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Shear-stress relaxation in free-standing polymer films
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Using molecular dynamics simulation of a polymer glass model we investigate free-standing polymer films
focusing on the in-plane shear modulus μ, defined by means of the stress-fluctuation formula, as a function of
temperature T , film thickness H (tuned by means of the lateral box size L), and sampling time �t . Various
observables are seen to vary linearly with 1/H , demonstrating thus the (to leading order) linear superposition
of bulk and surface properties. Confirming the time-translational invariance of our systems, μ(�t ) is shown to
be numerically equivalent to a second integral over the shear-stress relaxation modulus G(t ). It is thus a natural
smoothing function statistically better behaved as G(t ). As shown from the standard deviations δμ and δG, this
is especially important for large times and for temperatures around the glass transition. μ and G are found to
decrease continuously with T and a jump-singularity is not observed. Using the Einstein-Helfand relation for
μ(�t ) and the successful time-temperature superposition scaling of μ(�t ) and G(t ), the shear viscosity η(T )
can be estimated for a broad range of temperatures.
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I. INTRODUCTION

A. Generalized shear modulus μ(�t )

An important mechanical property characterizing elastic
solids or more general viscoelastic bodies is the thermo-
dynamic equilibrium shear modulus μeq [1,2]. (We remind
that μeq = 0 for simple or complex liquids.) As sketched in
Fig. 1, μeq is the long-time limit of the shear-stress relaxation
modulus G(t ), i.e., the ratio of the measured shear stress σ (t )
and the imposed (infinitesimal) simple shear strain γ . Instead
of using a tedious out-of-equilibrium simulation tilting the
simulation box as shown in Fig. 1(a), the shear modulus may
be conveniently obtained numerically using equilibrium time
series of the instantaneous shear stress σ̂ and the instanta-
neous affine shear modulus μ̂A as defined in Appendix A 2.
This is done by means of the well-known stress-fluctuation
formula [3–14]

μ(�t ) ≡ μA − μF(�t ) with μ(�t ) → μeq, (1)

in the limit of a sufficiently large sampling time �t of the
computer experiment [15]. As sketched in Fig. 1(b), the
“affine shear modulus” μA describes the elastic response as-
suming an infinitesimal canonical affine strain (Appendix A 1)
of all parts of the body under the macroscopic simple shear
constraint. Correcting the resulting overestimation of the
modulus, the nonaffine contribution μF(�t ) measures the
fluctuations of σ̂ . (For details see Sec. III B.) The indicated
�t-dependencies naturally arise since the averages for μA and
μF are commonly and most conveniently done by first “time-
averaging” over time windows of length �t of the stored data
entries of a given configuration and only in a second step
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by “ensemble-averaging” over completely independent con-
figurations (Appendix B 2). Assuming the time-translational
invariance of the time series it can be demonstrated (Ap-
pendix C) that the �t-dependence can be traced back to the
stationarity relation [9,11,14]

μ(�t ) = 2

�t2

∫ �t

0
dt

∫ t

0
dt ′ G(t ′). (2)

Being a second integral over G(t ), μ(�t ) is a convenient
smoothing function with in general much better statistical
properties as G(t ). The historically thermodynamically rooted
stress-fluctuation formula, Eq. (1), takes due to Eq. (2) the
meaning of a generalized quasi-static modulus also containing
information about dissipation processes associated with the
reorganization of the particle contact network. This has been
extensively tested for self-assembled transient networks [11].

B. Shear modulus of glass-forming systems

The (thermodynamically well-defined) shear modulus
μeq(T ) of crystalline solids is known to vanish discontin-
uously at the melting point with increasing temperature T

[4,12]. This begs the question of whether μeq or a natural
generalization, such as μ(�t ) describing also stationary out-
of-equilibrium systems and general viscoelastic bodies, be-
have similarly for amorphous glass-forming colloids or poly-
mers at their glass transition temperature Tg [4,6,8,12–14,16–
22]. Qualitative different theoretical [17–19,22], experimen-
tal [20,21], or numerical [4,8,13,14] findings have been put
forward suggesting either a discontinuous jump [16,17,19–
21] or a continuous transition [4,8,12–14,18,22]. Following
the pioneering work of Barrat et al. [4] various numerical
studies have used the stress-fluctuation formula, Eq. (1), as the
main diagnostic tool to characterize the shear strain response
[4,6,8,12–14]. Using molecular dynamics (MD) simulation
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FIG. 1. Some notations: (a) Simple shear with γ being the strain
increment imposed at t = 0 and σ (t ) the measured shear stress
increment as a function of time t . (b) Shear-stress relaxation modulus
G(t ) (dash-dotted line) and generalized shear modulus μ(t ) = μA −
μF(t ) (thin solid line). The affine shear modulus μA = G(t = 0) =
μ(t = 0) is indicated by the dash-dotted line, the thermodynamic
long-time limit μeq for G(t ) and μ(t ) by the bold dashed line.

[23,24] of a coarse-grained bead-spring model [6,13,14,25],
we have recently investigated μ(�t ) and G(t ) for three-
dimensional (3D) polymer melts [13,14]. The most important
findings are that

(1) the stationarity relation Eq. (2) holds for all temper-
atures, i.e., the expectation values of μ(�t ) and G(t ) are
numerically equivalent;

(2) this is not the case for their standard deviations δμ and
δG for which δμ(T ) � δG(T ) holds;

(3) if taken at the same (sampling) time, μ(T ) and G(T )
are found to decrease continuously with T ;

(4) δμ(T ) and δG(T ) are nonmonotonic with strong
peaks slightly below Tg. Theoretical calculations for the ex-
pectation values of an ensemble of independent configurations
are thus largely irrelevant for predicting the behavior of one
configuration.

C. Aim of present study

As sketched in Fig. 2, the present study extends our previ-
ous work to free-standing polymer films of finite thickness H

tuned by means of the imposed lateral box size L. It is well

z

z=0

L

x or y

free−standing film in xy−plane

M=768 chains of length N=16
H Lz

fluctuating surfaces of width W

fixed periodic box
P=0

P=0

FIG. 2. We study free-standing polymer films with M = 768
chains of length N = 16 monomers confined in periodic boxes with
L being the imposed lateral box size in both x and y directions. The
film thickness H ∼ 1/L2 (to leading order) is operationally defined
using the Gibbs dividing surface.

FIG. 3. Shear modulus μ as calculated by means of Eq. (1).
μ(T ) decays continuously in all cases considered. Main panel: Data
obtained at a sampling time �t = 104 for three-dimensional bulks
(stars) and films of different lateral box lengths L. Inset: μ(T ) for
film 1 comparing different �t .

known that the confinement of polymers to thin films can dra-
matically change their physical properties [26–66]. Substan-
tial efforts have been made experimentally [26–29,31,32], nu-
merically [52,53,56–58,62,64,65], and theoretically [44–50]
to describe the glass transition temperature showing as a
general trend that free surfaces lead to a decrease of Tg [66].
Despite their technological importance, mechanical and rheo-
logical properties have been much less studied experimentally
[34,36,37,40,66,67]. (One reason is that much smaller and
more precise load cells are required due to the tiny loads
needed to deform the films [66].) Perhaps as a consequence,
only a small number of numerical studies exist at present fo-
cusing on the mechanical properties of films [55,58–61,63,65]
and related amorphous polymer nanostructures [58]. Attempt-
ing to fill this gap and using the same coarse-grained numeri-
cal model as in Refs. [6,13,14], we focus here on the in-plane
shear-stresses, their fluctuations, and relaxation dynamics. At
variance to real experiments [34,36,37,40,67], we use again
as the main diagnostic tool the first time-averaged and then
ensemble-averaged generalized shear modulus μ and its vari-
ous contributions as defined by the stress-fluctuation formula,
Eq. (1). Only total film properties will be discussed for clarity;
their z-resolved contributions will be given elsewhere.

D. Some key findings

Summarizing several points made in this paper, we present
μ(T ) in Fig. 3 for different systems (main panel) and
sampling times �t (inset). As explained in Appendix B 1,
Lennard-Jones (LJ) units [23] are used here as everywhere in
this work. Confirming our recent work on 3D melts, μ(T ) is
observed to decay continuously in all cases. Also, as empha-
sized in the inset, μ systematically depends on �t . In addition,
it is seen in the main panel that μ becomes finite at lower
temperatures for thinner films (larger L). We corroborate these
findings in the remainder of this paper. Importantly, Eq. (2)
will be demonstrated to hold also for polymer films and
μ(�t ) is thus a natural smoothing function with much better
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statistics as G(t ). As shown from the standard deviations δμ

and δG, this is especially important for large times and for
temperatures around the glass transition. Using the successful
time-temperature superposition (TTS) of μ(�t ) and G(t ) it
will be shown that the shear viscosity η(T ) can be estimated
for a broad range of temperatures.

Many intensive properties A, such as Tg, μA or μF, will be
seen to depend linearly on the inverse film thickness H . This is
expected for small chains (having a gyration radius Rg � H )
assuming as the simplest phenomenological description the
linear superposition

A ≈ 1

H
[A0 (H − W ) + As W ]

= A0

[
1 − (1 − As/A0)W

H

]
(3)

of a bulk term A0 with a weight H − W ≈ H and a surface
term As with a weight proportional to the surface width W �
H [68]. Even more generally, A may be written as an average
(possibly nontrivially weighted [64]) over z-dependent contri-
butions A(z) as done, e.g., for the glass transition temperature
Tg [47,54,64] or the storage and loss moduli G′(ω) and G′′(ω)
[60]. The claimed 1/H -correction, Eq. (3), has merely the
advantage to be based on a simple and transparent idea. It
may be seen as the leading contribution of a more general
1/H -expansion [68]. We remind that other H -dependencies
have been suggested [44,45,47] and fitted with some success
[52–54,56].

E. Outline

The different configuration ensembles are characterized in
Sec. II before we present our numerical results in Sec. III.
We start with the characterization of the film thickness H

and the glass transition temperature Tg (Sec. III A) and dis-
cuss then the affine and nonaffine contributions μA and μF

to the shear modulus μ (Sec. III B). We turn in Sec. III C
to the �t-dependence of time-preaveraged fluctuations and
demonstrate that the stationarity relation Eq. (2) holds for
films. Using the Einstein-Helfand relation [14,23] we compute
in Sec. III D the shear viscosity η for our highest temperatures.
The TTS scaling of μ(�t, T ) will be presented in Sec. III E.
We confirm in Sec. III F the TTS scaling for the directly
determined shear-stress relaxation modulus G(t ). That μ(�t )
is statistically better behaved as G(t ) is demonstrated using
the standard deviations δμ and δG discussed in Sec. III G. We
conclude the paper in Sec. IV. The definitions of σ̂ and μ̂A are
given in Appendix A. The model Hamiltonian is described
in Appendix B 1. Details concerning the time and ensemble
averages used can be found in Appendix B 2. The difference of
simple averages and fluctuations is stressed in Appendix B 3.
Appendix C reminds briefly the derivation of the stationarity
relation, Eq. (2), already presented elsewhere [9,11,14].

II. ALGORITHM AND ENSEMBLES

A. General simulation aspects

As in our earlier work [6,13,14] our results are obtained
by means of MD simulation of a coarse-grained bead-spring
model of Kremer-Grest type [25]. Details concerning the

TABLE I. Some properties at the glass transition for the bulk
and for films of different lateral box sizes L ensemble-averaged
over m independent configurations: glass transition temperature Tg,
film thickness H , affine shear modulus μA, shear-stress fluctuation
μF, shear modulus μ according to Eq. (1), radius of gyration Rg,
end-to-end distance Re [2], and ratio H/Rg. The bulk results have
been obtained at an imposed average normal pressure P = 0 using
cubic periodic boxes. As emphasized in Sec. III C, it is important
to specify that μF and μ have been obtained for a sampling time
�t = 104.

Ensemble L m Tg H μA μF μ Rg Re H/Rg

3D bulk – 10 0.395 – 93.3 84.6 8.7 1.9 4.6 –
film 1 23.5 120 0.371 21.3 93.9 85.6 8.3 1.9 4.6 11.3
film 2 37.1 10 0.334 8.5 94.2 86.1 8.1 1.9 4.6 4.5
film 3 42 10 0.318 6.6 94.3 86.5 7.8 1.9 4.6 3.5
film 4 49 10 0.290 4.8 94.9 87.4 7.5 1.8 4.4 2.6

model Hamiltonian may be found in Appendix B 1. Albeit
the crossing of chains is effectively impossible in this model,
entanglement effects are irrelevant for our short monodisperse
chains of length N = 16 considered and Rouse-type dynamics
[2] is observed at high temperatures. We use a velocity-Verlet
scheme [23] with time steps of length δtMD = 0.005. Tem-
perature is imposed by means of the Nosé-Hoover algorithm
provided by LAMMPS [25]. Periodic boundary conditions
[23] are used for all our ensembles.

B. Film ensembles

We study free-standing polymer films containing M = 768
chains. As sketched in Fig. 2, the films are suspended parallel
to the (x, y) plane with the same lateral box size L in x

and y directions. As may be seen from Table I, we simulate
ensembles with either L = 23.5 (called “film 1”), L = 37.1
(“film 2”), L = 42 (“film 3”), or L = 49 (“film 4”). The
smallest L corresponds to our thickest films on which the
discussion will often focus. Ensemble averages over m = 120
independently quenched configurations are performed for film
1, much more than the m = 10 configurations considered
for all other ensembles. The vertical box size Lz is chosen
sufficiently large (Lz � H ) to avoid any interaction in this
direction. The instantaneous stress tensor [23] vanishes out-
side the films. While this implies for all z planes within the
films that the average vertical normal stress must vanish [51],
some of the tangential normal stresses must be finite. The
surface tension � [23,51] would otherwise vanish and the
film be unstable. Note that � ≈ 1.7 at the glass transition
for all systems studied. It decreases weakly with temperature,
but remains of order unity for all films study. As clarified in
Appendix A 2, it is thus generally not appropriate to neglect
the surface tension contribution to the Born-Lamé coefficients
of stable films [61].

C. Bulk ensembles

For comparison we simulate in addition 3D bulk ensembles
of same chain length N and chain number M contained in
cubic periodic boxes at an imposed average pressure P = 0.
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While the trace of the stress tensor must thus vanish on
average for each configuration of the ensemble, this does not
mean that the vertical normal stress for each z plane must
vanish. This only applies for the ensemble average over inde-
pendent configurations. This may matter (at least in principle)
below the glass transition where frozen out-of-equilibrium
stresses appear [14]. The ensembles used for bulk and film
systems are thus similar, but not exactly identical as it would
have been the case by imposing a vanishing normal stress
in the z direction at a constant linear box length L in x and
y directions. As shown in Sec. III, this difference appears,
however, not to matter: all film data extrapolates nicely to the
bulk data (indicated by stars) if plotted as a function of 1/H

and assuming that the bulk data corresponds formally to the
limit 1/H = 0.

D. Quench protocol and data sampling

As already pointed out (Sec. II B) we do not directly vary
the film thickness H but rather impose the lateral box width
L. We first equilibrate an ensemble of m independent films
at T = 0.7. As shown in Sec. III A, this temperature is well
above the glass transition temperature Tg of all systems. We
then quench each configuration using a constant quench rate.
Specifically, we impose T (t ) = 0.7 − 2 × 10−5t . Fixing then
a constant temperature each configuration is first tempered
over a time interval �ttemp = 105. The subsequent production
runs are performed over �tmax = 105. The same quench and
production protocols are used for films and 3D bulk systems.
Details concerning the different types of averages sampled can
be found in Appendix B 2 and B 3. See Table I for several
properties obtained at the glass transition.

III. NUMERICAL RESULTS

A. Film thickness and glass transition temperature

A central parameter for the description of our films is the
film thickness H . We determine H using a Gibbs dividing
surface construction [56,69]. With ρ0 ≡ ρ(z ≈ 0) being the
midplane density of the density profile ρ(z), this implies

H ≡ NM/ρ0L
2. (4)

As seen for one example in the top inset of Fig. 4, ρ(z) is
always uniform and smooth around the midplane in agreement
with the data presented in previous studies [58]. ρ0 can thus be
fitted to high precision and, hence, also H . Since ρ0 is always
very close to unity, varying only little with L, Eq. (4) im-
plies that (to leading order) H ∼ 1/L2 changes very strongly
with L.

We present in the main panel of Fig. 4 the film thickness as
a function of temperature. As emphasized by the dashed and
the solid lines, the film thickness H—and thus the film volume
V = L2H—decreases monotonically upon cooling with the
two linear branches fitting reasonably the glass (dashed line)
and the liquid (solid line) limits. The intercept (horizontal and
vertical dashed lines) of both asymptotes allows to define the
apparent glass transition temperature Tg and the film thickness
Hg at the transition [58]. (See Ref. [14] for bulk systems.) The
values are given in Table I.

FIG. 4. Film thickness and glass transition temperature. Top
inset: Number density profile ρ(z) for T = 0.5 with z = 0 corre-
sponding to the center of mass of each film. The midplane density
ρ0 ≈ 1 is indicated by the dashed horizontal line. Main panel: H as a
function of temperature T for film 1. The glass transition temperature
Tg and the film thickness Hg at the transition (bold dashed lines) are
operationally defined by the intercept of the linear extrapolations of
the glass (dashed line) and liquid (solid line) limits. Left inset: Tg as
a function of 1/Hg confirming the linear superposition, Eq. (3).

As expected from a wealth of literature [27–29,31,32,52–
54,56–58,62], Tg increases with H . More precisely, as seen in
the left inset of Fig. 4, Tg extrapolates linearly with the inverse
film thickness to the thick-film limit. (The value Tg = 0.395
indicated at 1/Hg = 0 stems from our bulk simulations.)
This is consistent with a linear superposition, Eq. (3), of a
thickness-independent bulk glass transition temperature Tg0

and an effective surface temperature Tgs [68]. The negative
sign of the correction implies Tgs < Tg0, i.e., surface relax-
ation processes are faster than processes around the film
midplane. This is consistent with the higher monomer mobil-
ities observed at the film surfaces [26,41,43,53,56,57,65]. We
emphasize finally that many more data points covering a much
broader range of orders of magnitude in 1/H are required to
find or to rule out numerically higher orders of a systematic
1/H -expansion of Tg.

B. Stress-fluctuation formula at constant �t

Instantaneous values of the shear stress σ̂ and of the
affine shear modulus μ̂A have been computed as described in
Appendix A 2. The time- and ensemble-averaged affine shear
modulus μA ≡ 〈μ̂A〉 is presented in Fig. 5 as a function of
temperature using half-logarithmic coordinates. The averaged
shear stress σ ≡ 〈σ̂ 〉 is not indicated since it vanishes rapidly
due to symmetry with increasing ensemble size m and sam-
pling time �t . As seen from Fig. 5, this is not the case for the
moments

μ0 ≡ βV 〈σ̂ 2〉, μ1 ≡ βV 〈σ̂ 2〉, μF ≡ μ0 − μ1 (5)

(with β = 1/T being the inverse temperature), describing
the nonaffine contributions to the stress-fluctuation formula
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FIG. 5. Comparison of the different contributions to the shear
modulus μ = μA − μF = (μA − μ0 ) + μ1 as functions of T fo-
cusing on data obtained for film 1 and �t = 104. Inset: Double-
logarithmic representation of μ0/μA − 1 vs. T .

Eq. (1). Note that μF, μ0, and μA depend only weakly on T

and are all similar on the logarithmic scale used in Fig. 5.
As stressed elsewhere [14], μA = μ0 for an equilibrium

liquid since both μ = (μA − μ0) + μ1 and μ1 must vanish.
Frozen-in out-of-equilibrium stresses are observed upon cool-
ing below Tg as made manifest by the dramatic increase of
the dimensionless ratio μ0/μA − 1. The β-prefactor of μ0,
Eq. (5), implies that due to the frozen stresses

μ0/μA − 1 ∼ 1/T for T � Tg (6)

to leading order. This is consistent with the data presented in
the inset of Fig. 5. Similar behavior has been reported for 3D
polymer bulks [14].

Using a linear representation, the main panel of Fig. 6
presents μA(T ) for all ensembles. This shows (more clearly
than Fig. 5) that μA decreases continuously with temperature
with two (approximately) linear branches in the glass and the
liquid regimes as indicate by the two lines. While μA barely

FIG. 6. Affine shear modulus μA. Main panel: μA(T ) for all
systems studied. Inset: As shown for T = 0.5, μA decreases linearly
with 1/H in the liquid limit.

FIG. 7. Shear-stress fluctuation μF for �t = 104. Main panel:
μF(T ) for all systems. Right inset: μF decreases linearly with 1/H

in the liquid limit (T = 0.5). Left inset: μF increases linearly with
1/H in the solid limit (T = 0.1).

depends on H in the glass limit (suggesting a weak surface
contribution μAs), it increases with H in the liquid limit. As
demonstrated in the inset, μA decreases in fact linearly with
1/H in agreement with Eq. (3) [70].

Using again a linear representation μF(T ) is presented
in the main panel of Fig. 7. Upon cooling it increases first
(essentially linearly), goes through a well-defined peak lo-
cated around Tg and drops then rapidly albeit continuously.
It becomes constant for T � Tg when the shear stresses get
quenched. Since μA ≈ μF at high temperatures, the same
linear 1/H -dependencies are naturally observed as shown in
the right inset of Fig. 7 for T = 0.5. At variance to this, μF

increases linearly with 1/H at low temperatures as seen for
T = 0.1 in the left inset, i.e., the nonaffine contributions are
the largest for our thinnest films. Both linear 1/H -relations
for μF are consistent with Eq. (3). The negative sign of the
correction for large T suggests that the bulk value μF0 in the
middle of the films must exceed the value μFs at the surfaces
while the opposite behavior occurs in the low-T limit [71].

As already highlighted in the main panel of Fig. 3, the
shear modulus μ depends on the film thickness just as its
affine (Fig. 6) and nonaffine (Fig. 7) contributions. Focusing
on μ(T ) it is shown in the main panel of Fig. 8 that these
properties can be brought to collapse on H -independent mas-
tercurves. The horizontal axis is rescaled with the reduced
temperature T/Tg using the apparent glass transition temper-
ature Tg defined in Sec. III A. The values μg ≡ μ(Tg) used to
make the vertical axes dimensionless are indicated in Table I
and plotted in the inset of Fig. 8. Consistently with the linear
superposition relation, μg is a linear function of 1/Hg. Similar
scaling plots could be given for the contributions μA(T ),
μ0(T ), μ1(T ), and μF(T ).

C. Effective time-translational invariance

All data presented in the previous subsection have been
obtained for one sampling time �t = 104. We turn now to
the characterization of the �t-effects observed for μ in the
inset of Fig. 3. Focusing on one temperature (T = 0.3) in the
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FIG. 8. Film thickness dependence of μ(T ) for �t = 104. Main
panel: Scaling collapse of y = μ(T )/μg vs x = T/Tg. Inset: μg ≡
μ(Tg) and μp ≡ μ(T = 0.1) vs. the inverse film thickness 1/H

of the respective temperature. As emphasized by the bold line,
both shear moduli are consistent with Eq. (3). We shall use μp

in Secs. III E and III F for the TTS scaling of μ(�t ) and G(t )
comparing different ensembles.

glass limit, we compare in Fig. 9 the �t-dependencies of μA,
μ0, μ1, μF, and μ. As expected from Eq. (B8), the simple
averages μA and μ0 are found to be strictly �t-independent.
Importantly, time and ensemble averages do not commute for
μ1 since

0 = βV 〈σ̂ 〉2 < βV 〈σ̂ 2〉 ≡ μ1(�t ), (7)

i.e., μ1 is not a simple average but a fluctuation. As seen
in Fig. 9, μ1(�t ) decays in fact monotonically and, as a
consequence, μF(�t ) = μ0 − μ1(�t ) increases and μ(�t ) =
(μA − μ0) + μ1(�t ) decreases monotonically. Interestingly,
as indicated by the thin solid line, the stationarity relation
Eq. (2) holds, i.e., μ(�t ) can be traced back from the

FIG. 9. Sampling time effects for μ and its contributions focus-
ing on film 1 and T = 0.3. Only the simple averages μA and μ0 are
strictly �t-independent. μ1 and (hence) μ decrease monotonically.
The solid and dashes lines have been obtained using Eq. (2).

FIG. 10. Double-logarithmic representation of μ(�t ) for a broad
range of temperatures T focusing on film 1. μ(�t ; T ) decreases con-
tinuously with both �t and T . A pseudoelastic plateau is observed
in the solid limit with μ ≈ μp ≈ 15.5 (horizontal dashed line). The
1/�t-decay in the liquid limit (bold solid line) is expected from the
Einstein-Helfand relation, Eq. (9). Inset: Shear viscosity η(1/H ) for
T = 0.55. The values are used in Sec. III E to define an absolute scale
for τ (T ). The line presents a linear fit according to Eq. (3).

independently determined shear-stress relaxation modulus
G(t ) discussed in Sec. III F. (The visible minor differences
are due to numerical difficulties related to the finite time step
and the inaccurate integration of the strongly oscillatory G(t )
at short times.) Since μA and μ0 are �t-independent simple
averages, one can rewrite Eq. (2) to also describe μ1(�t ) and
μF(�t ). This is indicated by the two dashed lines. Note that
Eq. (2) has been shown to hold for all temperatures and en-
sembles. The observed �t-dependence of the shear modulus
μ is thus not due to aging effects but arises naturally from
the effective time-translational invariance of our systems. This
does, of course, not mean that no aging occurs in our glassy
systems but just that this is irrelevant for the timescales and
the properties considered here. We shall now use the decay of
μ(�t ) ≈ μ1(�t ) for large T and �t to characterize the shear
viscosity η(T ).

D. Plateau modulus μp and shear viscosity η

That μ decreases monotonically with �t is also seen in the
main panel of Fig. 10 for a broad range of temperatures using
a double-logarithmic representation. As already pointed out
above (Fig. 3), it also decreases continuously with T and no
indication of a jump singularity is observed. We emphasize
that the same qualitative behavior is found for all systems we
have investigated. (Similar plots have been obtained for glass-
forming colloids in 2D [8] and for 3D polymers [13,14].)

As one expects, the �t-dependence of μ becomes ex-
tremely weak in the solid limit, i.e., a plateau (shoulder)
μ(�t ) ≈ μp = const appears for a broad �t-window. Since
the plateau value μp depends somewhat on T and on the �t-
window fitted, it is convenient for the dimensionless scaling
plots presented in the next two subsections to define μp(H ) ≡
μ(T = 0.1,�t = 104,H ). The value for film 1 is indicated
by the horizontal dashed line. As may be seen from the inset
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of Fig. 8,

μp(H ) ≈ 16.1 (1 − 0.65/H ) ≈ 1.85μg(H ), (8)

in agreement with Eq. (3).
As emphasized by the bold solid line in the main panel

of Fig. 10, μ(�t ) decreases inversely with �t in the high-
T limit. This is expected from the Einstein-Helfand relation
[14,23]

μ(�t ) → 2η/�t for �t � τ, (9)

with η being the shear viscosity and τ the terminal shear
stress relaxation time. Note that Eq. (9) follows directly from
the stationarity relation Eq. (2) and the more familiar Green-
Kubo relation η = ∫ ∞

0 dt G(t ) for the shear viscosity [2].
A technical point must be mentioned here. We remind that
μA = μ0 in the liquid limit implies μ(�t ) = μ1(�t ). Since
the impulsive corrections needed for the calculation of μA

and, hence, of μ are not sufficiently precise for the logarithmic
scale used here, it is for numerically reasons best to simply
replace μ by μ1 to avoid an artificial curvature of the data
for large �t . (See Fig. 16 of Ref. [14] for an illustration.)
Using the Einstein-Helfand relation it is then possible to fit
η(T ) above T ≈ 0.5. For smaller temperatures this method
only allows the estimation of lower bounds. (See the inset
(b) of Fig. 17 of Ref. [14] for 3D bulks.) As shown in the
inset of Fig. 10 for T = 0.55, the shear viscosity decreases
systematically for thinner films and the linear superposition
relation (solid line) describes reasonably all available data.
We show now how η(T ) may be extrapolated to much smaller
temperatures by means of the TTS scaling of μ(�t ).

E. Time-temperature superposition of μ(�t )

The TTS scaling of μ(�t ) is presented in the main panel
of Fig. 11 using dimensionless coordinates and a double-
logarithmic representation. Data for a broad range of tem-
peratures are given for film 1 (open symbols) while we
focus for clarity on one temperature (T = 0.35) for the other
films (filled symbols) and the 3D bulk ensembles (stars).
A good data collapse is achieved by plotting the rescaled
shear modulus y = μ(�t )/μp as a function of the reduced
sampling time x = �t/τ (T ) using the relaxation time τ (T )
indicated in the inset. The scaling function y = f (x) is given
by f (x) → const ≈ 1 for x � 1 (dashed horizontal line) and
by f (x) → 2/x for x � 1 (bold solid line) for consistency
with the Einstein-Helfand relation. The vertical axis is made
dimensionless using the plateau modulus μp introduced in
Sec. III D. Please note that since according to Eq. (8) the
H -dependence of μp is rather small on the logarithmic scales
we are interested in, a similar good data collapse may also
be achieved by simply setting μp = 1. Much more impor-
tant is the rescaling of the horizontal axis by means of the
terminal relaxation time τ (T ,H ) which depends strongly on
both temperature and film thickness. Note that the strong
H -dependence is masked by the rescaling of the horizontal
axis using x = Tg(H )/T in the inset of Fig. 11.

Some remarks may be in order to explain how the scaling
plot was achieved. We have in fact followed in a first step the
standard prescription [1,2] fitting the relative dimensionless
factors aT and bT for the horizontal and vertical rescaling

FIG. 11. TTS scaling for y = μ(�t )/μp as a function of x =
�t/τ (T ) with μp being the plateau modulus defined in Sec. III D
and τ (T ) the relaxation time indicated in the inset. We impose
τ (T = 0.55) according to Eq. (10) to have an absolute timescale.
The two asymptotics of the scaling function y = f (x ) for x �
1 and x � 1 are indicated by dashed and solid lines. Note the
broad crossover regime between these limits. Inset: Data collapse
of terminal relaxation time τ vs. x = Tg/T for all our ensembles.
Arrhenius behavior (bold solid line) is observed around the glass
transition (x ≈ 1).

of μ(�t, T ) for temperatures T close to certain reference
temperatures T0. As one may expect [1], bT can safely be
set to unity for the entire temperature range we are interested
in. In turn this justifies the temperature independent factor
μp used to rescale the vertical axis. Naturally, merely tuning
aT = τ (T )/τ (T0) only sets the relative scale of τ (T ). To fix
the missing prefactor we impose

τ (T ) = c η(T )/μp(H ) with c = 1 (10)

for T = T0 = 0.55 using the shear viscosity η determined in
the high-T limit by means of Eq. (9). Due to the somewhat
arbitrary constant c/μp the strongest curvature of the rescaled
shear modulus y(x) coincides with x ≈ 1. (Using instead c ≈
100 the crossover to the Einstein-Helfand decay would occur
at about x ≈ 1.) Consistency of μ(�t ) = μpf (x) ≈ μpτ/�t

for x � 1 and the Einstein-Helfand relation, Eq. (9), implies
interestingly that Eq. (10) must hold for all temperatures. In
other words, the relaxation time τ (T ), shown in the inset of
Fig. 11, and the shear viscosity η(T ) are equivalent up to a
trivial prefactor. We emphasize that the stated proportionality
hinges on the observation that bT ≈ 1.

As shown in the inset, a remarkable scaling collapse is
achieved by plotting τ or η as a function of x = Tg/T .
Especially, this implies that we find

τ (T ≈ Tg) = c η(T ≈ Tg)/μp(H ) ≈ 105 (11)

for all our ensembles as shown by the horizontal and ver-
tical dashed lines. In other words, the dilatometric criterion
(Sec. III A) and the rheological criterion, fixing a character-
istic viscosity for defining Tg [1], are numerically consistent
on the logarithmic scales considered here. Anticipating better
statistics and longer production runs (improving thus the
precision of the TTS scaling), this suggests that Eq. (11) may
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be used in the future to define Tg. We note finally that an
Arrhenius behavior τ ∼ exp(45x) is observed for x ≈ 1 (bold
solid line) and that higher temperatures are consistent with a
Vogel-Fulcher-Tammann law [1] (not shown).

F. Shear-stress relaxation modulus G(t )

While the (shear strain) creep compliance J (t ) [1] of
polymer films has been obtained experimentally (by means
of a biaxial strain experiment using effectively the reasonable
approximation of a time-independent Poisson ratio near 1/2)
[34,36,37,40], this seems not to be the case for the shear-
stress relaxation modulus G(t ). This could in principle be
done by suddenly tilting the frame on which a free-standing
film is suspended and by measuring the shear stress σ (t )
needed to keep constant the tilt angle γ as shown in Fig. 1.
The direct numerical computation of G(t ) by means of an
out-of-equilibrium simulation tilting the simulation box in a
similar manner, is a feasible procedure in principle as shown
in Ref. [60]. For general technical reasons [23] this procedure
remains tedious, however. (Being currently still limited to
the high-frequency limit, it is especially not possible to get
G(t ) by Fourier transformation of the storage and loss moduli
G′(ω) and G′′(ω) obtained by applying an oscillatory simple
shear [60].) Fortunately, G(t ) can be computed “on the fly”
using the stored time-series of σ̂ and μ̂A by means of the
appropriate linear-response fluctuation-dissipation relation. It
is widely assumed [23] that G(t ) is given by the shear-stress
autocorrelation function

c(t ) ≡ βV 〈σ̂ (t )σ̂ (0)〉. (12)

However, as emphasized elsewhere [14], this expression can
only be used under the condition that μA = μ0. Albeit this
does hold in the liquid limit of our films, as we have seen
above (Fig. 5), this condition may not be satisfied below Tg

[14]. It is thus necessary to obtain G(t ) below Tg using more
generally [13,14]

G(t ) = μA − h(t ) = (μA − μ0) + c(t ), with (13)

h(t ) ≡ βV

2
〈(σ̂ (t ) − σ̂ (0))2〉 = c(0) − c(t ) (14)

being the shear-stress mean-square displacement. Note that
G(t = 0) = μA as it should if an affine strain is applied at
t = 0 as sketched in Fig. 1(b).

Focusing on our thickest films and using a half-logarithmic
representation, Fig. 12 presents G(t ) for all temperatures T �
0.45. Please note that albeit we ensemble-average over m =
120 independent configurations it was necessary for the clarity
of the presentation to use in addition gliding averages over
the total production runs, i.e., the statistics becomes worse for
t → �tmax = 105, and, in addition, to strongly bin the data
logarithmically. Without this strong averaging the data would
appear too noisy for temperatures around Tg. (See Sec. III G
for a discussion of the standard deviation δG(t ) of G(t ).)
However, it is clearly seen that G(t ) increases continuously
with decreasing T without any indication of the suggested
jump-singularity [16,17,19–21]. This is consistent with the
continuous decay of the storage modulus G′(ω = const, T )
as a function of temperature T shown in Fig. 6 of Ref. [60].

FIG. 12. Unscaled stress relaxation modulus G(t ) for film 1 us-
ing half-logarithmic coordinates. No indication of a jump singularity
with respect to temperature is found.

Similar continuous behavior has also been reported for the
Young modulus of polymer films [61].

Using a similar double-logarithmic representation as in
Fig. 11, we demonstrate in Fig. 13 that a successful TTS
scaling can be achieved for G(t ) just as for μ(�t ). While
several temperatures are again indicated for film 1, only one
temperature is indicated for the other ensembles. The effective
power law −1 seen for x ≈ 1 (solid line) can of course not
correspond to the asymptotic long-time behavior since∫ ∞

0
dt G(t ) = η and

∫ ∞

0
dt t G(t ) = τη (15)

would diverge. We remind that the Rouse behavior expected
to hold for our short chains for large times corresponds to a
cutoff with y(x) ≈ exp(−x)/

√
x [2] for which all moments of

G(t ) converge. Basically, due to the not accessible final cutoff
it is yet impossible for any temperature T � 0.55 to determine

FIG. 13. Successful TTS scaling plot of y = G(t )/μp as a func-
tion of reduced time x = t/τ using the same relaxation times as in
Fig. 11. The two indicated power laws (bold and dash-dotted lines)
are given for comparison. Unfortunately, our production runs are
too short to reveal the expected final exponential cutoff even for the
highest temperatures.
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FIG. 14. Shear modulus μ, shear relaxation modulus G and the
corresponding standard deviations δμ and δG taken at t = �t =
�tmax = 105 as functions of T . Focusing on film 1 all data are
averaged over m = 120 configurations without additional gliding
averages and logarithmic binning. The observed two inequalities
G � μ and δG � δμ are both consequences of the stationarity
relation Eq. (2).

η and τ merely by integrating G(t ), Eq. (15), and neither
is it possible to compute J (t ) by Laplace transformation of
G(t ) [1] in order to compare our numerical results with recent
experiments [34,36,37,40]. It is mainly for this reason that we
proceeded above by using the Einstein-Helfand relation and
the TTS scaling of μ(�t ) to estimate η and τ . The unfortu-
nate intermediate effective power-law slope −1 observed in
Fig. 13 is presumably due to an intricate crossover between
the exponential decay of the local glassy dynamics and the
1/

√
x-decay (dash-dotted line) due to the chain connectivity.

Albeit we do not expect any conceptional problems, much
longer production runs are clearly warranted to clarify this
issue.

G. Standard deviations δμ and δG

As already pointed out above, the data for G(t ) is quite
noisy, especially around Tg, and we had to use gliding av-
erages and a strong logarithmic binning for the clarity of
the presentation. We want now to describe this qualitative
observation in more quantitative terms. This is done in Fig. 14
(focusing again on film 1) where we compare μ and G and
their respective standard deviations δμ and δG, Eq. (B6),
taken at the same constant time t = �t = �tmax = 105 and
plotted as functions of the temperature T . (The corresponding
error bars δμ/

√
m − 1 and δG/

√
m − 1 are not shown.)

While we still average over the m independent configurations,
we do not use any gliding averaging or logarithmic binning.

As already presented in Fig. 3, μ(T ) decreases both
continuously and smoothly with T . Albeit G(T ) decreases
also continuously, it reveals an erratic behavior for temper-
atures slightly below Tg (vertical dashed line). The inequality
G(T ) � μ(T ) for all temperatures is expected from Eq. (C9).
More importantly, being the second integral over G(t ), the

shear modulus μ automatically filters off the high-frequency
noise. This explains the observed strong inequality δμ �
δG of the standard deviations. At variance to μ and G, a
striking nonmonotonic behavior is observed for δμ and δG

with maxima slightly below the glass transition temperature
Tg. While δμ � μ and δG � G in the solid limit, δμ > μ

and δG > G at high and intermediate temperatures. It can be
demonstrated that δμ/μ ≈ √

2 holds in this limit (as expected
for general Gaussian fluctuating fields). Unfortunately, our
statistics is insufficient to precisely quantify δG or δG/G.
However, it should be clear from the presented data that the
glass transition is masked—quite similar to what has been
observed for 3D bulk systems [13,14]—by strong ensem-
ble fluctuations with δμ/μ and δG/G of order of unity.
The prediction of G(T ) or μ(T ) for T ≈ Tg becomes thus
meaningless for a single configuration. We emphasize finally
that the inequalities δμ � δG and δμ/μ � δG/G are the
strongest slightly below Tg. This is the main reason why a
numerical study of the elastic shear strain response around the
glass transition should better focus on μ rather than of G.

IV. CONCLUSION

A. Methodology

Free-standing polymer films (Fig. 2) have been investi-
gated by means of MD simulation of a standard coarse-
grained polymer glass model (Appendix B 1). The film thick-
ness H ∼ 1/L2 was tuned by varying the lateral box width
L. The glass transition temperature Tg was obtained from
the much weaker temperature dependence of H (Fig. 4). We
have focused on the global in-plane shear stresses (Appendix
A 2), their fluctuations (Sec. III B), and relaxation dynamics
(Figs. 10–13). We used as the main diagnostic tool the first
time-averaged and then ensemble-averaged (Appendix B 2)
shear modulus μ and its various contributions as defined by
the stress-fluctuation formula, Eq. (1).

B. �t-dependence of μ and TTS scaling

As expected from previous work [10,13,14], μ decreases
monotonically (Figs. 9–11) with the sampling time �t . This
�t-dependence is perfectly described (Fig. 9) by the station-
arity relation Eq. (2), i.e., the stress-fluctuation formula is
equivalent to a second integral over the shear stress relaxation
modulus G(t ). The crucial consequence from the computa-
tional perspective is that, filtering away the high-frequency
noise, μ(�t ) is a natural smoothing function statistically
much better behaved as G(t ). As shown from the standard
deviations δμ and δG (Fig. 14), this is especially important for
large times and for temperatures around the glass transition.
While the shear viscosities η for the highest temperatures
may be directly computed by means of the Einstein-Helfand
relation for μ(�t ), Eq. (9), this is currently impossible using
the corresponding Green-Kubo relation for G(t ), Eq. (15).
Using the accurate TTS scaling of μ (Fig. 11) we are able
to estimate η(T ) ∼ τ (T ) for an even broader temperature
range down to ≈ Tg. The TTS scaling of G(t ) is then possible
(Fig. 13) using the same rescaling parameters.

062502-9



G. GEORGE et al. PHYSICAL REVIEW E 98, 062502 (2018)

C. Continuous temperature behavior

In agreement with recent studies of 3D polymer glass-
formers [13,14], μ and G are found to decrease both monoton-
ically and continuously with temperature T (Figs. 3, 10–14).
This result is qualitatively incompatible with mean-field theo-
ries [18–21] which find that the energy barriers for structural
relaxation diverge at the glass transition causing the sudden
arrest of liquid-like flow. Non-mean-field effects smearing out
the transition are apparently crucial. The idea that correlations
may matter around Tg is strongly supported by the remark-
able peaks observed for the standard deviations δμ and δG

(Fig. 14).

D. Film thickness effects

As expected assuming a linear superposition of bulk and
surface properties, Eq. (3), the glass transition temperature Tg

decreases linearly with 1/H (Fig. 4). Consistently, μ becomes
finite at lower temperatures for thinner films (Fig. 3). The
same linear superposition relation characterizes μ and its vari-
ous contributions if taken in the low or high temperature limit
(Figs. 6 and 7), the shear modulus μg at the glass transition
and the plateau modulus μp (Fig. 8). Importantly, as shown in
Figs. 11 and 13, it is possible to collapse μ(�t ) and G(t ) for
all our ensembles using the strongly H -dependent relaxation
time τ . (The weak H -dependence of the plateau modulus
μp used for dimensionless reasons is less relevant for the
scaling.) Moreover, since τ (T ,H ) is found to roughly scale as
a function of the inverse reduced temperature x = Tg(H )/T

(Fig. 11), the H -dependencies of all standard viscoelastic
properties [1] are essentially traced back to Tg(H ).

E. Discussion

While the shear viscosity and the terminal relaxation time
at constant T are linear in 1/H for high temperatures (inset
of Fig. 10) where τ is a weak function of x, for temperatures
close to Tg this can only be the leading contribution of a more
general 1/H -expansion. Due to the strong x-dependence of
τ (x) for x ≈ 1 (Fig. 11), a weak variation of 1/H close to the
glass transition must have a dramatic and in general nonlinear
effect on the thickness dependence of various viscoelastic
properties. As already pointed out elsewhere [54], some care
is thus needed if Tg(H ) is operationally obtained by means
of a rheological property other than Eq. (11). This may be an
explanation for some of the 1/H -expansions with higher order
terms reported for Tg(H ) in the literature [64,66].

F. Outlook

We are currently investigating the z profiles of various
properties considered here to confirm the superposition of
bulk and surface properties and to demonstrate that Eq. (2)
also holds for μ(�t, z) and G(t, z). The prefactor c = 1 used
for the terminal relaxation time τ was somewhat arbitrary,
Eq. (10). This was due to the missing exponential cutoff of
G(t ) which made it impossible to determine τ accurately
using Eq. (15) even for T = 0.55. We plan to do this at least
for one high temperature using much longer production runs
with �tmax = 107. Using these longer time series it should be
possible to fit the Maxwell relaxation spectrum [1]. Together

with an improved TTS scaling of G(t, T ) this should allow
us to obtain G′(ω, T ) and G′′(ω, T ) and to compare our data
with the experimentally available creep compliance J (t, T )
[34,36,37,40]. In addition we will attempt to characterize in
more detail the scaling of the fluctuations between different
configurations of the ensemble with the number of chains,
the film volume, the film thickness and the sampling time. A
quantitative theoretical theory describing the standard devia-
tions δμ and δG, especially around Tg, is highly warranted.

ACKNOWLEDGMENTS

We are indebted to L. Klochko and A. N. Semenov
(both ICS, Strasbourg) for helpful discussions. We thank the
IRTG Soft Matter (Freiburg, Germany) for financial support
and the University of Strasbourg for computer time through
GENCI/EQUIP@MESO.

APPENDIX A: INSTANTANEOUS PROPERTIES

1. Canonical affine transform

Let us consider an infinitesimal simple shear strain incre-
ment γ in the xy plane as it would be used to determine the
shear relaxation modulus G(t ) by means of a direct out-of-
equilibrium simulation (Sec. III F). For simplicity all particles
are in the principal simulation box [23]. It is assumed [8] that
all particle positions r and particle momenta p follow the
imposed “macroscopic” strain in a canonical affine manner
according to

rx → rx + γ ry and py → py − γ px, (A1)

where the negative sign in the second transform assures that
Liouville’s theorem is satisfied. Please note that a general
configuration will (except for very simple lattice systems) not
follow an external macroscopic strain in an affine manner. The
assumed transform is merely a theoretical trick [5,8].

2. Shear stress and affine shear modulus

The instantaneous shear stress σ̂ and the instantaneous
affine shear modulus μ̂A are defined by the first two functional
derivatives [5,8,14]

σ̂ ≡ δê(γ )

δγ

∣∣∣∣
γ=0

and μ̂A ≡ δ2ê(γ )

δγ 2

∣∣∣∣
γ=0

(A2)

of the energy density ê ≡ Ê/V of the total energy Ê with
respect to a canonical affine transform defined above. (We re-
mind that for films V = L2H , with H being the film thickness
defined in Sec. III A.) Assuming the energy Ê = Êid + Êex to
be the sum of an ideal and an excess contribution Êid and Êex,
similar relations apply for the corresponding contributions σ̂id

and σ̂ex to σ̂ = σ̂id + σ̂ex and for the contributions μ̂id and
μ̂ex to μ̂A = μ̂id + μ̂ex. With Êid = ∑n

i=1 p2
i
/2m being the

standard kinetic energy for monodisperse particles of mass m,
Eq. (A2) implies the ideal contributions

σ̂id = − 1

V

n∑
i=1

pixpiy/m and (A3)

μ̂id = 1

V

n∑
i=1

(
p2

ix + p2
iy

)
/2m, (A4)
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where the sums run over all n particles. Note that the minus
sign for the ideal shear stress follows from the minus sign in
Eq. (A1) required for a canonical transform. We have used
a symmetric representation in Eq. (A4) exchanging x and
y in Eq. (A1) and averaging over the equivalent canonical
affine simple shear strains in x and y directions. Assuming
a pairwise central conservative potential Êex = ∑

l u(rl ) with
l labeling the interactions, rl the distance between the pair
of monomers and u(r ) a pair potential as defined in Ap-
pendix B 1, one obtains the excess contributions

σ̂ex = 1

V

∑
l

rlu
′(rl ) nlxnly and (A5)

μ̂ex = 1

V

∑
l

(
r2
l u′′(rl ) − rlu

′(rl )
)
n2

lxn
2
ly

+ 1

V

∑
l

rlu
′(rl )

(
n2

lx + n2
ly

)
/2, (A6)

with nl = rl/rl being the normalized distance vector. As one
expects, Eq. (A5) is strictly identical to the corresponding off-
diagonal term of the Irving-Kirkwood stress tensor [23]. We
have again used a symmetric representation for the last term in
Eq. (A6). Importantly, this term takes into account the excess
contribution of the normal tangential stresses in the (x, y)
plane. These contributions cannot be neglected for stable
films with finite surface tension. This last term corresponds
to the well-known Birch coefficients [6,24] contributing to
the elastic moduli of stressed systems. We also note that μ̂ex

depends on the second derivative u′′(r ) of the pair potential.
Impulsive corrections need to be taken into account due to
this term if the first derivative u′(r ) of the potential is not
continuous [7]. Unfortunately, this is the case at the cutoff of
the shifted LJ potential, Eq. (B2), used in the current study.

APPENDIX B: COMPUTATIONAL DETAILS

1. Model Hamiltonian

All monomers that are not connected by bonds interact
basically via a monodisperse LJ potential [23],

ULJ(r ) = εLJ[(σLJ/r )12 − (σLJ/r )6]. (B1)

LJ units [23] are used throughout this work, i.e., the monomer
mass m, the monomer diameter σLJ, the LJ energy parameter
εLJ and Boltzmann’s constant kB are all set to unity. Length
scales are given in units of σLJ, energies in units of εLJ,
stresses and elastic moduli in units of εLJ/σ

3
LJ and times in

units of
√

mσ 2
LJ/εLJ. The LJ potential is truncated at rcut =

2.3 ≈ 2rmin, with rmin = 21/6 being the potential minimum,
and shifted,

ULJ,trunc(r ) = ULJ(r ) − ULJ(rcut ) for r � rcut, (B2)

to make it continuous. It is, however, not continuous with
respect to its first derivative and impulsive truncation correc-
tions [24] are thus required for the determination of the Born-
Lamé coefficients [7,8]. The flexible bonds are represented by
the spring potential

Ubond(r ) = kbond

2
(r − lbond )2, (B3)

with r being the distance between the permanently connected
beads, kbond = 1110 the spring constant, and lbond = 0.967 the
bond length.

2. Data sampling and averaging procedures

Instantaneous observables â are sampled every 10δtMD

with δtMD = 0.005 being the time increment of the velocity-
Verlet scheme used. Of central importance are the instan-
taneous shear stress σ̂ and the instantaneous affine shear
modulus μ̂A defined in Appendix A 2. Note that all intensive
properties are normalized using the effective film volume V =
L2H with H being the film thickness defined in Sec. III A. As
described in detail in Ref. [14], the stored time-series are used
to compute for a given configuration various (arithmetic) time
averages (marked by horizontal bars)

â ≡ 1

i2 − i1 + 1

i2∑
i=i1

âi , (B4)

with i = t/(10δtMD) being the index of the time series and the
sum running over all data entries of the time window (t1, t2 =
t1 + �t ) with �t � �tmax = 105 being the sampling time. By
averaging over the m independent configurations, we obtain
then ensemble averages (marked by pointy brackets)

〈Aj 〉 ≡ 1

m

m∑
j=1

Aj , (B5)

with j being the configuration index and Aj some function of
time preaveraged properties. The standard deviations δμ and
δG discussed in Sec. III G are obtained using√〈

A2
j

〉 − 〈Aj 〉2 with Aj = μ or = G, (B6)

being, respectively, the shear modulus or the relaxation mod-
ulus for a given time-window of a configuration. Essentially,
the same data averaging procedure is used for the bulk systems
the only difference being that we average finally in addition
over the three equivalent shear planes.

3. Simple averages and fluctuations

It is important to distinguish in a computation study be-
tween “simple averages” 〈â〉 and “fluctuations” such as
[10,14,23]

〈â2〉 or 〈(â − â)
2〉 = 〈â2 − â

2〉. (B7)

It is well known that simple averages and fluctuations behave
differently under ensemble transformation [10,23]. Inciden-
tally, using the Lebowitz-Percus-Verlet transformation rules
this provides one way to elegantly demonstrate the stress-
fluctuation formula Eq. (1) within a couple of lines [8,10]. In-
terestingly, the expectation values, i.e., the ensemble averages
for large m, of simple averages do not depend on the sampling
time �t since their time and ensemble averages commute
[10,14]

〈â〉 = 〈â〉 ∼ �t0 since 〈â〉 ∼ �t0. (B8)

As emphasized in Sec. III C, this does not hold in general for
fluctuations. As reminded in Appendix C, it is always possible
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for stationary systems to describe the �t-dependence of time-
preaveraged fluctuations in terms of a weighted integral over
a corresponding correlation function. The specific relation
relevant for the present work is given by Eq. (2).

APPENDIX C: FLUCTUATIONS IN STATIONARY
TIME SERIES

1. Time-translational invariance

Let us consider a time series (x1, . . . , xn, . . . xN ) with
entries xn sampled at equidistant time intervals dt . The time-
averaged variance of this time series may be rewritten as

x2 − x2 = (xn − x)2 = 1

2N2

∑
n,m=1

(xn − xm)2

= 2

N2

N−1∑
s=0

(N − s) h(s,N ), (C1)

using the in general s- and N -dependent sum

h(s,N ) ≡ 1

2

1

N − s

N−s∑
n=1

(xn+s − xn)2. (C2)

If time-translational invariance can be assumed on average,
we can readily take the expectation value 〈. . .〉 over an en-
semble of such time series. This yields

〈x2 − x2〉 = 2

N2

N−1∑
s=0

(N − s) h(s), with (C3)

h(s) ≡ 〈h(s,N )〉 = c(0) − c(t ) and (C4)

c(s) ≡ 〈xsx0〉. (C5)

Note that the mean-square displacement h(s) and the correla-
tion function c(s) do only depend on the time-increment s for
stationary time series.

2. Continuum limit

Using that the time series have been sampled with equidis-
tant time steps, i.e., t ≈ sdt and �t ≈ Ndt , the latter result
becomes in the continuum limit

〈x2 − x2〉 = P�t [h(t )] = c(0) − P�t [c(t )], (C6)

where we have used the useful linear functional

P�t [y(t )] ≡ 2

�t2

∫ �t

0
dt (�t − t ) y(t ) (C7)

= 2

�t2

∫ �t

0
dt

∫ t

0
dt ′ y(t ′). (C8)

Note that contributions at the lower boundary of the integral
have a strong weight due to the (�t − t )-factor in Eq. (C7).
If c(t ) is a strictly monotonically decreasing function, this
implies the inequality

c(t = �t ) < P�t [c(t )]. (C9)

3. Back to current problem

Setting x(t ) ≡ √
βV σ̂ (t ) and assuming time-translational

invariance for the sampled instantaneous shear stresses σ̂ ,
Eqs. (C6) and (14) lead to

μF(�t ) ≡ μ0 − μ1(�t ) = P�t [h(t )] (C10)

for the �t-dependence of the shear-stress fluctuations. Since
μA is a constant, Eq. (13) implies

μ(�t ) ≡ μA − μF(�t ) = P�t [G(t )]

= 2

�t2

∫ �t

0
dt

∫ t

0
dt ′ G(t ′), (C11)

in agreement with Eq. (2) stated in the Introduction. If G(t )
approaches a final constant μeq, as sketched in Fig. 1(b), or
a broad intermediate plateau, μ(�t ) must ultimately follow,
however, more slowly being dominated by the short-time
behavior of G(t ). We note finally that we might have also used
μ(�t ) ≡ P�t [G(t )] as the fundamental definition rather then
the thermodynamically motivated stress-fluctuation formula,
Eq. (1).
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