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Hydrodynamic theory of flocking in the presence of quenched disorder
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The effect of quenched (frozen) orientational disorder on the collective motion of active particles is analyzed.
We find that, as with annealed disorder (Langevin noise), active polar systems are far more robust against
quenched disorder than their equilibrium counterparts. In particular, long-ranged order (i.e., the existence of
a nonzero average velocity 〈v〉) persists in the presence of quenched disorder even in spatial dimensions d = 3,
while it is destroyed even by arbitrarily weak disorder in d � 4 in equilibrium systems. Furthermore, in d = 2,
quasi-long-ranged order (i.e., spatial velocity correlations that decay as a power law with distance) occurs when
quenched disorder is present, in contrast to the short-ranged order that is all that can survive in equilibrium.
These predictions are borne out by simulations in both two and three dimensions.
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I. INTRODUCTION

A great deal of the immense current interest in “active
matter” focuses on coherent collective motion, i.e., “flocking”
[1–7], also sometimes called “swarming” [8,9] and a variety
of other names. Such coherent motion occurs over enormous
numbers of self-propelled entities and a wide range of length
scales: from kilometers (herds of wildebeest) to microns (mi-
croorganisms Dictyostelium discoideum [8,9]) to submicrons
(e.g., mobile macromolecules in living cells [10,11]). It can
also occur in synthetic active particles [12,13] in complex
environments [14,15].

Vicsek et al. [2] were the first to note both the analogy be-
tween such coherent motion and ferromagnetic ordering, and
its breakdown in that coherent motion is possible even in d =
2. This apparent violation of the Mermin-Wagner theorem
[16] has been explained by the hydrodynamic theory of flock-
ing [3–7], which shows that, unlike equilibrium “pointers”,
nonequilibrium “movers” can spontaneously break a con-
tinuous symmetry (rotation invariance) by developing long-
ranged orientational order (as they must to have a nonzero
average velocity 〈v(r, t )〉 �= 0), even in noisy systems with
only short-ranged interactions in spatial dimension d = 2.

The mechanism for this apparent violation of the Mermin-
Wagner theorem [16] is fundamentally nonlinear and nonequi-
librium [3–7]. Certain nonlinear terms in the hydrodynamic
equations of motion become relevant, in the renormalization
group (RG) sense, as the spatial dimension d is lowered below
4, leading to a breakdown of linearized hydrodynamics [17],
which suppresses fluctuations enough to stabilize long-ranged
order in d = 2.
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In equilibrium systems, even arbitrarily weak random
fields destroy long-ranged ferromagnetic order in all spatial
dimensions d � 4 [18–21]. This raises the question: Can the
nonlinear, nonequilibrium effects that make long-ranged order
possible in two-dimensional (2d) flocks without quenched
disorder even stabilize them when random field disorder is
present? This issue was first investigated by Chepizhko et al.
[22], who simulated a model which, though very different
in its microscopic details, should be in the same universal-
ity class as the one we consider here. More recently, Das
et al. [23] have studied this problem both analytically (in a
linearized approximation) and numerically in two dimensions
and also have found quasi-long-ranged order in d = 2.

In this paper, we address this problem analytically, in-
cluding nonlinear effects, in both two and three dimensions,
using the hydrodynamic theory of flocking developed in
Refs. [3–7] and through simulations. We consider only “dry”
flocks; that is, flocks with no momentum conservation. We
restrict ourselves to flocks in which the number of flockers is
conserved; “Malthusian” flocks [24], in which the flockers are
continuously being born and dying as the motion goes on, will
be treated elsewhere [25].

Both approaches confirm that flocks with nonzero
quenched disorder are, indeed, far better ordered than their
equilibrium analogs, i.e., ferromagnets subject to quenched
random fields. Specifically, we find that flocks can develop
long-ranged order in three dimensions and quasi-long-ranged
order (defined below) in two dimensions, in strong contrast
to the equilibrium case, in which only short-ranged order is
possible in both three and two dimensions [18–21].

By long-ranged orientational order, we mean a nonzero
average velocity v(r, t ) �= 0, where the overbar denotes an
average over the quenched disorder. Since we believe that
the often-made self-averaging assumption (that is, that spa-
tial averages calculated in a sufficiently large system for a
particular generic realization of the quenched disorder will
be equal to ensemble averages over the disorder) applies to
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these flocks, our prediction that three-dimensional flocks have
long-ranged order in this sense implies that a single large
three-dimensional flock in the presence of quenched disorder
can have a nonzero spatially averaged velocity (the overbar
and 〈· · · 〉 will be used interchangeably in this paper).

By quasi-long-ranged order, we mean the average velocity
of a large flock is zero, but velocity correlations decay very
slowly (specifically, algebraically) with distance,

v(r, t ) · v(r′, t ) ∝ |r − r′|−σ (�), (1.1)

where the exponent σ (�) is nonuniversal (that is, system
dependent); specifically, it depends on the degree of quenched
disorder, which is characterized in our model by a single
parameter � (defined more precisely below).

Our prediction that quasi-long-ranged order occurs in
two-dimensional flocks with quenched random field disorder
agrees with the simulation results of Chepizhko et al. [22] and
Das et al. [23].

We also find that the behavior of the propagating “longi-
tudinal sound modes” (that is, coupled density and velocity
modes) in flocks radically affects the response of the flock
to quenched disorder. It has long been known [3–7] that
the speeds of these sound modes are strongly anisotropic.
Depending on the values of certain phenomenological param-
eters characterizing a flock—in particular, the speeds γ and v2

of the pure velocity and pure density modes for propagation
in the direction of flock motion—this anisotropy can exhibit
two qualitatively very different structures. When the product
γ v2 > 0, the speed of one of the sound modes vanishes
when the angle θ between the direction of propagation of the
sound and the direction of mean flock motion satisfies θ =
±θc = ± arctan [

√
γ v2

c0
]. (Here c0 > 0 is the speed of sound

propagating perpendicular to the direction of flock motion.)
As is obvious from this expression, when the product γ v2 <

0, there is no θc, and the speed of the sound modes never
vanishes for any direction of propagation.

We find that this difference between the cases γ v2 > 0 and
γ v2 < 0 leads to radical differences in the scaling behavior
of these systems. The case γ v2 < 0 proves to be completely
analytically tractable; we can determine exactly, without ap-
proximations or assumptions, the scaling laws governing the
long-distance and long-time behavior of the flock. In two
dimensions, for this case, we can argue compellingly for the
existence of quasi-long-ranged order [Eq. (1.1)]. Furthermore,
in three dimensions, we find exact scaling laws for the velocity
fluctuations. For example, the connected two-point velocity
correlation function obeys

Cvv (r) ≡ δv(r + R, t ) · δv(R, t )

= r− 1
2 fT

((
r

ξ

) 1
4

sin θr

)

∝

⎧⎪⎨
⎪⎩

(sin θr )−
2
3 r− 2

3 , θr 	
(

r
ξ

)− 1
4
,

r− 1
2 , θr 


(
r
ξ

)− 1
4
,

(1.2)

where δv(r′, t ) ≡ v(r, t ) − v, θr is the angle between r and
the direction of propagation, ξ is a characteristic length that
depends on the flock and strongly on the strength � of the
disorder, and the exponents 2/3, 1/2, and 1/4 are exact.

Note that the exponents in Eq. (1.2) are not those predicted
by a linearized version of our theory; the nonlinearities change
these exponents substantially. In fact, the purely linearized
theory predicts that there is no long-ranged order at all in
d = 3; that is, that v = 0, always, in d = 3. The full, nonlinear
theory shows that this is not the case and that v �= 0 for
sufficiently small, but nonzero, disorder strength �.

In the case γ v2 > 0, the situation is less clear. While we
can show in this case that nonlinearities do make the behavior
of the flock different from that predicted by the linearized
theory, and in particular that long-ranged order (v �= 0) sur-
vives in d = 3, we cannot convincingly show that quasi-long-
ranged order occurs in d = w. We also cannot obtain exact
exponents in three dimensions. If we assume, however, that
the convective nonlinearity is the dominant nonlinearity in
the flock dynamics, then we can demonstrate the existence
of quasi-long-ranged order in d = 2. We also thereby ob-
tain predictions for correlation functions in Fourier space
which agree quantitatively with our simulations. Furthermore,
there is considerable numerical and experimental evidence
[4,26,27] that this assumption that the convective nonlinearity
dominates is correct in flocks with annealed disorder, which
supports (although by no means proves) the correctness of this
conjecture for the quenched disorder case.

We can still predict scaling laws for the velocity correla-
tions in three dimensions even in the case γ v2 > 0.

For example, the connected velocity autocorrelation func-
tion defined above in d = 3 is given by

Cvv (r) = CL(r) + CT (r) , (1.3)

where CL(r) and CT (r) represent the contributions to Cvv (r)
coming from longitudinal (i.e., compressive) and transverse
(i.e., shear) fluctuations and respectively obey the scaling laws

CL(r) = r−�fL(δθrr
β )hL(θr )

∝
{

(δθrr )2χ , δθr 	 r−β,

r−�, δθr 
 r−β,
(1.4)

and

CT (r) = r−�fT (θrr
β )

∝
{

(θrr )2χ , θr 	 r−β,

r−�, θr 
 r−β.
(1.5)

In Eq. (1.4), we have defined δθr ≡ θr + θc − π
2 , and the

function hL(θr ) is a smooth, analytic, O(1) function of θr ,
with no strong dependence on θr near θ = π/2 − θc. The ex-
ponents β and � in Eqs. (1.4) and (1.5) are determined by the
other two unknown but universal exponents: the anisotropy
exponent ζ , and the roughness exponent χ , via the relations

β = 1 − 1

ζ
, � = −2

χ

ζ
. (1.6)

Note that CL(r) and the density correlation Cρρ (r) [see
Eq. (1.7)] exhibit their strongest anisotropies in different
directions from those in which CT (r) does: CL(r) and Cρρ (r)
are most strongly anisotropic near θr = π

2 − θc, while CT (r)
is most strongly anisotropic near θr = 0. Thus, the full cor-
relation function Cvv (r) exhibits strong anisotropy near both
directions of r.

While we can say nothing definite in d = 3 for the case
γ v2 > 0, it is tempting to conjecture that the exponents ζ and
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χ take on the same values as for γ v2 < 0 in d = 3, which
are ζ = 4/3, χ = −1/3. If this is the case, then we obtain
β = 1/4 and � = 1/2. We really have no justification for this
conjecture, however, other than the fact that an analogous con-
jecture for flocks with annealed disorder appears empirically
to get the correct exponents for d = 3.

In all four cases (i.e., the two possible signs of γ v2,
and d = 2 or d > 2), density fluctuations exhibit long-ranged
correlations, which also obey a simple scaling law:

Cρρ (r) ≡ δρ(r + R, t ) · δρ(R, t )

= r−�ρ fL(δθrr
βρ )hρ (θr )

∝
{

(δθrr )2χρ , δθr 	 r−βρ ,

r−�ρ , δθr 
 r−βρ ,
(1.7)

which only shows strong anisotropy near θr = π
2 − θc; the

function hρ (θr ) is a smooth, analytic, O(1) function of θr .
In three of the four cases, namely, d = 2, for both signs

of γ v2, and d = 3, γ v2 < 0: βρ = 0, χρ = d − 2, and �ρ =
2χρ = 2(d − 2). Another way to say this is that in these
cases, Cρρ (r) ∝ r2−d × fL(θr ); that is, Cρρ (r) is proportional
to r2−d for all directions θr of r. For d = 3, γ v2 > 0: βρ =
β = 1 − 1

ζ
, χρ = χ , and �ρ = � = −2 χ

ζ
.

As in flocks with annealed disorder, these long-ranged
correlations lead to giant number fluctuations, as predicted
and seen in both active nematics [28] and flocks with annealed
disorder [29]; that is, if we count the number of particles
N in a hypercubic subvolume and look at the mean squared
fluctuations �N2 scale with the mean number N , we find that
these fluctuations are much larger than the usual “law of large
numbers” result �N2 ∝ N . Instead, we find

�N2 ∝ N̄2φ(d ), (1.8)

with the exponent φ(d ) given not by the law of large numbers
result φ = 1/2 but rather

φ(d ) =
{

1/2 + 1/d, γ v2 < 0 or d = 2,

1 + χ/d, γ v2 > 0 and d > 2.
(1.9)

The remainder of this paper is organized as follows. In the
next section, we derive a hydrodynamic model for flocks with
quenched noise. We study the hydrodynamic model to linear
order in fluctuations about a state of perfect order in Sec. III.
In Sec. IV, we present the full nonlinear theory for the four
cases: (a) γ v2 < 0, d > 2; (b) γ v2 < 0, d = 2; (c) γ v2 > 0,
d = 2; and (d) γ v2 > 0, d > 2. In Sec. V, we describe a
numerical model to study flocking with quenched disorder.
The results from our numerical studies are presented in Sec.
VI, before we conclude in Sec. VII.

II. THE HYDRODYNAMIC MODEL

Our starting point is the hydrodynamic theory of Refs. [3–
7], modified only by the inclusion of a quenched random
force f:

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(|v|2)

= U (|v|)v − ∇P1 − v(v · ∇P2) + DB∇(∇ · v)

+DT ∇2v + D2(v · ∇)2v + f, (2.1)

∂tρ + ∇ · (vρ) = 0, (2.2)

where the convective parameters λi (i = 1 → 3), the non-
linear drag-propulsion coefficient U , the diffusion constants
DB,T,2, the isotropic pressure P (ρ, |v|), and the anisotropic
pressure P2(ρ, |v|) are, in general, functions of the density ρ

and the magnitude |v| of the local velocity.
Since we are interested in an ordered, moving state with a

nonzero average velocity, we assume the U term makes the
local v have a nonzero magnitude v0 in the steady state, by
the simple expedient of having U > 0 for v < v0, U = 0 for
v = v0, and U < 0 for v > v0.

The diffusion constants (or viscosities) DB,T,2 reflect the
tendency of a localized fluctuation in the velocities to spread
out because of the coupling between neighboring birds.

In flocks without quenched disorder [3–7], the random
force f (r, t ) is taken to be a Langevin noise, uncorrelated in
both space and time.

To treat quenched disorder, we simply take the random
force to be static, i.e., to depend only on position, f (r, t ) =
f (r), and not on time t at all, with short-ranged spatial
correlations,

fi (r)fj (r′) = �δij δ
d (r − r′) , (2.3)

where the overbar denotes averages over the quenched disor-
der and the noise strength � is a constant parameter of our
model. We will also assume f is zero mean and Gaussian.
Adding a time-dependent Langevin component, in addition to
this quenched force (which we actually do in our simulations)
changes none of the results presented here, since it is sub-
dominant relative to the quenched disorder (although it can
change time-dependent correlations, as we will discuss in a
future publication [25]). Small departures from our assumed
Gaussian statistics can also be shown to be irrelevant in the
renormalization group sense.

The pressure P tends, as in an equilibrium fluid, to main-
tain the local number density ρ(r) at its mean value ρ0. The
anisotropic pressure P2(ρ, |v|) in Eq. (2.1) is only allowed due
to the nonequilibrium nature of the flock; in an equilibrium
fluid such a term is forbidden, since Pascal’s law ensures that
pressure is isotropic. In the nonequilibrium steady state of a
flock, no such constraint applies.

The final equation (2.2) is just conservation of bird number:
We do not allow our birds to reproduce or die on the wing. The
interesting results that arise when this constraint is relaxed by
allowing birth and death while the flock is moving have been
discussed elsewhere [24].

The hydrodynamic model embodied in Eqs. (2.1), (2.2),
and (2.3) is equally valid in both the disordered (i.e., nonmov-
ing) and ferromagnetically ordered (i.e., moving) state. Here
we are interested in the ferromagnetically ordered, broken-
symmetry phase which occurs when U > 0 for v < v0, U = 0
for v = v0, and U < 0 for v > v0, as discussed earlier. In this
state, we can expand the equations of motion (2.1) and (2.2)
for small fluctuations δv and δρ of the velocity and density
about their mean values. That is, we write the velocity and
density fields as

v = (v0 + δv‖)e‖ + v⊥ (2.4)
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and

ρ = ρ0 + δρ , (2.5)

where v0e‖ = 〈v〉 is the spontaneous average value of v in the
ordered phase, and the fluctuations δv‖ and v⊥ of v about this
mean velocity along and perpendicular to the direction of the
mean velocity are assumed to be small, as are the fluctuations
δρ of the density.

Expanding the equation of motion (2.1) in these small
quantities δv‖, v⊥, and δρ, and then eliminating the fast
variable δv‖ proves to be quite subtle [7]. Fortunately, this
expansion goes through in exactly the same way here as in
the case of annealed disorder, so we can use the results of
Ref. [7] to obtain our final pair of coupled equations of motion
for the fluctuation v⊥(r, t ) of the local velocity of the flock
perpendicular to the direction of mean flock motion (which
mean direction will hereafter denoted as ‖), and the departure
δρ(r, t ) of the density from its mean value ρ0:

∂tv⊥ + γ ∂‖v⊥ + λ(v⊥ · ∇⊥)v⊥

= −g1δρ∂‖v⊥ − g2v⊥∂‖δρ − g3v⊥∂tδρ − c2
0

ρ0
∇⊥δρ

− g4∇⊥(δρ2) + DB∇⊥(∇⊥ · v⊥) + DT ∇2
⊥v⊥

+D‖∂2
‖ v⊥ + νt∂t∇⊥δρ + ν‖∂‖∇⊥δρ + f⊥, (2.6)

∂tδρ + ρo∇⊥ · v⊥ + λρ∇⊥ · (v⊥δρ) + v2∂‖δρ

= Dρ‖∂2
‖ δρ + Dρv∂‖(∇⊥ · v⊥) + φ∂t∂‖δρ

+w1∂‖(δρ2) + w2∂‖(|v⊥|2), (2.7)

where γ , λ, λρ , c2
0, g1,2,3,4, w1,2, DBeff,T,‖,ρ‖,ρv, νt,‖, v2, φ,

and ρ0 are all phenomenological constants, which can be
expressed in terms of the expansion coefficients of the various
functions of |v| and ρ in (2.1). The interested reader is referred
to Ref. [7] for those expressions.

The quenched random force f⊥(r, t ) is simply the projec-
tion of our original random force in (2.1) perpendicular to the
mean velocity; (2.3) therefore implies that its correlations are

f ⊥
i (r)f ⊥

j (r′) = �δ⊥
ij δ

d (r − r′), (2.8)

where we use an overbar to denote averages over the quenched
disorder and δ⊥

ij = 1 if and only if i = j �= ‖ and is zero for
all other i, j . Like f , f⊥ is also zero mean and Gaussian.

III. LINEAR THEORY

We first analyze the hydrodynamic model by linearizing
the equations in δρ and v⊥, which gives

∂tv⊥ + γ ∂‖v⊥ = − c2
0

ρ0
∇⊥δρ + DB∇⊥(∇⊥ · v⊥) + DT ∇2

⊥v⊥

+D‖∂
2
‖ v⊥ + νt∂t∇⊥δρ + ν‖∂‖∇⊥δρ + f⊥

(3.1)

∂t δρ + ρo∇⊥ · v⊥ + v2∂‖δρ

= Dρ‖∂
2
‖ δρ + Dρ⊥∇2

⊥δρ + Dρv∂‖ (∇⊥ · v⊥) + φ∂t∂‖δρ.

(3.2)

The steady-state solution of these equations is readily ob-
tained by taking δv(r, t ) and δρ(r, t ) to be time independent
and spatially Fourier transforming the resultant equations.
This gives a set of linear equations relating δv(q) and δρ(q) to
the corresponding spatial Fourier transforms of the quenched
random force f (q):

[iρ0 + Dρvq‖]q⊥vL + [iv2q‖ + �ρ (q)]δρ = 0, (3.3)

[iγ q‖ + �L(q)]vL +
[
ic2

0

ρ0
− ν‖q‖

]
q⊥δρ = fL(q), (3.4)

[iγ q‖ + �T (q)]vT = fT (q), (3.5)

where we have defined the wavevector-dependent dampings,

�ρ (q) ≡ Dρ‖q2
‖ + Dρ⊥q2

⊥, (3.6)

�L(q) ≡ D‖q2
‖ + D⊥q2

⊥, (3.7)

�T (q) ≡ D‖q2
‖ + DT q2

⊥, (3.8)

all of which vanish like q2 as q → 0. Here we have defined
D⊥ ≡ DB + DT , and we have also separated the velocity v⊥
and the noise f⊥ into components fL(q) along and fT (q)
perpendicular to the projection q⊥ of q perpendicular to 〈v〉
via

vL ≡ v⊥ · q⊥/q⊥, vT ≡ v⊥ − vL

q⊥
q⊥

, (3.9)

with fL and fT obtained from f in the same way. Note that vT

is identically zero in d = 2, since q⊥ has only one nonzero
component in that dimension.

Equations (3.4) and (3.5) are a simple set of linear algebraic
equations for the velocity and density fluctuations δρ, vL, and
vT , which can easily be solved for these fields in terms of the
noises fL and fT . We find

δρ(q) = Gρ (q)fL(q), (3.10)

vL(q) = GL(q)fL(q), (3.11)

vT (q) = GT (q)fT (q), (3.12)

where the propagators Gρ,L,T (q) are given, dropping irrele-
vant terms (i.e., terms that are higher order in q), by

Gρ (q) = −iρ0q⊥
c2

0q
2
⊥ − γ v2q

2
‖ + i�(q)q‖

, (3.13)

GL(q) = iv2q‖
c2

0q
2
⊥ − γ v2q

2
‖ + i�(q)q‖

, (3.14)

GT (q) = 1

[iγ q‖ + �T (q)]
, (3.15)

where we have defined another wave-vector-dependent damp-
ing,

�(q) = γ�ρ + v2�L +
(

ν‖ρ0 − c2
0Dρv

ρ0

)
q2

⊥ = Aq2
⊥ + Bq2

‖ ,

(3.16)
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which also scales like q2 as q → 0. In Eq. (3.16), we have
defined

A ≡
[
v2D⊥ + γDρ⊥ + ν‖ρ0 − c2

0Dρv

ρ0

]
,

B ≡ [v2D‖ + γDρ‖]. (3.17)

We can now obtain the disorder-averaged correlation func-
tions of the fluctuations |vL(q)|2, |ρ(q)|2, and |vT (q)|2 simply
by using Eqs. (3.10)–(3.12) to relate these averages to the
noise averages, Eq. (2.8). This gives

|vL(q)|2 = v2
2q

2
‖�[

c2
0q

2
⊥ − γ v2q

2
‖
]2 + �(q)2q2

‖
, (3.18)

|δρ(q)|2 = ρ2
0q2

⊥�[
c2

0q
2
⊥ − γ v2q

2
‖
]2 + �(q)2q2

‖
, (3.19)

|vT (q)|2 = (d − 2)�

γ 2q2
‖ + �T (q)2

, (3.20)

where d is the dimension of space.
These expressions can be rewritten in terms of the magni-

tude q of wave vector q and the angle θq between the direction
of mean flock motion x̂‖ and q:

|vL(q)|2 = �̃ cos2 θq

q2
[
ε2(θq)q2 + ( sin2 θq − [ γ v2

c2
0

]
cos2 θq
)2] ,

(3.21)

|δρ(q)|2 = �̃
(
ρ2

0

/
v2

2

)
sin2 θq

q2
[
ε2(θq)q2 + ( sin2 θq − [ γ v2

c2
0

]
cos2 θq
)2] ,

(3.22)

|vT (q)|2 = (d − 2)�

γ 2q2
[
ε2
T (θq)q2 + cos2 θq

] , (3.23)

where we have defined �̃ ≡ v2
2�

c4
0

and direction-dependent

damping coefficients ε(θq) ≡ �(q)/c2
0q

2 = (A cos2 θq +
B sin2 θq)/c2

0 and εT (θq) ≡ �T (q)/γ 2q2 = (D‖ cos2 θq +
DT sin2 θq)/γ 2.

From Eqs. (3.21)–(3.23), we immediately see that there
is an important distinction between the cases γ v2 > 0 and
γ v2 < 0. In the former case, fluctuations of vL and ρ are
highly anisotropic: They scale like q−2 for all directions of
q except when θq = θc or π − θc, where we have defined a

critical angle of propagation θc ≡ arctan [
√

γ v2

c0
]. The physical

significance of θc is that it is the direction in which the
speed of propagation of longitudinal sound waves in the flock
vanishes [3–7]. For these special directions (which only exist
if γ v2 > 0), both |vL(q)|2 and |δρ(q)|2 scale like q−4. On
the other hand, when γ v2 < 0, fluctuations of vL and ρ are
essentially isotropic: They scale as q−2 for all directions of q
full stop.

Fluctuations of vT , however, are always anisotropic, di-
verging as q−4 for θq = π/2 and as q−2 for all other directions
of q. Of course, there are no such fluctuations in d = 2, since,
as noted earlier, vT does not exist in that case, as reflected by
the factor of (d − 2) in Eq. (3.23).

It is intuitively clear why the fluctuations are so much
larger for q in these special directions that exist in the case
γ v2 > 0. The longitudinal degrees of freedom vL and δρ are
carried by propagating sound waves in the flock [3–7]. For
directions in which these sound waves have a nonvanishing
speed, the static disorder looks, in a frame comoving with the
sound mode, like a time-dependent one, which quickly time
averages to zero. Fluctuations in these directions are therefore
small and are regulated by the sound speeds, which involve c0

and v2. For the special directions θq = θc, however, the sound
speeds vanish [3–7], and so these fluctuations sit right on top
of the static quenched disorder and grow until cutoff by the
damping, which is higher order in q than sound propagation.
The entire phenomenon is similar to a very underdamped
oscillator: When driven off resonance, the response is small
and almost independent of the damping, while on resonance,
the response is large and controlled entirely by the damping.
Here the resonance is at zero frequency, which is achieved
by varying the direction of propagation, but the underlying
physics is exactly the same.

The same argument applies for the transverse fluctuations,
Eq. (3.23), only now the critical angle at which the propaga-
tion speed of these modes vanishes is [3–7] θc,transverse = π/2.

The above discussion assumed that γ and v2 have the
same sign. While this has always proved to be the case in
the few systems for which γ and v2 have been deduced from
simulations [4] (including the simulations we report here),
there is no symmetry argument that this must always be true.
We therefore expect there to be some flocking systems in
which these parameters have opposite signs. In this case,
there is no (real) θc, and both |vL(q)|2 and |δρ(q)|2 scale like
1/q2 for all directions of q. As a result, only the fluctuations
of vT (q) become anomalously large for some directions of
propagation, namely θ = θc,transverse = π/2, as before.

Of course, in d = 2, as noted earlier, there is no transverse
component of v. Hence, in d = 2, when γ v2 < 0, both the
total mean squared velocity fluctuation |v(q)|2 and the mean
squared density fluctuation |δρ(q)|2 scale like 1/q2 for all
directions of q. While we have derived this result in the
linearized theory, it proves to hold in the full theory as well.

In higher spatial dimensions d > 2, the transverse fluc-
tuations now exist and are still soft (with a critical angle
θc = π/2), even when γ and v2 have opposite signs. We will
see later, however, that they are not as soft as the linear theory
predicts.

In any event, the distinction between the cases γ v2 > 0
and γ v2 < 0 is significant, even in the linearized theory. It
becomes even more relevant in the nonlinear theory; as we
will show below, it is possible to make a compelling argument
giving exact exponents for all spatial dimensions d � 5 in the
case γ v2 < 0, but not for γ v2 > 0.

Returning now to the case γ v2 > 0, we see that it is the
special directions θq near θc and π

2 of wave vector q that

dominate the real space fluctuations |v⊥(r)|2 and |δρ(r)|2.
These can be obtained by integrating the Fourier-transformed
fluctuations |δρ(q)|2, |vL(q)|2, and |vT (q)|2 over all wave
vector q. Focusing for now on the real space velocity fluc-
tuations, which determine whether or not the system exhibits
long-ranged orientational order [i.e., a nonzero average veloc-
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ity v(r)] and expanding |vL(q)|2 and |vT (q)|2 for θq near θc

and π
2 respectively, we obtain

|vL(q)|2 ≈ �v2
2gL(q, δθ )

c4
0q

2
, (3.24)

where we have defined δθ ≡ θq − θc and

gL(q, δθ ) = cos2 θc

mδθ2 + ℵ2q2
, (3.25)

with the constants m and ℵ given by m = 4v2γ

c2
0

and

c2
0ℵ =
(

v2D⊥ + γDρ⊥ + ν‖ρ0 − c2
0Dρv

ρ0

)
sin2 θc cos θc

+ (γDρ‖ + v2D‖) cos3 θc. (3.26)

We also find

|vT (q)|2 ≈ (d − 2)�gT (q, δθ2)

γ 2q2
, (3.27)

where we have defined δθ2 ≡ θq − π
2 and

gT (q, δθ2) = 1

δθ2
2 + β2q2

, (3.28)

with the constant β given by β = DT

γ
.

Using these approximations to evaluate the real space
fluctuations |v⊥(r)|2 gives

|v⊥(r)|2 =
∫

ddq

(2π )d
(|vL(q)|2 + |vT (q)|2)

≈
∫

qd−3dq

(2π )d

(
�v2

2

c4
0

[∫ ∞

−∞
sind−2 θcdδθgL(q, δθ )

]

+ (d − 2)�

γ 2
0 q2

[∫ ∞

−∞
dδθ2gT (q, δθ2)

])
, (3.29)

where we have used the fact (which will become evident in a
moment) that, for small q, the angular integrals are dominated
by δθ 
 1 and δθ2 
 1 to extend the range of those integrals
to ±∞.

Evaluating those angular integrals is straightforward and
gives

∫ ∞

−∞
sind−2 θcdδθgL(q, δθ ) =

∫ ∞

−∞
sind−2 θcdδθ

cos2 θc

m2δθ2 + ℵ2q2

= π sind−2 θc cos2 θc

mℵq
∝ 1/q,

(3.30)∫ ∞

−∞
dδθ2gT (q, δθ2) =

∫ ∞

−∞
dδθ2

1

δθ2
2 + β2q2

= π

βq
∝ 1/q.

(3.31)

Inserting these results back into Eq. (3.29), we see that the
linearized theory predicts that

|v⊥(r)|2 ∝
∫

qd−4dq, (3.32)

which clearly diverges in the long wavelength (i.e., infrared,
or q → 0) limit for d � d lin

c = 3. This implies that, according
to the linearized theory, there should be no long-ranged orien-
tational order for d � d lin

c = 3; that is, the ordered flock, with
a nonzero v(r), should not occur for d � 3, no matter how
weak the disorder. In the critical dimension d = 3, quasi-long-
ranged order (with algebraic decay of velocity correlations in
space), should, again according to the linearized theory, occur.

For the case γ v2 < 0, in d = 2, the fluctuations predicted
by the linear theory are far smaller, due to the absence of vT ,
and the fact that for the only remaining velocity fluctuations–
namely, the longitudinal ones vL–no longer there are no
directions of q in which the linear theory predicts a divergence
of |v⊥(q)|2 stronger than 1/q2 as q → 0. As a result, for
γ v2 < 0, in d = 2, we have

|v⊥(r)|2 ∝
∫

dq

q
, (3.33)

which implies only a logarithmic divergence of velocity fluc-
tuations, in contrast to the strong (algebraic) divergence found
above for the γ v2 > 0 case.

We will see in the next section that when nonlinearities are
taken into account, these two cases become much more simi-
lar, with both exhibiting quasi-long-ranged order Eq. (1.1).

IV. NONLINEAR THEORY

The large fluctuations in this system lead one to worry
about the validity of the linear approximation just presented.
This worry is, in fact, justified: We now show that the non-
linearities explicitly displayed in Eqs. (2.6) and (2.7) in fact
radically change the scaling of fluctuations in flocks with
quenched disorder for all spatial dimensions d � 5. Further-
more, this change in scaling in fact stabilizes long-ranged
orientational order (i.e., makes it possible for the flock to
acquire a nonzero mean velocity [〈v〉 �= 0)] in three dimen-
sions and may make quasi-long-ranged order possible in two
dimensions. Here, as usual, by “quasi-long-ranged order” we
mean real space velocity correlations that decay algebraically
with separation, i.e., Eq. (1.1).

As we saw in our linearized analysis, our problem quali-
tatively changes when γ v2 changes sign. For γ v2 > 0, there
are directions of q for which the longitudinal sound speeds
vanish and hence the longitudinal modes make appreciable
contributions to the fluctuations. In contrast, for γ v2 < 0,
there are no such directions of q, and so the contributions
of longitudinal modes can be neglected relative to those of
the transverse modes, except, of course, in d = 2, where there
are no tranverse modes. Hence, there are four distinct cases
we must analyze separately: (a) γ v2 < 0, d > 2; (b) γ v2 < 0,
d = 2; (c) γ v2 > 0, d = 2; and (d) γ v2 > 0, d > 2. We will
now discuss the behavior of the full, nonlinear theory for each
of these four cases in turn.
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A. γ v2 < 0, d > 2

1. Linear scaling and relevance of nonlinearities for d � 5

We begin by demonstrating that the aforementioned non-
linearities become important for spatial dimensions d � 5. We
do this first for the case γ v2 < 0, for which, we remind the
reader, the sound speeds do not vanish for any direction of
propagation.

We can assess the importance of the nonlinearities by
power counting on the equations of motion [(2.6) and (2.7)].
This power counting is quite subtle, due to the anisotropy of
the fluctuations in this system. We will accordingly rescale
coordinates r‖ along the direction of flock motion differently
from those r⊥ orthogonal to that direction, taking the rescaling
factor for r⊥ to be b and that for r‖ to be bζ , where the
anisotropy exponent ζ is to be determined.

To complete the rescaling, we will also rescale time by a
factor of bz, where z is known as the dynamical exponent and
the fields v⊥ and ρ by factors of bχ and bχρ , where χ and
χρ are the roughness exponents for v⊥ and ρ respectively.
We choose the same rescaling factor for the fields v⊥ and ρ

because, as we saw in our treatment of the linearized model,
their fluctuations scale in the same way with wave vector.

To summarize, our rescaling is as follows:

r⊥ → br⊥, r‖ → bζ r‖, t → bzt,

v⊥ → bχ v⊥, δρ → bχρ δρ. (4.1)

Performing these rescalings as just described, we easily
find how the parameters in the rescaled equations (denoted
by primes) are related to those of the unrescaled equations.
We will focus on those parameters that actually affect the
fluctuations in the dominant regime of wave vector q, which,
as we noted in the linearized section, is the regime q‖ ∼ q2

⊥ 

q⊥ (this being the regime in which v2

T ∝ 1/q4 	 v2
L ∝ 1/q2).

Inspection of our expressions, Eqs. (3.19), (3.18), and (3.20)
for the fluctuations of the density ρ and the longitudinal
and transverse velocities vL,T shows that in this regime of
wave vector, the fluctuations are entirely determined (in the
linearized approximation) by the parameters �, γ , and DT

and the combination of parameters c2
0

ρ0
. [Note that in the wave-

vector limit we are considering, both the �(q)2q2
‖ and the

γ v2q
2
‖ terms in the denominators of Eqs. (3.19) and (3.18)

as well as the D‖ term in the denominator of Eq. (3.20)
are negligible and can be dropped with impunity.] We will
therefore focus on the rescaling of these parameters under
Eq. (4.1), which are easily found to be given by

γ ′ = bz−ζ γ, (4.2)(
c2

0

ρ0

)′
= bχρ−χ+z−1

(
c2

0

ρ0

)
, (4.3)

D′
T = bz−2DT , (4.4)

�′ = b2(z−χ )+1−d−ζ �. (4.5)

We can thus keep the scale of the fluctuations of ρ and vL

fixed by choosing the exponents z, ζ , χ , and χρ to obey

z − ζ = 0, (4.6)

χρ − χ + z − 1 = 0, (4.7)

z − 2 = 0, (4.8)

2(z − χ ) + 1 − d − ζ = 0. (4.9)

This system of linear equations can readily be solved for all
of the exponents, yielding

zlin = ζlin = 2, χlin = 3 − d

2
, χρ,lin = 1 − d

2
. (4.10)

The subscript “lin” in these expressions denotes the fact that
we have determined these exponents ignoring the effects of
the nonlinearities in the equations of motion (2.6) and (2.7).
We now use them to determine in what spatial dimension d

those nonlinearities become important.
Upon the rescalings Eq. (4.1), the nonlinear terms λ and

g1,2,3,4 in the v⊥ equation of motion Eq. (2.6) obey

λ′ = bz+χ−1λ = b
5−d

2 λ, (4.11)

g′
1 = bz+χρ−ζ g1 = b

1−d
2 g1, (4.12)

g′
2 = bz+χρ−ζ g2 = b

1−d
2 g2, (4.13)

g′
3 = bχρ g3 = b

1−d
2 g3, (4.14)

g′
4 = bz+2χρ−χ−1g4 = b

1−d
2 g4. (4.15)

The behavior of these rescaled parameters for large rescal-
ing factor b tells us which parameters are important at long
distances (namely, those that grow with increasing b). We
would like to assess the importance of the nonlinear terms.
Since we have chosen our rescaling factors, Eq. (4.10), to keep
the size of the fluctuations vL,T and δρ fixed, we can directly
assess whether the nonlinear terms grow in importance by
whether their coefficients λ and gi (i = 1 − 4) do (since the
factors involving the fields in those terms will not change upon
rescaling).

By inspection of Eqs. (4.11)–(4.15), we see that only λ

becomes relevant in any spatial dimension d > 1; in fact, it
becomes relevant for d � dc = 5. We will now discuss the
implications of this in the next subsection.

2. Nonlinear scaling for d � 5

The results so far imply that for all spatial dimensions d � 5,
we must keep the λ nonlinearity in Eq. (2.6) but can drop
the g1,2,3,4 nonlinearities. Furthermore, if we restrict ourselves
to consideration of the transverse modes vT , which we can
do by projecting the spatial Fourier transform of Eq. (2.6)
perpendicular to q⊥, we see that there is no coupling between
vT and ρ at all, even at nonlinear order. Hence, ρ completely
drops out of the problem of determining the fluctuations of
vT . Since vT is, as we saw in our treatment of the linearized
version of this problem, the dominant contribution to the
velocity fluctuations when d > 2 (so that vT actually exists)
and γ v2 < 0 (so that there is no direction of q for which the
longitudinal velocity fluctuations vL diverge more strongly
than 1/q2 in the linearized approximation), this means that
the long-distance scaling of the velocity fluctuations will be
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the same as in a model with no density fluctuations at all, that
is, an incompressible model.

Such a model takes the form

∂tv⊥ + γ ∂‖v⊥ + λ(v⊥ · ∇⊥)v⊥

= −∇⊥P + DT ∇2
⊥v⊥ + D‖∂2

‖ v⊥ + f⊥ , (4.16)

with the pressure P determined not by the density ρ but by
the incompressibility condition

∇⊥ · v⊥ = 0. (4.17)

This equation of motion has a number of useful properties that
make it possible for us to determine the scaling laws exactly.
These are the following:

(1) The only nonlinearity (the λ term) can be written as
a total ⊥ derivative. This follows from the vector calculus
identity:

(v⊥ · ∇⊥)v⊥
i = ∂⊥

j (v⊥
j v⊥

i ) − v⊥
i ∇⊥ · v⊥. (4.18)

The first term on the right-hand side of this expression is
obviously a total ⊥ derivative. The second term vanishes by
the incompressibility condition, Eq. (4.17).

This implies that the nonlinearity can only renormalize
terms which themselves involve ⊥ derivatives (i.e., D0

T );
specifically, there are no graphical corrections to either γ

or �.
(2) There are no graphical corrections λ either, because the

equation of motion Eq. (4.16) has an exact “pseudo-Galilean
invariance” symmetry: That is, it remains unchanged by a
pseudo-Galilean the transformation:

r⊥ → r⊥ − λv1t, v⊥ → v⊥ + v1 (4.19)

for arbitrary constant vector v1 ⊥ e||. Note that if λ = 1, this
reduces to the familiar Galilean invariance in the ⊥ directions.
Since such an exact symmetry must continue to hold upon
renormalization, with the same value of λ, the parameter λ

cannot be graphically renormalized.
So if we now perform a full renormalization group analysis

on Eq. (4.16), including graphical corrections, the full recur-
sion relations for the graphically unrenormalized parameters
λ, γ , and � will be just what we obtained earlier from power
counting, i.e.,

γ ′ = bz−ζ γ, (4.20)

�′ = b2(z−χ )+1−d−ζ �, (4.21)

and

λ′ = bz+χ−1λ, (4.22)

exactly. The other parameters (DT and c2
0
ρ

) will get graphical
renormalizations, so the values of the scaling exponents z, ζ ,
and χ that will keep them fixed will no longer be the linear
ones, Eq. (4.10). We can, however, determine the exact values
of z, ζ , and χ that will give us a fixed point from the exact
recursion relations, Eqs. (4.20)–(4.22), which imply that, to
get a fixed point, we must have

z − ζ = 0, 2(z − χ ) + 1 − d − ζ = 0, z + χ − 1 = 0.

(4.23)

These three equations in three unknowns are easily solved for
the exact values of these scaling exponents for γ v2 < 0 for all
spatial dimensions d in the range 2 < d < 5:

z = d + 1

3
= ζ, (4.24)

χ = 2 − d

3
. (4.25)

Note that when d equals the critical dimension (d = dc = 5),
these match the values z = ζ = 2, χ = 3−d

2 = −1 of these
exponents predicted by the linear theory, as they should.

The fact that χ < 0 for all d in the range 2 < d < 5 implies
that velocity fluctuations get smaller as we go to longer length
scales; this implies the existence of long-ranged order (i.e.,
a nonzero average velocity v �= 0) in all of those spatial
dimensions. The physically realistic case in this range is, of
course, d = 3.

We can also calculate the scaling of correlations of velocity
fluctuations from these exponents. For example, the usual
scaling arguments imply that

Cvv (r) ≡ δv(r + R, t ) · δv(R, t )

= b2χCvv (b−1r⊥, b−ζ r‖). (4.26)

Making the specific choice b = r⊥/ξ⊥, where ξ is some fixed
microscopic length, this can be rewritten as

Cvv (r) = r
2χ

⊥ ξ
−2χ

⊥ Cvv

⎛
⎝ξ⊥,

r‖(
r⊥
ξ⊥

)ζ
⎞
⎠ ≡ r

2χ

⊥ g

⎛
⎝
( r‖

ξ‖

)
(

r⊥
ξ⊥

)ζ
⎞
⎠,

(4.27)

where we have defined the scaling function

g(x) ≡ ξ
−2χ

⊥ Cvv (ξ⊥, xξ‖), (4.28)

with ξ‖ another microscopic length that we have introduced to
make the argument of g dimensionless.

We can determine the limiting behaviors of g by noting
that we expect Cvv (r) to depend only on r‖ for r‖

ξ‖
	 ( r⊥

ξ⊥
)ζ ;

inspection of Eq. (4.27) reveals that this can only happen if

g(x 	 1) ∝ xχ/ζ , (4.29)

because only then will the r⊥ dependence drop out. This
implies that

Cvv (r) ∝ r
2χ/ζ

‖ = r
2(2−d )
d+1

‖ = r
−1/2
‖ ,

r‖
ξ‖

	
(

r⊥
ξ⊥

) d+1
3

, (4.30)

where we have used our exact results in Eqs. (4.25) and (4.24)
for χ and ζ , and the final equality holds in d = 3.

Likewise, for r‖
ξ‖


 ( r⊥
ξ⊥

)ζ , we expect Cvv (r) to depend only
on r⊥; this implies

g(x → 0) → constant �= 0, (4.31)

which implies

Cvv (r) ∝ r
2χ

⊥ = r
2(2−d )

3
⊥ = r

−2/3
⊥ ,

r‖
ξ‖



(

r⊥
ξ⊥

) d+1
3

, (4.32)

where again the final equality holds in d = 3.
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Note that since ζ = d+1
3 > 1, for most directions of r,

r‖
ξ‖


 ( r⊥
ξ⊥

)
d+1

3 for large r , so Eq. (4.32) will hold. It is only for
r very nearly parallel to the direction of mean flock motion
(that is, for θr 
 1) that the other limit Eq. (4.30) will apply.

It is instructive, particularly for comparison with the γ v2 >

0 case, to rewrite the scaling law [Eq. (4.27)] in polar co-
ordinates: r⊥ = r sin θr , r‖ = r cos θr . This leads, in d = 3,
directly to Eq. (1.2), with the definition

fT (x) ≡ x−2/3g(x−4/3). (4.33)

The limiting behaviors for large and small θr given on the
last two lines of Eq. (1.2) follow directly from the limiting
behaviors Eqs. (4.29) and (4.31) of the scaling function g,
together with the relation Eq. (4.33) between fT and g.

We can also, by virtually identical reasoning, derive similar
scaling laws for the correlations in Fourier space:

|v⊥(q)|2 = q−2
‖ h

(
q‖
q

ζ

⊥

)

∝
{

q
−2ζ

⊥ ,
q‖
�


 ( q⊥
�

)ζ
,

q−2
‖ ,

q‖
�

	 ( q⊥
�

)ζ
.

(4.34)

Density fluctuations |δρ(q)|2 in this case are unaffected
by the nonlinearities, since the parameters γ , v2, �, and c0

that control them for all directions of q are unrenormalized.
[To see that these are indeed the only parameters that affect
|δρ(q)|2, look at Eq. (3.22) for the case γ v2 < 0.] Hence, our
linear result, Eq. (3.22), applies for all directions of q, which
implies

|δρ(q)|2 ∝ 1/q2 (4.35)

for all directions of q. Fourier transforming this result back to
real space implies

Cρρ (r) = hρ (θr )/rd−2 , (4.36)

where hρ (θr ) is a smooth, analytic O(1) function of θr .
Comparing this result with the general form Eq. (1.7), we
see that in the notation of that equation, we have βρ = 0 and
χρ = d − 2, as claimed in the introduction for this case.

B. γ v2 < 0, d = 2

In d = 2, as we have already discussed, there is no trans-
verse component vT of the velocity. As also discussed in the
section on the linear theory, this implies that in the γ v2 < 0
case, which is the topic of this section, there are no directions
of q in which the linear theory predicts a divergence of
|v⊥(q)|2 stronger than 1/q2 as q → 0, in contrast to the d > 2
case, in which some of the components of the velocity—
namely vT —diverge (in the linear theory) like 1/q4 in certain
directions (specifically, perpendicular to the mean velocity v).
This means that the power counting will be quite different in
d = 2, where these fluctuations are absent.

Before undertaking that revised power counting, however,
we first recall, as discussed at the end of our treatment of
the linearized theory, that even from that linearized theory,
we can already see that nonlinear effects must be important
and must invalidate to some degree the linear results. This is

because the divergence of |v⊥(r)|2 predicted by the linearized
theory implies that v = 0 in this case. This means that ei-
ther the state of the flock is isotropic or nonlinearities must
stabilize long-ranged order. Either possibility implies that
nonlinearities must become important, because the linearized
results for the velocity correlations Eq. (3.21) are anisotropic,
but, at the same time, imply divergent fluctuations, which
implies the system must be isotropic on sufficiently large
length scales. This self-contradiction implies that the result,
Eq. (3.21), must be incorrect in d = 2; we have just proved
this by contradiction. But since that result depended only on
linearizing the equations of motion, this must mean that the
linear theory breaks down in d = 2.

We will now confirm this by power counting. We must keep
c0, γ , v2, �, and ρ0 fixed. This implies

γ ′ = bz−ζ γ, (4.37)

v′
2 = bz−ζ v2, (4.38)(

c2
0

ρ0

)′
= bχρ−χ+z−1

(
c2

0

ρ0

)
, (4.39)

�′ = b2(z−χ )−1−ζ �, (4.40)

ρ ′
0 = bχ−χρ+z−1ρ0, (4.41)

where we have set d = 2 throughout.
We can thus keep the scale of the fluctuations of ρ and

vL fixed by choosing the exponents z, ζ , χ , and χρ to keep
the above parameters fixed, which means the exponents must
obey

z − ζ = 0, (4.42)

χρ − χ + z − 1 = 0, (4.43)

χ − χρ + z − 1 = 0, (4.44)

2(z − χ ) − 1 − ζ = 0. (4.45)

This system of linear equations can readily be solved for all
of the exponents, yielding

zlin = ζlin = 1, χlin = χρ,lin = 0. (4.46)

The subscript “lin” in these expressions denotes the fact that
we have determined these exponents ignoring the effects of
the nonlinearities in the equations of motion, Eqs. (2.6) and
(2.7). We now use them to determine in which nonlinearities
are important in d = 2.

Upon the rescalings Eq. (4.1), the nonlinear terms λ and
g1,2,3,4 in the v⊥ equation of motion, Eq. (2.6), obey

λ′ = bz+χ−1λ = λ, (4.47)

g′
1 = bz+χρ−ζ g1 = g1, (4.48)

g′
2 = bz+χρ−ζ g2 = g2, (4.49)

g′
3 = bχρ g3 = g3, (4.50)
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g′
4 = bz+2χρ−χ−1g4 = g4. (4.51)

Doing the same for λρ and w1,2 nonlinearities in the ρ

equation of motion, Eq. (2.7), gives

λ′
ρ = bz+χ−1λρ = λρ, (4.52)

w′
1 = bz+χρ−ζ w1 = w1, (4.53)

w′
2 = bz+χ−ζ w2 = w2. (4.54)

We see that all eight of these nonlinear couplings are
marginal in this case. This implies that they will all give rise
to logarithmic changes to the linear theory.

Because these changes are only logarithmic, they will only
be apparent on literally astronomical length scales at small
disorder strength. For example, γ will presumably get cor-
rections δγ which behave like δγ = constant × � ln(L/ξ ),
where ξ is some microscopic length, L is the spatial extent
of the system, and the constant is independent of the disorder
strength �. For these corrections to become comparable to the
bare γ , we clearly must go to system sizes

L ∼ ξ exp

(
constant

�

)
≡ ξ exp

(
�c

�

)
, (4.55)

which is such a strong function of the disorder strength �

that it can easily become astronomically large. For example,
even if we take ξ to be an interparticle distance, if we take a
not particularly small value of � = �c/9, we get L ∼ 8000ξ ,
which in two dimensions would mean a flock of 80002 = 64
million flockers. Therefore, many simulated flocks will be too
small to see the logarithmic effects just described, and the
linear theory described earlier should work.

We could have anticipated our result that the nonlinearities
are marginal by another line of reasoning. Specifically, our
result, Eq. (3.21), is anisotropic. But this is logically inconsis-
tent in two dimensions with our prediction (3.33) of diverging
velocity fluctuations, because such diverging fluctuations im-
ply that rotation invariance is not broken. If rotation invariance
is not broken, correlation functions must be isotropic. This
self-inconsistency of the linear theory in d = 2 implies that
the linear theory must be incorrect in d = 2. The marginal
nonlinearities just identified provide the mechanism for this
breakdown of the linearized theory; the fact that they are
just marginal reflects the fact that the fluctuations that restore
isotropy only diverge logarithmically in d = 2.

What happens once we get to sufficiently big systems, or
sufficiently strong disorder, to see these logarithmic effects?
To answer this question with certainty would require a dy-
namical renormalization group analysis incorporating all eight
of the marginal nonlinearities. We estimate that 83 = 512
Feynmann graphs would have to be evaluated just to compute
the renormalization of these nonlinearities themselves; an
additional 82 = 64 graphs at the very least would have to
be done for each of the noise strength � and the diffusion
coefficient DT . These 640 Feynmann graphs would then lead
to 10 differential equations with a total of 640 terms, which
would then have to be analyzed to determine the ultimate
scaling behavior of the system. This calculation is beyond our
stamina, and we have not attempted it.

Instead, we will engage in informed speculation about what
the result of such an analysis would be. We suspect that the
problem is like a two-dimensional nematic [30,31]. In such
a nematic, both equilibrium [30] and active [31,32], with
unequal Frank constants, linear theory predicts anisotropic
director correlations and logarithmically diverging real space
director fluctuations. These two results are mutually inconsis-
tent, since logarithmically diverging fluctuations will restore
isotropy. In that 2d nematic problem, the paradox is resolved,
and isotropy is restored, by slow (logarithmic) renormal-
ization of the Frank constants toward equality [30,32]. We
suspect something similar happens here.

We also note that those subtle effects should only become
apparent on length scales that grow like exp[constant/�] for
small �, which will become astronomically large if the noise
strength � is small, as it is in our simulations. This argument
appears to be correct since, as shown in Fig. 4, the fluctuations
still exhibit considerable anisotropy.

Turning our attention now to density fluctuations, we
see that, up to logarithmic corrections, density fluctuations
|δρ(q)|2 again obey

|δρ(q)|2 ∝ 1/q2 (4.56)

for all directions of q. Fourier transforming this result back to
real space implies, as before, that

Cρρ (r) = hρ (θr ) ln r, (4.57)

where hρ (θr ) is a smooth, analytic O(1) function of θr .
Comparing this result with the general form (1.7), we see
that in the notation of that equation we have βρ = 0 and
χρ = d − 2 = 0, as claimed in the introduction for this case.

C. γ v2 > 0, d = 2

For this case, there is no longer a transverse velocity vT .
However, because the Fourier-transformed longitudinal field
vL(q) and the density ρ(q) now both exhibit anisotropic and
divergent fluctuations with the same scaling as those exhibited
by vT in higher dimensions, the eight vertices involving
these all become as relevant as the λ vertex is in the γ v2 <

0 case considered in Subsec. IV A above. Since the RG
eigenvalue of that vertex is 5−d

2 [see Eq. (4.11)], and since
we are considering d = 2 here, these vertices are strongly
relevant and will produce much stronger than logarithmically
divergent corrections. Treating these, however, is fraught with
the same difficulties arising from the large number of relevant
nonlinearities as just discussed in the γ v2 < 0, d = 2 section,
compounded by the fact that d = 2 is so far below the upper
critical dimension dc = 5 that a perturbation theory approach,
even if practical, will not yield quantitatively reliable results.

However, our experience with the annealed noise problem
suggests a way out. In that annealed case, the assumption that
below the critical dimension only two of the nonlinearities,
namely the convective λ and λρ terms in (2.6) and (2.7),
respectively, are actually relevant, simplifies the problem so
much that it is possible to determine exact exponents in d = 2.

This assumption may seem dubious, or, worse, contradic-
tory with the power counting we have just done, which says
that all eight nonlinearities λ, λρ , g1,2,3,4, and w1,2 become
relevant in the same dimension. However, the power-counting

062604-10



HYDRODYNAMIC THEORY OF FLOCKING IN THE … PHYSICAL REVIEW E 98, 062604 (2018)

argument just given does not, in fact, rule out this possibility.
This is because the power-counting argument was done at
the linearized fixed point, at which all of the nonlinearities
are zero. The relevance of these nonlinearities d � dNL

c = 5
therefore means that for those dimensions, the system will
flow away from this linear fixed point to a new, nonlinear
fixed point. The values of the nonlinearities at that fixed point
can only be determined by a full-blown renormalization group
analysis, which, as we have discussed above, is impossible in
practice in the dimensions of physical interest. The only thing
we know for sure is that at least one of the eight nonlinearities
λ, λρ , g1,2,3,4, and w1,2 must be nonzero at the stable RG fixed
point for d < 5 (since we have just shown that the fixed point
with all of them zero—i.e., the linear fixed point—is unstable
for d < 5). So it is entirely possible (although obviously by
no means guaranteed) that λ and λρ are the only nonzero
nonlinearities at the new fixed point.

There are precedents for this (that is, for terms that ap-
pear relevant by simple power counting below some critical
dimension dc actually proving to be irrelevant once graphical
corrections—i.e., nonlinear fluctuation effects—are taken into
account). One example is the cubic symmetry-breaking inter-
action [33] in the O(n) model, which is relevant by power
counting at the Gaussian fixed point for d < 4 but proves to be
irrelevant, for sufficiently small n, at the Wilson-Fisher fixed
point that actually controls the transition for d < 4, at least for
ε ≡ 4 − d sufficiently small.

The assumption that, of all the potentially relevant non-
linearities, only λ, λρ �= 0 in the annealed problem leads to
exact exponents for that problem which agree extremely well
with numerical simulations of flocking [4–6,27]. Thus, it
seems that this assumption is, in fact, correct for the annealed
problem, which gives us some hope that it might also work in
the quenched disorder problem.

We now investigate the consequences that follow if λ and
λρ are the only relevant nonlinearities. They are the following:

(1) The changes in λ and λρ coming from the rescaling step
of the dynamical RG are identical; that is, λ and λρ have the
same power counting.

(2) The vertex λρ gets no graphical corrections because
mass conservation is exact.

(3) This implies that either the fixed point value λ∗
ρ of

λρ obeys λ∗
ρ = 0, or λ gets no graphical corrections either

(otherwise, λ would not be fixed).
(4) There are no graphical corrections to λ if λρ = λ,

because then the system exhibits pseudo-Galilean invariance.
As discussed earlier, when this happens, there can be no
graphical renormalization of either λ or λρ .

(5) Points 1 and 4 taken together imply that if λ � λρ

initially, λ remains � λρ upon renormalization.
We can now prove by contradiction that λ∗

ρ �= 0 at the fixed
point. Let us assume the contrary; then

(6) this implies that if λρ renormalizes to 0 under the RG,
λ does so as well.

(7) But we know by power counting at the linear fixed point
that such a fixed point, with all nonlinearities vanishing, is
unstable (the only such fixed point is the linear fixed point we
discussed earlier). Therefore, the system cannot flow to such
a fixed point.

FIG. 1. The Feynman diagram for a correction to the diffusion
constant D⊥.

(8) Therefore, we have just proved by contradiction that
any system which starts with λ � λρ (and there must be some
such systems, because no symmetry forbids it) initially must
flow to a fixed with λρ �= 0.

(9) Therefore, by point 3 above, λ gets no graphical correc-
tions at the fixed point.

(10) Since both the λ and the λρ vertices are total deriva-
tives in d = 2, there is no graphical correction to the disorder
strength � either.

(11) Points 9 and 10 taken together imply that, for the
purposes of a self-consistent perturbation theory treatment, we
can treat λ, � as constants, rather than wave-vector-dependent
quantities.

(12) Finally, because both vertices only involve ⊥ deriva-
tives, only D⊥ and Dρ⊥ get any graphical renormalization.

We will now use these observations to derive exact scaling
laws for γ v2 > 0, d = 2. This case is particularly important
for comparison with our two-dimensional simulations, since
the system we simulate proves to have γ v2 > 0.

We will now analyze this problem using a self-consistent
perturbation theory approach.

This approach proceeds by treating the nonlinearities in the
equations of motion (2.6) and (2.7) as a small perturbation on
the linear theory and calculating perturbatively the corrections
they introduce. As usual, these corrections to the two-point
correlations we have calculated can be summarized by re-
placing all of the parameters of the linearized theory (e.g.,
the diffusion constant D⊥) with renormalized wave-vector-
dependent quantities [e.g., D⊥(q)] in the linearized expres-
sions for the two-point correlation functions. As equally usual,
the perturbative calculation of these renormalized parameters
can be represented by Feynmann graphs. See, e.g., Ref. [17]
for details.

Consider, for example, the leading order graph illustrated
in Fig. 1; this leads to a correction to D⊥ of the form

δD⊥(q) = Cλ2
∫

ddp

(2π )d
{|vL(p)|2GL(q − p)}, (4.58)

where C is an O(1) constant, the exact value of which we
will not need. In the harmonic approximation for |vL(p)|2
and GL(q − p) used earlier, the integral on the right-hand
side diverges in the infrared (small p) limit, for q = 0, for
spatial dimensions d � 5. Of course, we are only interested in
d = 2 here; for d > 2, the structure of the problem changes
significantly, not least because of the presence of transverse
components vT of v⊥. Equation (4.58) should therefore be
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thought of as a generalization of the correction to D⊥(q)
in d = 2 to higher dimensions, not as an expression that is
actually valid for a flock in those higher dimensions. We are
simply doing this extension here to illustrate a point, which
will become clear in a moment.

We now write the correction to D⊥(q) explicitly by using
the propagators and correlation functions (3.22) and (3.21) we
obtained in the linear theory, but replaced the bare D⊥ with
D⊥(q) and the bare Dρ⊥ by Dρ⊥(q), to be determined self-
consistently. Doing so leads to

δD⊥ = Cλ2
∫

ps>qIR

ddp

(2π )d
v3

2p
4
‖��(q − p)[(

c2
0p

2
⊥ − γ v2p

2
‖
)2 + �(p)2p2

‖
]{[

c2
0|p⊥ − q|2 − γ v2(p‖ − q‖)2

]2 + �(q − p)2(p‖ − q‖)2
} . (4.59)

The leading order graphical correction to Dρ⊥ is identical to this, but with λ replaced by λρ . Since, as we argued above, our
assumption that λ and λρ are the only relevant nonlinearities implies that there are no graphical corrections to λ and λρ , that
assumption therefore also implies that the renormalization δDρ⊥ of Dρ⊥(q) is proportional to that δD⊥ of D⊥(q). Since these
corrections prove to dominate the bare values, the bottom line is that Dρ⊥(q) ∝ D⊥(q). We will use this fact below to get a
closed self-consistent equation for D⊥(q), whose solution will then, of course, determine both D⊥(q) and Dρ⊥(q).

As just noted, for small q, the ostensibly “small” correction (4.59) actually dominates the bare value of D⊥. We can therefore,
for d � 5, replace δD⊥ with the wave-vector-dependent, renormalized D⊥(q) on the left-hand side of Eq. (4.58). Furthermore,
since D⊥ and Dρ⊥(q) are the only diffusion coefficients that diverge (if our assumption that λ and λρ are the only relevant
nonlinearities at the fixed point is correct), they dominate all of the other diffusion constants in the expression (3.16) for the
damping coefficient �(p).

If we also replace the Ds’s that appear implicitly on the right-hand side [inside |vL(p)|2, |vT (p)|2, GT (q − p), and GL(q − p)]
with C ′′D⊥(q − p) and D⊥(p), where appropriate, we thereby make Eq. (4.58) into a self-consistent integral equation for D⊥(q).

This integral equation can be simplified by noting that, as with the integrals for the real space fluctuations [Eq. (3.29)], this
integral is also dominated by wave vectors p whose direction θp is close to the critical angle θc defined earlier. We can therefore
make the same approximations for θp near θc that we made earlier. We can simplify even further by noting that the scaling of the
rather complicated integral on the right-hand side of Eq. (4.58) is the same as the scaling of the same integral with q set = 0 in
the integrand, but with infrared cutoffs of p > q and δθp > δθq applied to the range of integration itself.

With these simplifications, Eq. (4.59) becomes a self-consistent equation for D⊥(q):

D⊥(q) = Cλ2�v3
2 sin2 θc cos4 θc

(2π )2

∫ ∞

q

pd−3dp

∫ ∞

δθq

dδθp
[v2D⊥(p, δθp) + γDρ⊥(p, δθp)]{ 4γ v2

c2
0

δθ2
p + [v2D⊥(p, δθp) + γDρ⊥(p, δθp)]2p2 sin4 θc cos2 θc

}2
(4.60)

We can solve this integral equation with the simple scaling ansatz

D⊥(q) = q−ηgθ

(
δθq

qα

)
, (4.61)

which, due to the proportionality of D⊥(q) and Dρ⊥(q) noted earlier, implies

Dρ⊥(q) = C̃q−ηgθ

(
δθq

qα

)
, (4.62)

where C̃ is an O(1) constant.
Inserting this ansatz on both sides of Eq. (4.61) and noting that this ansatz implies that, as p → 0, D⊥(p, δθp) 	 D‖, the

self-consistent equation becomes

q−ηgθ

(
δθq

qα

)
∝
∫ ∞

q

pd−3dp

∫ ∞

δθq

dδθp

p−ηgθ

( δθp

pα

)
{
Sδθ2

p + p2
[
p−ηgθ

( δθp

pα

)]2}2 , (4.63)

where S is an unimportant constant. By changing variables of integration from p and δθp to P and � defined via p ≡ qP and
δθp ≡ �δθq, we can pull all of the dependence on q on the right-hand side out in front of the integral, obtaining

q−ηgθ

(
δθq

qα

)
∝ qd−2−ηδθq

∫ ∞

1
P d−3−ηdP

∫ ∞

1
d�

gθ

( δθq

qα
�
P α

)
[
Sδθ2

q�2 + q2−2ηP 2−2ηg2
θ

( δθq

qα
�
P α

)]2
∝ qd−2−η+4η−4δθq

∫ ∞

1
P d−3−ηdP

∫ ∞

1
d�

gθ

( δθq

qα
�
P α

)
[
Sδθ2

qq2(η−1)�2 + P 2(1−η)g2
θ

( δθq

qα
�
P α

)]2 . (4.64)

Now, everything in the double integral on the right-hand side of this expression is explicitly a function of the scaling

combination δθq

qα except for the factor in the S term in the denominator proportional to
δθ2

q

q2(1−η) . To make the scaling ansatz
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work, we must force this term to also be a function only of the
scaling combination δθq

qα ; this can clearly be done by choosing

α = 1 − η. (4.65)

Using this in Eq. (4.64) makes the double integral a scaling
function of δθq

qα ; we call this function gI ( δθq

qα ). Then Eq. (4.64)
reads

q−ηgθ

(
δθq

qα

)
∝ qd−6+3ηδθqgI

(
δθq

qα

)

∝ qd−6+3η+α

(
δθq

qα

)
gI

(
δθq

qα

)
. (4.66)

Now everything on the right is explicitly a function of the
scaling combination δθq

qα times a power of q, as is the left-hand
side. Hence, our ansatz works provided only that these two
powers of q are equal; this implies

−η = d − 6 + 3η + α. (4.67)

Equations (4.65) and (4.67) are two simple linear equations
for the scaling exponents η and α; their solution is

η = 5 − d

3
, α = d − 2

3
. (4.68)

Recalling that the case of physical interest here is d = 2,
we see that η = 1 and α = 0. The last result implies that
in d = 2, the anisotropy of scaling of the behavior of the
diffusion constants D⊥(q) and Dρ⊥(q) is gone: The range δθ

over which these vary is independent of q.
The result η = 1 implies the same is true of the correlation

functions |vL(q)|2 and |ρ(q)|2. This is most easily seen from
Eqs. (3.24) and (3.25): Inserting the ansatze (4.61) and (4.62)
into those equations, we see that both correlation functions
|vL(q)|2 and |ρ(q)|2 are proportional to 1/q2 times a function
of θq alone, because the coefficient ℵ ∝ 1/q. This means the
divergence of |vL(q)|2 and |ρ(q)|2 as θq → θc has been cut
off by the divergence of D⊥(q) and Dρ⊥(q). Another way to
say this is that both correlation functions |vL(q)|2 and |ρ(q)|2
now scale like 1/q2 for all directions of q, even θq = θc.

A remnant of the divergence of these correlations at θq =
θc predicted by the linear theory persists, however. This is
because the cutoff of that divergence is caused by the 1/q

divergence of D⊥(q) and Dρ⊥(q) that we have just found.
Since that divergence arises from fluctuations induced by
the disorder, it follows that at small disorder, the coefficient
of that 1/q divergence (which is nonuniversal, unlike the
exponents α and η, which are universal) will be small. Hence,
the correlation functions |vL(q)|2 and |ρ(q)|2 will have very
large peaks at θq = θc when plotted versus θq at fixed q.
Indeed, putting in D⊥(q) and Dρ⊥(q) diverging like 1/q with
small coefficients into Eqs. (3.24) and (3.25) and noting that
when those coefficients are small these terms only matter
near θq = θc imply that, for all θq , the correlation functions
|vL(q)|2 and |ρ(q)|2 can be well approximated by

q2|v⊥(q)|2 ∝ � cos2(θ )

[sin2(θ ) − tan2(θc ) cos2(θ )]2 + δ
(4.69)

q2|ρ(q)|2 ∝ � sin2(θ )

[sin2(θ ) − tan2(θc ) cos2(θ )]2 + δ
, (4.70)

with δ small.

We will see later that Eq. (4.69) fits our simulation data for
|v⊥(q)|2 extremely well (for a preview, see Fig. 4), thereby
supporting both the theory of this section and the assertion that
our simulated system has γ v2 > 0. Note that since this is true,
the linear theory incorrectly predicts an actual divergence of
the height of the peaks as q → 0); the fact that this divergence
is in fact cut off shows the importance of the nonlinear
corrections. It is also those corrections and their suppression
of this divergence that make quasi-long-ranged order possible
in these systems.

All our earlier comments about restoration of full isotropy
via further log corrections apply to this case as well. Our
simulations are clearly of too small a system to be in this
regime. As noted earlier, this is not surprising, due to the
exponential divergence of the length scale for crossover to
complete isotropy equation (4.55). as δ → 0.

Turning our attention now to density fluctuations, we see
that, at least as our conjecture that λ and λρ are the only
relevant nonlinearities is correct, this is very much like the
γ v2 < 0, d = 2 case. In particular, up to logarithmic correc-
tions, density fluctuations |δρ(q)|2 again obey

|δρ(q)|2 ∝ 1/q2 (4.71)

for all directions of q. Fourier transforming this result back to
real space implies, as before, that

Cρρ (r) = hρ (θr ) ln r, (4.72)

where hρ (θr ) is a smooth, analytic O(1) function of θr .
Comparing this result with the general form (1.7), we see
that in the notation of that equation, we have βρ = 0 and
χρ = d − 2 = 0, as claimed in the introduction for this case.

D. γ v2 > 0, d > 2

This is the most complicated of our four cases, and the
one about which we know the least. One thing we do know
with certainty is that there will be anomalous hydrodynamics
in these systems for all spatial dimensions d � 5, since all of
the fields vT , vL, and ρ exhibit anisotropic, strongly diverging
fluctuations in the linearized approximation. Indeed, in that
linearized approximation they all have the same divergences
with as q → 0, and the same anisotropy in those divergences
(q2 for most directions of q, q4 for q for certain values of
θq), as the field vT does in the γ v2 < 0, d > 2. In addi-
tion, the phase space associated with the regions of q that
show the stronger divergence is the same in both cases: a
(d − 1)-dimensional subspace of the d-dimensional q space.
Of course, this subspace is a hypercone θq = θc =

√
γ v2

c0
for

the fields ρ and vL, while it is a plane (the q⊥ plane) for
vT , but from a power counting standpoint, this distinction is
unimportant.

Therefore, we expect all eight of the nonlinearities λ, λρ ,
g1,2,3,4, and w1,2 to be relevant. Treating these, however, leads
us to the same difficulties we encountered in the γ v2 > 0,
d = 2 case just discussed, arising from the large number of
relevant nonlinearities. We also again face the difficulty that
d = 3 is so far below the upper critical dimension dc = 5 that
a perturbation theory approach, even if practical, will not yield
quantitatively reliable results.
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In fact, things are even worse in this case. This is because,
even if we assume that λ and λρ are the only relevant vertices,
as we did in the γ v2 > 0, d = 2 section, we still cannot
get exact exponents, because the λ vertex cannot be written
as a total derivative. Recall that our argument for it being
so writable depended, in the γ v2 < 0, d > 2 case, on the
effective divergencelessness of the velocity in that case. Here,
we cannot make that argument; instead, as just explained,
vL and vT have fluctuations of the same size in a scaling
sense. Nor can we use the argument we made for the γ v2 < 0,
d = 2 case, for which we argued that the λ vertex was a total
derivative because v⊥ had only one component; here, it has
d − 2 > 1 components.

The upshot of all of this is that we have no way to
determine the exact scaling exponents in this case, even if we
are willing to make some unverifiable conjectures about the
structure of the RG flows. A few things are clear, however:

(1) The scaling laws will be anomalous, for d � 5, which,
obviously, includes the physically interesting case d = 3.

(2) This anomaly should make the fluctuations in the
velocity and the density smaller than those predicted by the
linear theory. This assertion is based partly on experience—
this is what happens for flocks with annealed disorder [3–7],
and in the other three cases we have just treated for flocks
with quenched disorder—and partly on physical intuition.
Specifically, the microscopic mechanism for the nonlinear
suppression of fluctuations in all the cases just described is
the enhanced exchange of information brought about by the
motion of the flockers. This is why the diffusion constants are
renormalized upward. The phenomenon is quite similar to tur-
bulent mixing [35]. Clearly, this mechanism is just as active—
indeed, more active—in flocks with quenched disorder.

(3) Since the linear theory predicts that long-ranged order
is only marginally—i.e., logarithmically—destroyed in d =
3, point 2 implies that order should be better in the full
nonlinear theory. Hence, it must be long ranged; that is, we
must have v �= 0.

(4) Finally, based on the structure of the linear theory, we
expect the scaling structure of fluctuations in Fourier space
to be the same for θq near θc and θq near π/2. This implies
that fluctuations in real space should have the same scaling
structure for θr near π/2 − θc and θr near 0. This in turn
implies that the connected velocity autocorrelation function
defined above in d > 2 is given by

Cvv (r) = CL(r) + CT (r) , (4.73)

where CL(r) and CT (r) represent the contributions to Cvv (r)
coming from vL and vT fluctuations, and respectively obey the
scaling laws

CL(r) = r−�fL(δθrr
β )hL(θr )

∝
{

(δθrr )2χ , δθr 	 r−β,

r−�, δθr 
 r−β,
(4.74)

and

CT (r) = r−�fT (θrr
β )

∝
{

(θrr )2χ , θr 	 r−β,

r−�, θr 
 r−β.
(4.75)

In (1.4), we have defined δθr ≡ θr + θc − π
2 . The expo-

nents β and � in (1.4) and (1.5) are determined by the
other two unknown, but universal, exponents—the anisotropy
exponents ζ and the roughness exponent χ—via the relations

β = 1 − 1

ζ
, � = −2

χ

ζ
. (4.76)

Note that CL(r) and CT (r) exhibit their strongest
anisotropies in different directions: CL(r) is most strongly
anisotropic near θr = π

2 − θc, while CT (r) is most strongly
anisotropic near θr = 0. Thus, the full correlation function
Cvv (r) exhibits strong anisotropy near both directions of r.

Up to factors of ρ0 and v2, and a factor of tan2 θq , the
Fourier-transformed density correlations |δρ(q)|2 are equal
to those of |vL(q)|2, as can be seen by comparing (3.22)
and (3.21). Since ρ0 and v2 are not divergently renormalized,
they can be replaced by constants. This means that |δρ(q)|2
scales in exactly the same way with q as |vL(q)|2. Fourier
transforming back to real space, this implies that Cρρ (r) scales
exactly like CL(r); that is,

Cρρ (r) = r−�fL(δθrr
β )hρ (θr )

∝
{

(δθrr )2χ , δθr 	 r−β,

r−�, δθr 
 r−β.
(4.77)

Comparing this result with the general form (1.7), we see that
in the notation of that equation, we have βρ = β and χρ = χ ,
as claimed in the introduction for this case.

While we can say nothing definite in d = 3 for the case
γ v2 > 0, it is tempting to conjecture that the exponents ζ and
χ take on the same values as for γ v2 < 0 in d = 3, which
are ζ = 4/3, χ = −1/3. If this is the case, then we obtain
β = 1/4 and � = 1/2. We really have no justification for this
conjecture, however, other than the fact that an analogous con-
jecture for flocks with annealed disorder appears empirically
to get the correct exponents for d = 3.

V. GIANT NUMBER FLUCTUATIONS

The most natural quantity to look at when studying density
fluctuations is the fluctuations of the number of particles is an
imaginary box of some volume Vbox inside a flock of volume
Vflock 	 Vbox. We will take our box to be a d-dimensional
hypercube of side L (e.g., an L × L square in d = 2, or
an L × L × L cube in d = 3). The mean squared number
fluctuations δN2 ≡ 〈N2〉 − 〈N〉2 can readily be related to the
real space correlations Cρρ (r):

δN2 =
∫

V

ddrddr ′δρ(r)δρ(r′)

=
∫

V

ddrddr ′ Cρρ (r − r′), (5.1)

where the subscript V denotes that the integrals are over r and
r′’s contained within our experimental box.

For three of our four cases, namely, d = 2, for both signs
of γ v2, and d = 3, γ v2 < 0, Cρρ (r) is proportional to r2−d for
all directions θr of r. Using this in (5.7) gives

δN2 =
∫

V

ddr ddr ′|r − r′|2−dgρ (θr−r′ ). (5.2)
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Making the changes of variables r ≡ RL, r′ ≡ R′L, we ob-
tain

〈δN2〉 = L2+d

∫
V1

ddR ddR′|R − R′ |2−dgρ (θR−R′ ), (5.3)

where V1 denotes that the integrals are over R and R′
contained in a unit hypercube. Hence, this integral has no
dependence on L. Therefore, (5.3) implies

〈δN2〉 = L2+d × constant, (5.4)

where the constant is independent of L. This can be rewritten
in terms of the mean number 〈N〉 of critters in the box, using
the fact that the average density ρ0 is well defined. Hence,

〈N〉 = ρ0L
d or L = ( 〈N〉

ρ0
)

1
d . Using this in (5.9) and taking the

square root of both sides gives√
〈δN2〉 ∼ 〈N〉φ(d ) (5.5)

with

φ(d ) = 1

2
+ 1

d
. (5.6)

For the remaining case d = 3, γ v2 > 0, Cρρ (r) is given by
(1.7) with βρ = β = 1 − 1

ζ
, χρ = χ , and �ρ = � = −2 χ

ζ
.

Using this for Cρρ (r − r′) in (5.2) gives

δN2 =
∫

V

ddrddr ′|r − r′| 2χ

ζ gρ (δθr−r′ |r − r′|β ). (5.7)

Changing variables of integration from r′ to R ≡ r − r′
gives

δN2 =
∫

V

ddr

∫
V

ddR R
2χ

ζ gρ (δθRRβ ). (5.8)

Since the integrand is now independent of r, the r integral
trivially gives the volume Ld of our box, so we have

δN2 = Ld

∫
V

ddR R
2χ

ζ gρ (δθRRβ ). (5.9)

Now let us evaluate the integral over R in this expression in
hyperspherical coordinates. Since the integrand only depends
on one of the polar angle θR , the integrals over the remaining
d − 2 azimuthal angles just give a factor of Sd−1, defined
as the surface area of a (d − 1)-dimensional sphere of unit
radius. Doing those integrals therefore leaves us with

δN2 = Sd−1L
d

∫ L

0
dR Rd−1

∫
dθR sind−1(θR ) R

2χ

ζ gρ (δθRRβ ).

(5.10)

The alert reader will note that, strictly speaking, this equation
is not correct, since the range of integration of the magnitude
R of R is not always L but depends on the direction of R,
since our cubic box is not spherically symmetric. However,
the scaling with L of the correct integral will quite clearly be
the same as that of the above integral, since the extent of the
box along any direction is of order L.

Now let us split the integral
∫

dθR into two regions: one
for small δθ , specifically covering the regime |δθR| � R−β ;
the other covering the regime (actually two regimes, one for
positive, and one for negative, δθR) |δθR| 	 R−β . Rather
unimaginatively calling the integral over the small δθ regime

I< and that over the large δθ regime I>, and using the limiting
forms from Eq. (1.7), we see that

I> ∝ R2χ , (5.11)

while

I< ∝ R
− 2χ

ζ
−β

. (5.12)

Hence, the ratio I</I> ∝ R
2χ (1− 1

ζ
)−β = R

(1− 1
ζ

)(2χ−1). Since
ζ > 1 and χ < 0, we see that the exponent in this expression
is < 0, which means that for large R, I> 	 I<. Therefore,
dropping I< and using (5.11) as a good approximation to the
full angular integral in (5.10), we obtain

δN2 ∝ Ld

∫ L

0
dR R2χ+d−1. (5.13)

Changing variables of integration from R to u ≡ R
L

gives

δN2 ∝ L2(χ+d )
∫ 1

0
du u2χ+d−1. (5.14)

As before, the integral in this expression has no dependence
on L. Therefore, (5.3) implies〈

δN2
〉 = L2(χ+d ) × constant, (5.15)

where the constant is independent of L. This can once again
be rewritten in terms of the mean number 〈N〉 of critters in the

box, using L = ( 〈N〉
ρ0

)
1
d . This gives

√
〈δN2〉 ∼ 〈N〉φ(d ) (5.16)

with

φ(d ) = 1 + χ

d
. (5.17)

Note that in all cases, we have just shown that the scaling
of number fluctuations with mean number violates the law of
large numbers, the general rule that rms number fluctuations
scale like the square root of mean number. The fluctuations
in Eq. (5.16) are infinitely larger than this prediction in the
limit of mean number 〈N〉 → ∞ for all spatial dimensions
d; hence, they are much larger than those found in most
equilibrium and most nonequilibrium systems, since most of
those obey the law of large numbers. In the next section,
we will show evidence from our simulations that such giant
number fluctuations do occur in d = 3.

VI. SIMULATIONS

A. The numerical model

We test these predictions by using a slight modification
of the Vicsek algorithm [2] to incorporate vectorial noise in
any number of dimensions [34]. The algorithm is as follows:
shift the particles in their direction of travel by a distance
v0. Now compute an intermediate velocity v′ based on an
alignment interaction and an attractive-repulsive interaction
with coefficient b. Normalize this, perturb it with Gaussian
noise with magnitude T/

√
v0, and normalize again.
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That is, the new velocity vi(t + 1) of the ith particle on the
t + 1 time step can be expressed in terms of the velocities on
the t time step as

vi(t )′ =
∑

j∈rij <1

[vj(t ) + b(|rij | − r0)r̂ij ], (6.1)

vi(t + 1) = v0N̂

[
N̂ [vi(t )′] + T√

v0
ϒi (t )

]
, (6.2)

where we have used the notation N̂ [x] ≡ x̂ for any vector x
and the annealed noise is given by a Gaussian random vector
variable ϒi with ϒiα (t )ϒjβ (t ′) = δαβδij δ(t − t ′), where α and
β denote Cartesian components. The factor of

√
v0 is intended

to correct for the effect that the shorter the movement step is,
the more the noise self-averages out (just as one would inte-
grate the effects of noise in a continuum Langevin equation
using

√
�t instead of �t).

Quenched disorder is implemented by adding a certain
number of static particles (“dead birds”) to the simulation.
These particles are placed at fixed positions chosen ran-
domly from a spatially uniform distribution, and assigned,
also randomly, fixed pseudovelocity vectors of length v0, with
an isotropic distribution. These positions and pseudovelocity
vectors do not change throughout the simulation. Clearly, the
pseudovelocity vectors of the dead birds do not correspond
to their actual velocities (since those birds do not actually
move), but they are treated like real velocity vectors in the
evolution of the moving particles (the live birds), albeit with
a weight w that can be used to control the strength of the
disorder. Dead birds also have b = 0 and so do not interact
through the repulsion term. To summarize, the first step of the
two-step algorithm to determine the new direction of motion,
i.e., Eq. (6.1), is replaced by

vi(t )′ =
∑

j∈rij <1

[wj vj(t ) + bj (|rij | − r0)r̂ij ], (6.3)

where wj = 1 for live birds and wj = w for dead birds, while
bj = 1 for live birds and bj = 0 for dead birds. In Eq. (6.3),
the sum is over all birds, both dead and alive, within a distance
1 of the particular live bird whose velocity is being updated.
The second step and the motion step are unaltered for the
live birds, while the dead birds neither move nor change the
directions of their pseudovelocity vectors. When we compute
systemwide averages, correlation functions, etc., we exclude
these particles from the calculation.

We quantify the strength (variance) of the quenched disor-
der by defining a noise parameter � ≡ w2ρD/ρ0, where ρD

and ρ0 are the density of dead and live birds respectively.
In general, we consider systems with periodic boundaries
of linear dimension L, with r0 = 0.9, and an interaction
radius of 1. We consider both cases in which there is only
quenched disorder (T = 0) and where there is both quenched
and annealed disorder (T �= 0), as well as different values of
v0.

B. Average velocity and velocity correlations

First, we directly examine the order parameter |〈v〉|, where
〈· · · 〉 is the average over all particles in the system. If this
quantity is nonzero, that indicates that the flock is in the

0

0.3

0.6

0.9

1.2

1.5

|[v
]|

0 10 20
v0t
L

2D, Δ = 0
2D, Δ = 0.05
2D, Δ = 0.41
3D, Δ = 0.5

FIG. 2. Convergence of |〈v〉| for simulations of two- and three-
dimensional flocks. The two-dimensional simulations are at system
size L = 100 and the three-dimensional simulations are at system
size L = 128. Data are plotted for various values of the disorder
strength � vs time in units of the system transit time L/v0.

ordered state. We simulate for enough time that particles could
cross the system about �15 times. In general, we observe
convergence to a plateau for about eight system transits (con-
vergence plots of these data in two and three dimensions are
in Fig. 2). Because of the system size, even if there is no true
order in the infinite limit, we expect to see the effect of finite-
size scaling in these data. These give rise to a residual order
that should scale as (L/L0)−d/2 where L0 is the length scale
of patches of independent disorder (effectively corresponding
to a Larkin length [36]).

We use systems of linear extents L = 64 and L = 128
in the three-dimensional case, and systems of sizes L = 50,
L = 100, L = 200, and L = 400 in the two-dimensional case
(in order to distinguish any true ordering from residual order
originating from finite system size). For these data, we use a
weight w = 1 for the disorder particles. We find that in three-
dimensional systems there is long-range order even for large
disorder strength. For the system with L = 128 and � = 0.5,
the resulting value of the order parameter at long times is still
|〈v〉| = 0.35 (compared with 0.13 for a comparable system in
two dimensions at L = 400). In two dimensions, the average
velocity |〈v〉| decreases with system size L, albeit very slowly
for small values of disorder � as shown in Fig. 3(a). The de-
pendence of the average velocity on the system size L can be
fitted by a power law, |〈v〉| ∝ L−σ/2, where the nonuniversal
exponent σ increases with the disorder strength � as shown
in Fig. 3(b).

We have computed the Fourier-transformed velocity-
velocity correlation function in our simulations across mul-
tiple realizations of the disorder. The system size for these
data is L = 600, though we do not see a significant departure
from these results in a simulations done at L = 1000. We
use parameters v0 = 0.1, T = 0, and b = 0, with an average
density ρ0 = 1 and disorder strength � = 0.3. In Fig. 4, we
plot the simulation results for q2〈|v(q)|2〉 versus the direction
θq of q. The solid line in Fig. 4 is from our prediction
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FIG. 3. Scaling of |〈v〉| with system size in two dimensions.
(a) For large systems, the scaling is consistent with L−σ/2 with a
nonuniversal exponent σ that depends on the disorder strength �. (b)
The exponent σ increases with �. In our model, it roughly follows a
power law σ ∼ �0.32 in a wide range of �.

Eq. (4.69) for the two-dimensional case with γ v2 > 0. As can
be seen, the agreement is quite good. Note that the fit only has
three parameters: the overall scale of q2〈|v(q)|2〉, the position
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−3 −2 −1 0 1 2 3
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FIG. 4. Fourier-space velocity-velocity correlation function of a
Vicsek swarm in the presence of quenched disorder (same as Fig. 1 in
the short paper). The solid line is the theoretical prediction from the
continuum hydrodynamic theory. The theory predicts a divergence at
some critical angle θc, and a zero at 90 deg; in this case, θc ≈ 78◦.

0
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|[ρ
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Θ
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FIG. 5. Density autocorrelations at three different values of the
repulsive interaction b = 0, b = 2, and b = 4. Fits to the prediction
of the hydrodynamic theory give values of θc of 89◦, 86.8◦, and 81.0◦

respectively.

θc of the peak, and the width δ of the peak. Note also that the
fact that the data for different values of the magnitude q of
q collapse onto a single curve when plotted versus θq is by
itself decisive evidence for our prediction for the scaling of
the full nonlinear theory and contradicts the predictions of the
simple linear theory, which predicts that q2〈|v(q)|2〉 diverges
like 1/q2 at θq = θc. The fact that there is a sharp, albeit finite
peak at a particular propagation direction θc confirms that the
model we simulated has γ v2 > 0.

C. Density correlation and giant number fluctuations

In Fig. 5, we plot the Fourier-transformed density-density
correlation function

〈|ρ(q)|2〉 = ρ2
0 tan2(θ )〈|v⊥(q)|2〉

v2
2

(6.4)

versus θq for the same system for two-dimensional system
whose velocity correlations are plotted in Fig. 4. We also
show data for models identical to that of Fig. 4 except that
the value of the repulsion parameter b has been increased to
b = 2 and b = 4. Since increasing b should increase c0, which
arises from pressure forces between the particles, we expect
that θc = tan−1 √

γ v2/c0 should decrease as b is increased.
We indeed find that this is the case; the values of θc for b = 0,
b = 2, and b = 4 are 89◦, 86.8◦, and 81.0◦ respectively.

We also numerically determined the particle number fluc-
tuations of a three-dimensional system of linear extent L =
128 with quenched disorder strength � = 0.5 and annealed
disorder strength T = 0.05. We take the particle positions
at the end of runs of duration t = 1700 and decompose the
system into boxes of linear length 2i where i = [0, 6]. These
boxes are then used to measure the fluctuations 〈�N2〉(N̄ ).
We average over five such simulations. The results are pre-
sented in Fig. 6. We observe two distinct regimes. At small
length scales, we observe a scaling of 〈�N2〉/N̄ ∝ N̄0.72±0.03

corresponding to φ = 0.86 ± 0.02. This is presumably the
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FIG. 6. Number fluctuations of a three-dimensional Vicsek flock.
The observed scalings correspond to φ = 0.86 (small N̄) and φ =
0.678 (large N̄ ).

small length scale behavior, before the nonlinear effects
become relevant. At larger scales, we observe 〈�N2〉/N̄ ∝
N̄0.355±0.003, corresponding to φ = 0.678 ± 0.002. Compar-
ing this with our prediction Eq. (5.17) for the case d = 3,
γ v2 > 0, we see that this implies a somewhat surprisingly
large negative value of χ = −.966. More simulation studies
in larger systems are needed to determine the exponents.

VII. SUMMARY AND CONCLUSIONS

We have developed a hydrodynamic theory of flocking
in the presence of quenched disorder. The theory predicts
that flocks with nonzero quenched disorder can still develop
long-ranged order in three dimensions, and quasi-long-ranged
order in two dimensions, in strong contrast to the equilibrium
case, in which any amount of quenched disorder destroys
ordering in both in two and three dimensions [18–20]. This
prediction is consistent with the results of Chepizhko et al.
[22], who indeed find quasi-long-ranged order in d = 2 sys-
tems with quenched disorder. We identify four qualitatively
distinct cases, depending on the values of a combination of
hydrodynamic parameters γ v2 and the dimension of space
d. When γ v2 > 0, longitudinal sounds speeds in the flock
vanish of certain critical angles θc between the direction

of propagation and the direction of mean flock motion x̂‖,
while for γ v2 < 0, those speeds are nonzero for all angles
θq between the direction of propagation and the direction
of mean flock motion x̂‖. Our hydrodynamic predicts that
quenched disorder induces far larger fluctuations for wave
vectors q that lie along directions in which the longitudinal
sounds speeds vanish, when such directions exist. Hence,
flocks with γ v2 > 0 behave very differently from those with
γ v2 < 0.

There is also a profound difference between two-
dimensional systems (d = 2) and systems in higher dimen-
sions (d > 2): The latter can have velocity fluctuations vT per-
pendicular to both the direction of mean flock motion x̂‖ and
q, while the former cannot. When such velocity fluctuations
do exist (i.e., in d > 2), there are always directions of wave
vectors (specifically, θq = π/2) for which fluctuations of vT

are very large.
As a result, there are four distinct cases: (A) γ v2 < 0,

d > 2; (B) γ v2 < 0, d = 2; (C) γ v2 > 0, d = 2; and (D)
γ v2 > 0, d > 2. We have developed both the linear and the
nonlinear theory for all four cases and find exact scaling laws.
with exact exponents, for fluctuations in the full nonlinear
theory for cases A, B, and C. We also find scaling laws with
unknown exponents for case D. We confirm many of these
scaling laws with our numerical simulations.
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