to ensure reproducibility. In every experiment,
we use MATLAB R2016 image treatment. We eliminate all
other particles that are advected across the channel and extract
the particles that have been deposited on the walls. We use
standard image analysis techniques, such as histogram equal-
ization and binarization to enhance the contrast between the
wall and the deposited particles. We then analyze individual
single-particle deposition events by measuring the following
quantities: (1) histogram of the particle sticking lengths, p(x),
defined as the distance between the deposited particles and the
channel entrance; and (2) the number of particles adsorbed
as a function of time, NA(t ), in the first few seconds of
deposition, where particle deposition occurs on naked sur-
faces. At much later times, the surface is substantially filled
with particles, and NA(t ) starts leveling off [14]. We do not
consider such a regime.

B. The universal diagram for A/kT ≈ 2

Figure 6 shows typical examples of the measurements we
perform. The three experiments shown in Fig. 6 are per-
formed in the similar channels with identical flow rates, but
with different particle sizes and salt concentrations. Figures
6(a1)–6(c1) show typical images of the three deposition
regimes at similar temporal observation windows. Figure
6(a2)–6(c2) show measurements of NA(t ) for these flow
conditions, along with the corresponding retention profiles in
Figs. 6(a3)–6(c3).

In order to figure out which regime each set of experimen-
tal conditions belongs to, we need to calculate S in each case
and apply the criteria defined in Sec. II D. Here, we assume
that the experiment only explores diffusive 1, van der Waals
2, and Debye regimes. Under this hypothesis, the problem we
have to solve is to determine to which of these three regimes
a particular set of conditions belongs to.

In Figs. 6(a4)–6(c4) we have plotted S as a function of
time. For reading convenience, we recall here the definition
of S [initially shown in Eq. (7)}:

S =
(

h
2 − r

r

)
vp

ϕQt
NA(t ). (31)

In all cases, S is independent of time, which is logical, because
we found NA(t ) proportional to time. In Fig. 6(a4), we see
that S is smaller than 1. Moreover, S is indistinguishable
from the theoretical prediction for the van der Waals 2 regime
S = ( A

2.1kT
ξL)

1/2 ≈ 0.09. Criterion (i) introduced previously
(see Sec. II D) being satisfied, we can conclude that this set of
experimental conditions falls into the van der Waals 2 regime.
A similar reasoning applied to Fig. 6(b4) leads to the conclu-
sions that we are in the diffusive 1 regime, because S is both
larger than unity and in good agreement with the expected
value for the diffusive 1 regime. In Fig. 6(c4), the value of S

is below unity and moreover much smaller than the van der
Waals 2 regime, which would lead to S ≈ 0.09; therefore, the
only possibility is that we are in the Debye regime.

Once the regimes or subregimes are identified, it becomes
permissible to compare the theoretical retention profiles with
the experimental measurements. This is done in Figs. 6(a3)–
6(c3). We obtain that, whenever the number of particles is
sufficient to establish a distribution profile, the theory agrees
well with the measurements.

By applying the same methodology to all the measure-
ments we made, we can establish a universal diagram, using
the variables of the theory, i.e., ξL [Eq. (14)] and P [Eq. (28)].
Both are known experimentally since all quantities included
in their definitions are known or measurable. This leads to
Fig. 7(a). A particular symbol is attributed to each regime.
One can see that the experiment (solid symbols) agrees re-
markably well with the theoretical predictions, the agreement
having been obtained throughout six orders of magnitude on
the horizontal axis and eight on the vertical axis. Numerics
(open symbols), in which we used the same criteria as the
experiments to define the various regimes, provides an addi-
tional support to the theory.

For practical reasons, we represent the experimental data in
another manner. Figure 7(b) uses the salt concentration instead
of parameter P . Here, the universal diagram is presented in
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(a) (b) (c)

FIG. 6. Experimental results of different deposition regimes. Error bars reflect 95% confidence levels. In all cases, black broken lines
represent respective theoretical expressions while solid grey lines represent numerical simulation results performed under the same conditions
as the experiments. (a1) van der Waals 2 (vdW) regime showing deposited microparticles at ξL = 0.0078, 1M NaCl d = 5 μm, h = 20 μm,
w = 100 μm, L = 400 μm, U = 1 mm/s, ϕ = 0.3%, and A = 8 × 10−21 J [14]. Images have been treated to show immobile particles as
black spots (a2) NA(t ) for PS-hydrophobic PDMS, where data follow SvdW [Eq. (16)]. (a3) Histogram distribution (normalized density in
semilogarithmic format), showing deposited particles in both channel floor and ceiling, where data follow y ∼ x−1/2 [Eq. (17)]. (a4) Plot of
S(t ) [Eq. (31)] for vdW, where S ≈ 0.09 (S < 1), compared with SvdW [black broken line, Eq. (16)] and Sdiff [red broken line, Eq. (23)]. (b1)
Diffusive 1 (diff) regime showing deposited nanoparticles at ξL ∼ 35.06, 1M NaCl, d = 0.5 μm, h = 10 μm, w = 100 μm, L = 400 μm,
U = 1 mm/s, ϕ = 0.003%, A = 8 × 10−21. (b2) NA(t ) for carboxylated PS-hydrophobic PDMS, where data follow Sdiff [Eq. (23)]. (b3)
Histogram distribution (in semilogarithmic format), where data only show particles deposited on the floor (see Supplemental Material SI-2
[39]). The data follow y ∼ x−2/3 [Eq. (20)]. (b4) S(t ) [Eq. (31)] for diffusive, where S ≈ 2.7 (S > 1), compared with Sdiff [red broken line,
Eq. (23)] and SvdW [black broken line, Eq. (16)]. (c1) Debye regime showing deposited microparticles on both the floor and the ceiling at
ξL = 0.0078, d = 5 μm, h = 20 μm, w = 100 μm, L = 400 μm, U = 1 mm/s, ϕ = 0.3% at 0.007M NaCl. (c2) NA(t ) for PS-hydrophobic
PDMS at 0.007M NaCl. (c3) Histogram distribution at ξL = 0.0078 at the end of the experiment. Results show sporadic profiles with few
deposited particles. (c4) S(t ) [Eq. (31)] for Debye regime where the theoretical expectation is S = 0 [black broken line, Eq. (10)].

three dimensions using Csalt in mol/L (x axis), ξL (y axis),
and S/SvdW (z axis), the latter quantities being chosen for
obtaining a clear representation. Like in Fig. 6, we obtain an
excellent agreement between the theoretical expectations, the
numerics, and the experiment. Figure 7(c), which represents
cuts of the three-dimensional (3D) diagram along two differ-
ent planes, further confirms the agreement. The 3D diagram
of Fig. 7(b) thus provides a general picture of the regimes of
deposition taking place in the system we study. Compared to
Fig. 6, Fig. 7 also provides estimates of the number of parti-
cles that are collected to the walls. In Fig. 7, it is interesting
to note that the cross-over between the Debye regime and the
other regimes takes place at a salt concentration on the order
of 0.1M . This corresponds to the common wisdom that, above
this order of magnitude, electrostatic (repulsive) charges are
screened and particles tend to be captured by the walls. Here,
we provide an explanation for this empirical fact, by noting
that it reflects the critical condition PC = 4 exp(−2), which,

in practice, for many fluid-particle systems, effectively leads
to critical concentrations on the order of 0.1M .

IV. CONCLUSION

Based on experiments using shallow microchannels of
rectangular cross sections, and with the support of numerical
simulations and theory, we explain quantitatively the deposi-
tion kinetics of individual colloidal particles, along with their
corresponding retention profiles. The model reproduces the
experimental observations remarkably well, within a broad
range of geometrical, flow, or concentration parameters. This
extends our previous work [14], which addressed a particular
regime of deposition and did not raise the question of the
existence of a universal diagram providing a global vision on
deposition phenomena in microchannels.

In the present work, we thus succeeded to establish a
universal diagram of particle deposition, thus far lacking in the
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(a) (b) (c)

FIG. 7. (a) Universal diagram of particle deposition with both experimental and numerical results presented as ξL [Eq. (14)], as a function
of P [Eq. (28)], as defined by the two-dimensional (2D) theoretical diagram in Fig. 4. In two dimensions, the vertical line is defined by
P = 4e−2, and the horizontal line in terms of ξL = 1. In all cases, solid symbols represent experimental points while open symbols are
numerics. (b) The universal diagram presented in practical or operational terms in three dimensions with the deposition ratio S/SvdW as a
function of Csalt (salt concentration in M) and ξL. The parameter Csalt can be extracted from the parameter P [Eq. (28)]. Note that the vdW
regime is associated with ξL < 1 while the diffusive regime is associated with ξL > 1. (c, top) Slice of the plane along S/SvdW as function
of Csalt , showing the transitions from Debye to van der Waals (blue) and Debye to diffusive (red). Grey lines are theoretical predictions and
the grey dashed line is drawn to guide the eye. (c, bottom) Slice of the plane along S/SvdW as function of ξL showing S/SvdW ≈ 1 in the
vdW regime while showing S/SvdW ≈ ξ

−1/6
L in the diffusive regime. Legend: Circles and inverted triangles denote the Debye regime, where

numerics and experiments are performed with these parameters: h = 20 μm, w = 100 μm, L = 400 μm, ϕ = 0.3%, while varying U , r , and
relative low Csalt (10−4M–10−1M NaCl). Inverted red triangle denote the diffusive regime, where numerics and experiments are performed
with these parameters: h = 10 μm, w = 100 μm, L = 400 μm, ϕ = 0.003%, while varying U , r , and at relatively high Csalt (0.1M–1M

NaCl). Blue circles denote the van der Waals regime, where numerics and experiments are performed with these parameters: h = 20 μm,
w = 100 μm, L = 400 μm, ϕ = 0.3%, A = 8 × 10−21 J, while varying U , r , and relative high Csalt (0.1M–1M NaCl).

literature. This diagram could prove a useful guide in not just
predicting deposition behavior, but also in adapting different
physical parameters for various targeted applications. The ad-
vantage of the universal diagram is that it provides a paradigm
to fine-tune physical parameters to allow one condition to
dominate over the other. This will be most useful to design
systems dedicated to favor or reduce particle deposition, de-
pending on the application. Also, the present analysis provides
explanations for empirical observations left without precise
explanation, such as the critical salt concentrations above
which deposition becomes important, and, apart from a partic-
ular range of conditions (difficult to achieve experimentally),
the systematic abundance of particles close to the injection
inlets in microchannels, which should not be interpreted as a
vague entry effect, but rather as a consequence of the kinetics
of the deposition process.
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APPENDIX A: CALCULATIONS FOR γ (η) = UP
Ur

The particle speed Up has been calculated by Refs. [21,22].
By introducing the ratio

γ (η) = Up(r )

Ur

, (A1)

where Ur = 6Qr

wh2 (1 − r
h

) is the flow speed at z = r , γ (η) has
the following expression, and η(z) = z−r

r
. For η > 1,

γ (η) = 1 − 5

16η3
, (A2)

for 10−4 < η < 1,

γ (η) = 1

η + 1
exp(0.68902 + log(η)

+ 0.072332 log2(η) + 0.0037644 log3(η)), (A3)

and for η < 10−4,

γ (η) = 0.7431

0.6376 − 0.2 log(η)
. (A4)

APPENDIX B: NUMERICAL SIMULATIONS

To establish Eqs. (4) and (5) in the main text, we use
Langevin equations of the general form [4,12,13,17]

ṙi (t ) = DiFi

kT
+ ∇ · Di + U(ṙi ) + �(t ), (B1)

where ṙi is the vector position of the ith particle, Di is
the anisotropic diffusion, Fi is the total force acting on the
particle, and U is the contribution of the flow to the particle
speed. In simple geometries, such as the one we consider
(straight channel), these quantities are documented and their
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expressions are available in the literature. �(t ) is the random
Brownian displacement.

By applying these general equations to the particular ge-
ometry we consider, i.e., long shallow channels with rectan-
gular cross sections, we obtain the following equations:

ẋ(t ) = γ (z)U (z) + βx (z)δ(t ), (B2)

ż(t ) = βz(z)δ(t ) + dβz

dz
D + βz

D

kT
(FvdWz + Felz), (B3)

in which

FvdWz = − Ar

6(z − r )2
and Felz = χ

λD

exp

(
−z − r

λd

)
, (B4)

where γ (z) is given in Appendix A, βz(z) =
6(z−r )2+2r (z−r )

6(z−r )2+9r (z−r )+2r2 , and βx (z) = 1 − 9/16z + 1/8z3 −
45/256z4 − 1/16z5 [21,22].

Considering the numerical method used to compute
Eqs. (4) and (5), we proceed similarly as in
Refs. [12,14,42,43]. The code is provided in the Supplemental
Material (see SI-3 [39]). The time derivatives are replaced by
a first order discretization. Although, ideally, τ (simulation
time step) should be as small as possible, in practice, taking
a τ too small leads to large computing times. In practice,

(a)

(b) (d)

(c)

FIG. 8. Numerical checks of the theoretical predictions for the
four subregimes discussed in preceding sections: (a) diffusive 1,
(b) diffusive 2, (c) van der Waals 1, and (d) van der Waals 2. Solid
lines in all four graphs correspond to theoretical predictions, while
inset sketches show the position of the subregime with respect to the
diagram shown in Fig. 2. Legend: (a) , h = 20 μm, ϕ = 0.3%,
L = 400 μm, A = 8 × 10−21 J, U = 1 mm/s, 0.1 � r � 0.5 μm;

, h = 20 μm, ϕ = 0.3%, A = 8 × 10−21 J, U = 1 mm/s, r =
0.25 μm, 40 μm � L � 10 cm; , ϕ = 0.3%, L = 400 μm, A =
8 × 10−21 J, U = 1 mm/s, r = 0.25 μm, 5 μm � h � 1 mm. (b)

, h = 20 μm, ϕ = 0.3%, A = 1 × 10−24 J, r = 2.5 μm, 0.001 �
U � 100 mm/s. (c) , h = 20 μm, ϕ = 0.3%, L = 400 μm, 1 ×
10−21 � A � 8 × 10−17 J, U = 1 mm/s, r = 0.25 μm, ξL = 6.8.
(d) , h = 20 μm, ϕ = 0.3%, L = 400 μm, 2 × 10−22 � A � 5 ×
10−20 J, U = 1 mm/s, r = 2.5 μm, ξL = 0.0078.

the values we take for τ range between 0.5 × 10−6 and
1.5 × 10−5. In all cases, these values are well below the
characteristic times of the problem and we checked that the
results are insensitive to the particular value of τ taken within
this range. For the boundary conditions, we impose that, if
the particles are below some distance away from the wall,
they irreversibly stick on the wall (we perform additional
checks and determine that the choice of this distance—in the
range 0.1–1 nm—is not critical) [14]. We consider channel
symmetry at z = h/2 and y = w/2 and only count the
individual singular particles adsorbed on floor and ceiling.

APPENDIX C: NUMERICAL CHECK OF THE THEORY

To compare theory and numerics, we perform numerical
simulations for a range of varying A/kT ratios, L, U , h,
and r:

(i) In the vdW 1 regime, where the capture layer δ > r , we
use a fixed value of U and relatively small r such that ξL > 1.

FIG. 9. Numerical checks of the theoretical predictions for the
four subregimes showing ξL( A

kT
). Solid lines correspond to theoret-

ical expressions of the frontiers (see Fig. 2 caption), while symbols
are different numerical simulation results. Common parameters for
these simulations include h = 20 μm, ϕ = 0.3%, and L = 400 μm.
Certain other parameters vary with respect to the associated sub-
regime. Legend: Diffusive 1, (left column), A = 4 × 10−23 J,
r = 0.25 μm, 0.1 � U � 10 mm/s; (right column) A = 8 × 10−21

J, U = 1 mm/s, 0.1 � r � 0.5 μm. Diffusive 2, , h = 20 μm,
ϕ = 0.3%, L = 400 μm, A = 1 × 10−24 J, r = 2.5 μm, 0.001 �
U � 100 mm/s. van der Waals 1, (topmost row), 2.5 × 10−19 �
A � 5 × 10−19 J, U = 2 mm/s, r = 0.125 μm, ξL = 544; (second
row from top) 5 × 10−20 � A � 2.5 × 10−17 J, U = 1 mm/s, r =
0.25 μm, ξL = 68; (middle row) 8 × 10−21 � A � 1 × 10−19 J, U =
10 mm/s, r = 0.25 μm, ξL = 6.8; (second row/point from bottom)
A = 5 × 10−20 J, U = 100 mm/s, r = 0.25 μm, ξL = 0.68; (bot-
tommost row/point) A = 5 × 10−19 J, U = 0.1 mm/s, r = 2.5 μm,
ξL = 0.078; van der Waals 2, (top row/point), A = 8 × 10−21 J,
U = 0.1 mm/s, r = 2.5 μm, ξL = 0.078; (middle row) 2 × 10−22 �
A � 5 × 10−20 J, U = 1 mm/s, r = 2.5 μm, ξL = 0.0078; (bottom
row) 7 × 10−24 � A � 5 × 10−20 J, U = 10 mm/s, r = 2.5 μm,
ξL = 0.00078.
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(ii) In the vdW 2 regime, where the capture layer δ < r ,
we use a fixed value of U and relatively large r such that
ξL < 1.

(iii) In the diffusive 1 regime, where the capture layer δ >

r , we employ fixed A and U , while changing r , L, and h in
order to vary ξL (such that ξL > 1).

(iv) In the diffusive 2 regime, where the capture layer δ <

r , we use a fixed value of A, L, h, and relatively large r , while
changing U in order to vary ξL (such that ξL < 1).

The plots in Fig. 8 provide examples of a numerical check
of the theoretical predictions for both cases of the diffusive
and van der Waals regimes. From these simulation results,
noting the several orders of magnitude for which the scaling
laws are obtained, with the right exponents, we may conclude
that theory agrees very well with the numerics. For the two

van der Waals regimes, 1 and 2, we recover well the expected
prefactors. For the diffusive regimes, where only the expo-
nents are predicted theoretically, we numerically found (i)
diffusive regime 1, S = (0.85 ± 0.1)ξ 1/3

L ; (ii) diffusive regime
2, S = (0.5 ± 0.05)ξL.

The plots in Fig. 9 provide a numerical check of another
series of theoretical predictions, those related to Fig. 2, where
ξL is a function of A/kT . This graph of the four subregimes is
obtained in the presence of high salinity. To obtain Fig. 9, we
performed simulations for different values of the parameters
A/kT and ξL, and applied the different criteria based on
the value of S to determine in which subregime each set
of conditions lies. From these simulations, we could con-
clude that the theory leading to Fig. 2 agrees well with the
numerics.
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