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Percolation strategy to improve the production of plants with high pathogen susceptibility
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We use percolation theory to propose a strategy that increases the production yield of plants with high
susceptibility to a pathogen plague. This strategy consists in sowing a second variety with a lower susceptibility.
The percolation threshold is determined as a function of the plant density, the mixture of plants, the pathogen
susceptibilities, and the initial percentage of inoculated soil. Moreover, we provide conditions to prevent the
formation of a spanning cluster of infected plants. We present an application of this strategy to a particular
chili plantation. Under controlled conditions, we measure the pathogen susceptibilities to different strains of
Phytophthora capsici for three varieties of chili peppers with high commercial value in Mexico. Then we simulate
the propagation process of the pathogen on nearest and next-to-nearest-neighbor square lattices. We find that the
production yield of plantations with the highest susceptibility can be significantly increased as a result of this
novel application of percolation theory.
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I. INTRODUCTION

Percolation theory is a branch of statistical physics that
addresses transport phenomena in porous media [1,2]. It ex-
plains, for instance, the conditions under which filtration of
water through a wall or how the current flow goes through an
electrical mesh can occur [3–6]. The basic idea in percolation
theory is to represent porous media as a lattice whose sites
either permit the flow (and then are said to be occupied) or not.
Each site has a probability p (independent of the neighboring
sites) of being designated as occupied or, equivalently, a
probability 1 − p of being designated as empty [4]. Evidently
the value of p determines if the transport phenomenon takes
place or not. If p is too small, then there are too few occupied
sites and the transport process cannot occur. Contrarily, if p

takes on a value close to 1, then there are plenty of occupied
places and one expects transport to occur [4–8]. The case of
interest is that in which the number of occupied sites is just
enough to allow the transport phenomenon to happen. In such
a situation, there is a critical value pc, called the percolation
threshold, that bounds from below the values of p for which
the transport phenomena will occur. Its determination is one
of the fundamental problems in percolation theory [6]. Since
finding the percolation threshold analytically is not possible
in most applications, computational methods have proved to
be an effective alternative [4,6–8].

Percolation theory has been applied in a wide variety
of situations, ranging from the study of the formation of
galactic structures [9–11] to super-cooled water [12,13],
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fragmentation [14–16], porous materials [2,17,18], earth-
quakes [19–21], forest fires [22–24], deforestation [25], and
the properties of the quark-gluon plasma [26–28].

An application of particular interest is the propagation of
diseases where a susceptible-infected-recovered (SIR) model
is used to determine the critical number of edges that would
prevent the propagation of the disease in a certain population
[29–37]. In particular, disease propagation models for plants
have been proposed in Refs. [38–43] in which different media
are considered for pathogen transport, like thin films of water
or air.

The interest in applying models like the one described
above is due to the great threat that plagues of insects or
gastropods, on one hand, and the spread of diseases caused
by bacteria, fungi, and oomycetes, on the other, pose on the
production of vegetables. The effects range from a reduced
production to the complete loss of a plantation or even the
transmission of the agent to other plantations sharing the ir-
rigation system, for example. The associated economic losses
render the study of the propagation of disease agents and its
eventual control necessary.

In the taxonomic class of oomycetes we find the organisms
that cause epiphytic interactions with the most destructive
effects on crops: the genus Phytophthora (from Greek, mean-
ing literally phyto, “plant,” and phthora, “destroyer” [44])
[45,46]. Long considered as lower fungi, these organisms are
more closely related to brown algae and green plants [47,48].
However, they share morphological characteristics with true
fungi (Eumycota), such as mycelial growth and the dispersion
of spores of mitotic or asexual origin. The latter have a
distinctive feature that causes them to have a great impact
on the plant kingdom as phytopathogens: their movement by
means of flagella [49,50].

These biflagellate zoospores have a mastigoneous flag-
ellum with microfibrils that serve to assist or guide
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movement. They can disperse through water films or soil
moisture, including those on the surface of plants. These
zoospores emerge from mature sporangia in quantities of 20
to 40 motile zoospores, which swim chemotactically toward
the plants [49,51,52].

When the zoospores reach the surface of the roots, they lose
their flagella, encyst in the host, and form a germination tube
through which they penetrate the surface of the plant [53,54].
However, many species of Phytophthora can persist as sapro-
phytes if the environmental conditions are not appropriate but
become parasitic in the presence of susceptible hosts [46,52].

Damages produced by the species of the genus Phytoph-
thora include rotting in seedlings, tubers, corms, the base
of the stem and other organs, staying mainly at the root of
many plant species [55]. The variation in infection caused
by the different species of Phytophthora is associated with
the environment conditions, which usually include optimal
temperature and humidity, exhibiting a transition of rapid
propagation in edaphic media of high humidity. Irrigation is
then considered one of the most important means of dissemi-
nation since it facilitates the spreading of zoospores [49,56].

Due to the physiology of the oomycetes, most of the
fungicides have no effect on them. Therefore, research on non-
chemical strategies that minimize or eliminate the propagation
of the pathogen is necessary.

In this work we model the propagation of the pathogen
Phytophthora as a transport phenomenon over a plantation.
As happens with some diseases, certain varieties of plants
have an intrinsic tolerance to Phytophthora [57]. These can
inhibit the spread of the pathogen and therefore may be
used as protective barriers for plants with less resistance. We
incorporate this idea into our model, considering plantations
comprising a mixture of varieties with high and low tolerance
to the pathogen. Since it is a priori unknown whether one
particular seed of a given variety will yield a nontolerant
plant, we assume the latter are uniformly distributed over the
plantation.

We use percolation theory to propose a strategy that sup-
presses or at least minimizes the spread of Phytophthora
capsici in chili plantations. We are interested in predicting
the conditions on the parameters of the crops that reduce the
propagation of the disease and maximize the total plant pro-
duction. To this end, we model plantations as square matrices
with a plant in each of their cells.

We report the pathogen susceptibility for three varieties of
chili plants. With these data we are able to find a way to pre-
vent the disease from propagating over the whole plantation
for the most susceptible chili variety. By mixing with a second
chili variety, our model yields the mixing proportion and the
plant density for a given initial percentage of inoculated soil
that would contain and prevent the pathogen from spreading.

This paper is organized as follows. In Sec. II, we describe
the model for pathogen propagation over a plantation in terms
of percolation theory. Then we find the percolation threshold
for these systems implemented in regular lattices as a function
of the mixing proportion, the pathogen susceptibilities, and
the initial percentage of inoculated soil. Section III describes
the experimental setup for the determination of the pathogen
susceptibility of four varieties of Phytophthora for three
commercially relevant varieties of chili: “Arbol,” “Serrano,”

TABLE I. Percolation threshold for different regular lattices.
Data taken from Ref. [4].

Lattice pc

2N square 0.592...
3N square 0.407...
Triangular 0.5
Hexagonal 0.697...

and “Poblano.” In Sec. IV we report the susceptibility mea-
surements and obtain the mixing thresholds for which the
disease will only propagate over finite clusters even if all
cells in the plantation are sowed. In addition, for the case
of high susceptibility measured for the “Arbol” variety when
exposed to P. capsici, we determine by computer simulation
the total production yield as a function of the occupation
probability and the mixing proportion with a second chili
variety of lower susceptibility. A discussion and a comparison
with the alternate rows sowing strategy is included in Sec. V.
Section VI contains the conclusions of this work.

II. MODEL

The basic percolation model studies the formation of
clusters on regular lattices with N sites, where each site is
available to the process with a probability p. It is of particular
interest to determine the percolation threshold pc, that is, the
minimum probability at which a spanning cluster extending
across the percolating system appears. This critical density
depends on the properties of the lattice, as illustrated in
Table I. There we show the percolation threshold for the near-
est (denoted by 2N) and next-to-nearest-neighbor (denoted by
3N) square, triangular, and hexagonal lattices.

A. Percolation threshold

In this work the sites in the lattice represent plants of two
different varieties growing on specific soil. Each variety has a
particular pathogen susceptibility, which is the probability of
being infected by a specific pathogen. We denote by A and B

the different plant varieties in the plantation, while χA and χB

denote their pathogen susceptibilities.
We consider a regular lattice with a probability of occupa-

tion p. The available sites in the lattice can be occupied by
two different types of plants, distributed in a homogeneous
way according to a certain proportion. We define M as the
probability that an available site is occupied by a plant of
variety A, so (1 − M ) it is the probability that an available
site is occupied by a plant of variety B. We are interested
in studying the spread of the disease on plants which can
get infected. Because the pathogen susceptibilities may be
different from one, then the spread of the disease occurs on
a percolating system with an effective probability peff that
depends explicitly on p, χA, χB , and M .

In a percolating system with given p, χA, χB , and M ,
the average number of effective sites available for the spread
of the disease can be written as Ndis = 〈NA〉 + 〈NB〉, where
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〈NA,B〉 is the average number of susceptible sites of type A or
B, which can be calculated as

〈NA〉 = NMχAp; (1)

〈NB〉 = N (1 − M )χBp. (2)

In addition to the average number of plants that can get
infected, it is necessary to take into account the fraction
of cells that are inoculated with the pathogen. These can
be located in occupied sites or in plants that are resistant.
Even in these cases, the pathogen may spread to neighboring
plants. Defining I as the probability that a cell in the lattice
is inoculated, we have that the average number N of cells
through which the propagation process can occur is

N = Npeff = Ndis + (N − Ndis)I, (3)

where the second term on the right-hand side has been added
to consider the inoculated sites that match the situation de-
scribed above. This last equation corresponds to a percolation
process that occurs on a lattice with an effective probability
given by

peff = I + (1 − I )[MχA + (1 − M )χB]p. (4)

Equation (4) is crucial, since it determines the formation
properties of clusters of plants that have been infected by
the pathogen, including those plants that do not manifest the
disease but can propagate it. The existence of the spanning
cluster of infected plants occurs when the value of peff in
Eq. (4) coincides with that of the percolation threshold of the
lattice. In that case, the percolation threshold of the system is
given by

p∗
c = pc − I

(1 − I )[MχA + (1 − M )χB]
. (5)

In general, there is not a direct way to compare p∗
c to pc.

However, it is possible to determine specific conditions for
which a spanning cluster will not exist. If we consider that
p∗

c can only take values between zero and one, then the no
percolation condition for the values of I , M , χA, and χB is
(1 − I )[MχA + (1 − M )χB] � pc − I . This is an important
condition because once knowing the pathogen susceptibilities
of the plants, we can determine the proportion M that guaran-
tees that no percolating cluster is formed, despite a fraction I

of soil area might be inoculated.

B. Disease incidence

Another important parameter that can be calculated is the
extent of disease incidence on the sown plants. Note that
independently of the lattice, the pathogen can spread on plants
that are susceptible and belong to the same cluster.

Because some pathogens can present latency stages when
they are in an adverse environment, any point in the lattice
can be the source of infection, even a place with no plant
or with a plant resistant to the pathogen. This fact highly
complicates the determination of an analytical result for the
percentage of the plantation that can be damaged by the
spread of the disease. If the initial point of infection is an
empty place or a place occupied by a plant resistant to the
pathogen, then the disease can be transmitted to more than

FIG. 1. Example of an initially infected point (red zero) sur-
rounded by two adjacent and disjoint clusters delimited by a blue
line for a nearest-neighbor square lattice with p = 0.6.

one adjacent cluster as shown in Fig. 1, where an initial point
of infection allows the pathogen to spread over two disjoint
clusters. For this reason we expect the average number of
cells where the pathogen causes damage to be slightly larger
than the average cluster size, for peff ∼ pc, as a result of
the connecting effect between disjoint clusters by the initial
infection point. On the other hand, for peff < pc, we expected
that the contribution of the initial point of infection be through
finite clusters or isolated sites. Finally, for peff > pc, the initial
point of infection belongs to the spanning cluster as peff takes
values greater than the percolation threshold. Consequently, if
there is more than one initial point of infection in the system,
we expect the appearance of cells connecting two adjacent
disjoint clusters to magnify. Evidently, this effect does not
scale linearly, since it may happen that two initial points
transmit the disease to the same cluster. In Sec. IV we will
discuss the implications of considering several initial points.

Finally, if we know the pathogen susceptibilities χA and χB

of two varieties, then we can predict the mixture of seeds and
the fraction of sown cells that will maximize the total yield
obtained from the whole production of A and B, which may
be computed as the number of cells for which the pathogen
could not spread.

C. Simulation on square lattices

Traditionally, crops are planted in parallel rows on the soil,
so that the seeds are sown in a square lattice-type arrangement.
The best approximation to represent the system is a Boolean
matrix whose values on each entry depend on whether seed
is deposited or not in the cell. The cells are spaced according
to the maximum displacement length that the pathogen can
travel. We do not know a priori what value corresponds to a
given cell (this is, we do not know whether a seed was sown
there). Therefore, we assign a 1 to each entry in the matrix
according to the occupation probability p. Given a proportion
mixture 0 < M < 1, we assign randomly to each occupied
cell (i.e., to each entry in the matrix with a value of 1) a
plant variety A or B. Specifically, we generate for each cell
a random number x between zero and one and define that, if
x < M , then a plant of variety A has been sown. Otherwise, it
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FIG. 2. (a) Representation of a percolating system with occupa-
tion probability p as a square matrix. (b) Representation of plants of
types A and B randomly sown in the cells of the matrix according to
a predefined proportion M = 0.6.

means that a plant of variety B has been sown. Figure 2 shows
an example of the random configuration of the mixture of the
two plant varieties represented as a percolating system.

The inoculated cells in this initial configuration are taken
in a uniform random way over the matrix with a probability I ,
which represents the ratio of inoculated cells in the matrix.

Once the cells are inoculated, the pathogen might or might
not be propagated to neighboring plants, depending on the
pathogen susceptibility χ of each variety of plant. In practice,
a plant of type A (B ) gets infected and develops the disease if
a generated random number is less than χA (χB ); otherwise,
the plant remains healthy. If the plant is infected and becomes
sick, then its cell value is changed from one to zero. Figure 3
shows an outline of this infection propagation process. The
matrix in the upper left corner represents the initial distribu-
tion of plants sown with a mixture M , while the matrix on the
right shows the result of exposure to the pathogen.

Finally, we take as the production yield for each plant
variety the number of plants still alive after the infection has
spread. With this method, we simulate the behavior of the
plant production yield as a function of the probability p and
the mixture M .

FIG. 3. The pathogen propagation process. The initial configu-
ration (top left) is exposed to the pathogen and each plant has a
probability I of being infected. The infected plants are considered as
dead and the respective cells in the matrix are marked with a purple
zero (right).

III. MATERIAL AND METHODS

A. Substrate preparation

The substrate preparation was carried by mixing peat moss
and seived soil (2-mm mesh) in a 1:2 volume-volume mixture.
The homogeneous mixture was placed in plastic double bags
of 6 kg of high density polyethylene. The bags with the
substrate were sterilized in an electric autoclave at 121 ◦C and
6.8 kg/cm2 for 30 min for 2 consecutive days.

B. Preparation and treatment of seeds

Three varieties of chili seed were used: “chile de Arbol”
from Michoacán, “chile Serrano” from the state of Nayarit,
and “chile Poblano” from the state of Puebla. For each one,
100 seeds without deformities were selected. Groups of 100
seeds were selected and weighted for carrying the tests. Each
pack of seeds was deflated by adding approximately 20 ml of
hydrogen peroxide (9 vol. H2O2) in a beaker for a period of
20 min and then rinsed with distilled water for three times and
allowed to stand for 2 days immersed in sterile distilled water
to promote germination.

C. Preparation of bioassays

For each bioassay, aluminium trays of approximately 3 kg
capacity were used. To each tray was added 1.5 kg of sterile
substrate, and on it the seed was spread homogeneously and
finally covered with 1 kg more of substrate, moistened with
enough water, and covered with black bags.

The trays were watered daily with enough water to main-
tain the humidity until beginning to see the buds of seedlings.
The initial growth was observed eight days after sowing. From
this moment, it was fertilized every 7 days with 1.9 g/l of the
fertilizer blue Nitrofoska.

D. Inoculation of soil with oomycetes

The microorganisms used were taken from the phy-
topathogenic oomycete strain collection of the Biotechnology
Academic Program at the Universidad Politécnica de Puebla.
The isolates were reactivated in a selective agar-corn medium
added with a mixing of antibiotics (pimaricin, 0.01 g/l; ampi-
cillin, 0.250 g/l; rifampicin, 0.01 g/l).

Each oomycete used was inoculated in the same sterile
substrate used for the preparation of the trays. Segments of
the growths were inoculated in plastic bags containing 500 g
of substrate. The bags were mixed by shaking every 2 days for
3 weeks to ensure the growth of the oomycete throughout the
substrate. They were incubated at room temperature. For each
inoculated substrate the presence of the respective oomycete
was verified by seeding 1 ml of a 1:9 dilution inoculated sub-
strate: water in cornmeal medium-agar added with antibiotics
(pimaricin, 0.01 g/l; ampicillin, 0.250 g/l; rifampicin, 0.01
g/l). It was incubated at 27 ◦C for 5 days.

E. Inoculation of trays

On average, each tray planted contained about 80 seedlings
and each of the oomycetes was inoculated into three trays
corresponding to the three varieties of chili. The inoculation
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TABLE II. Experimental results of the pathogen susceptibilities
for different Capsicum varieties: “Chile Serrano” (χS), “Chile de
Arbol” (χA), and “Chile Poblano” (χP ), exposed to several Phytoph-
thora isolates.

Oomycete χS χA χP Kruskal-Wallis test

PcV01 0.60 1.0 0.89 Pr < 0.0001 A = P

PcV51 0.46 0.27 0.76 Pr < 0.0006
PcV77 0.64 0.36 0.04 Pr < 0.0001 but A = P

PcV90 0.40 0.10 0.19 Pr < 0.0002 all the same
Blank test 0 0 0

was carried out by adding in the center of each tray 10 g of
soil infested by the oomycete corresponding to the treatment.
Then it was irrigated with water to favor infestation. Before
the inoculation, a census of plants was carried out for each
tray.

The fertilization of the plants was stopped at the microor-
ganism inoculation. However, the humidity was maintained at
field capacity during the whole time of the test, and 35 days
after sowing, live plants were counted in each tray and the
survival percentage was calculated.

IV. RESULTS

In this section we show results for the pathogen suscepti-
bility of chili plants of the “Arbol,” “Serrano,” and “Poblano”
varieties exposed to the pathogen oomycete P. capsici. We
also present the conditions predicted by our model that max-
imize the production of mixtures of two of these varieties of
chili plants when the portion of inoculated cells is 1%, 5%,
and 10%.

A. Susceptibility of chili varieties exposed to different P. capsici
isolates

We obtained the survival rate experimentally by exposing
a number of plants to the pathogen and noting the number
of alive plants after the period of time mentioned in Sec. III.
We denote the survival rate of a plant type exposed to a
pathogen (expressed as a percentage) as P , then, the pathogen
susceptibility is calculated as

χ = 1 − P
100

. (6)

Table II shows the pathogen susceptibility calculated with
Eq. (6) for the varieties of “Serrano” (S), “Arbol” (A), and
“Poblano” (P ) plants of chili exposed to various strains of
the pathogen P. capsici denoted by PcV and a number to
distinguish them from each other.

We actually measured susceptibilities for 20 different
strains (including their respective blank tests). These mea-
surements were carried out in a period of approximately 5
months since the procedure described in Sec. III was repeated
for all 20 strains in a small green house. The space and time
limitation precluded the measurements to be performed more
than once. We report susceptibility values for the four strains
we consider to be representative for the analysis done in this
study. On the other hand, we used Kruskal-Wallis tests to
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FIG. 4. Examples of conditions for no percolation in regular
lattices when the density of inoculated cells is small (I → 0) for
values of χA = 1.00 (a), 0.75 (b), 0.50 (c), 0.25 (d), when the
pathogen propagates over 2N square (red inverse diagonal filled),
3N square (green inverse diagonal filled), triangular (blue diagonal
filled), and hexagonal (yellow filled) lattices.

determine that at least two of the compared groups per strain
are significatively different whenever the distribution of their
data was not a normal distribution. In Table II Pr denotes the
probability that a false negative occurred. The small values
we obtained mean the three chilis actually have different
susceptibilities to the pathogen.

Using the data in Table II, we found the conditions on
M and p that optimize the production of the three possible
mixtures of two varieties of chili: A-P , A-S, and P -S.

B. Regular lattices

As mentioned in Sec. II A, depending on the values of
the pathogen susceptibility of each plant, we can determine
the values of M for which the pathogen will only spread
on finite clusters, even if all cells are sown. In Fig. 4 we show
the combinations of pathogen susceptibility χB and mixture
M that prevent the formation of the spanning cluster for fixed
χA = 1.00, 0.75, 0.50, and 0.25 in different regular lattices in
the limit I → 0, corresponding to a single initial inoculation
point.

In an analog way, we determined the conditions on M

for given values of I that produce no percolation for the
pathogen susceptibilities found experimentally. This allowed
us to compute the critical mixture M at which we predict the
infection will only spread to finite clusters even if all cells are
sown, as is shown in Fig. 5. In this context, M = 0 (M = 1)
means only plants with the highest (lowest) susceptibility
were sown. Note that the case M = 1 can occur as long
as one of the plants has a susceptibility small enough to
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FIG. 5. Conditions for no percolation in 2N (crosses), 3N (stars),
triangular (triangles), and hexagonal (circles) lattices of different
chili plants mixtures: A-P (purple), A-S (green), and P -S (red)
exposed to the strains PcV01 (a), PcV51 (b), PcV77 (c), and PcV90
(d) considering three values of inoculated cells density I = 0.01,
0.05, and 0.10.

suppress the pathogen spreading. Such is the case for the
PcV90 strain for which the three varieties of chili have small
susceptibilities as shown in Fig. 5(d). As it can be seen in
Fig. 5, almost all combinations of chili plants in almost all the
regular lattices yield M = 1. On the other hand, for the cases
of strains PcV51, Fig. 5(b), and PcV77, Fig. 5(c), there are
several values of the mixture different from 1. In these cases,
a more resistant variety of chili must be introduced to avoid
the spread of the disease over the most susceptible plant. The
most interesting case occurs when plants are exposed to the
strain PcV01, Fig. 5(a), since we only found mixing values
where the disease does not spread for hexagonal lattices. This
singular case is analyzed in Sec. IV C, where we determine
conditions for which the production of plants is optimized.

C. Simulation on square lattices

To estimate the production yield as a function of the
probability of occupation p and the mixture M , we perform
simulations in square matrices of size 100 × 100. We start
with initial values of 0.05 for both p and M . First, we increase

the value of p up to 0.95, in increments of �p = 0.05. We
then increase the value of M in steps of size �M = 0.05
repeating the scan in p for each value of M , up to M = 0.95.
The simulation was performed 2 × 104 times for each pair of
values of p and M , for the three possible chili combinations:
P -S, A-P , and S-A, using the pathogen susceptibilities re-
ported in Table II.

In Fig. 6 we show the production yield obtained by com-
puter simulation for the P -S mixture in the presence of
the pathogen PcV01 with different densities of inoculated
soil (I = 0.01, I = 0.05, and I = 0.1) in a nearest-neighbor
square lattice. The darkest areas indicate the values of density
of plants p and mixture M for which the production yield is
maximized.

Figure 7 shows level curves of the production yield for
different densities of inoculated cells in nearest neighbors
(red lines) and next-to-nearest-neighbor (blue lines) square
lattices. The production levels were obtained through extrapo-
lation using cubic splines between adjacent points in the p-M
plane. Then the level curves of the results obtained by com-
puter simulation were determined. The curves on the graphs in
Fig. 7 bound the region where the maximum production yield
reaches a certain value, which is indicated by a label on each
line.

Finite-size effects on the production yield curves

As is usual in percolation theory some dependence of
the observed quantities on the system size is expected: the
so-called finite-size effects [58–61]. In our case the system
size corresponds simply to the matrix size (L × L) which
we use in our simulations. To observe these effects we study
the behavior of the 35%, 45%, and 55% production level
curves for the P -S mixture shown in Fig. 7(a) as a function
of L. Figure 8 shows these curves for I = 0.01 in a nearest-
neighbor square lattice for different matrix sizes.

It is clear that dependence of the production curves on L is
rapidly lost. For occupation probabilities below 0.6 the curves
are practically independent of L, in agreement with the fact
that the effective probability of the simulated systems is low
(peff � 0.52 for all M) and therefore the process propagates
over finite clusters. In contrast, for larger p values, larger
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FIG. 6. Simulation results for the production of cells with alive plants after the spreading of the disease on the chili mix P -S for values of
inoculated cells I = 0.01 (a), 0.05 (b), and 0.10 (c). Regions in dark represent the higher production yields.
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FIG. 7. Level curves for the production yield in terms of the density of plants and the mixture for the three combinations of chili plants
at different inoculation densities I = 0.01 (solid lines), I = 0.05 (dashed lines), and I = 0.10 (dotted lines). Top row (red curves) correspond
to a nearest-neighbor square lattice for the P -S(a), A-P (b), and S-A (c) mixtures. Bottom row (blue curves) correspond to a next-to-nearest-
neighbor square lattice for the P -S (d), A-P (e), and S-A (f) mixtures.

clusters are formed with corresponding larger fluctuations of
their probability distribution. Furthermore, the absolute num-

FIG. 8. Finite-size effect on the production yield lines for the
P -S mixing exposed to PcV01 with a percentage of inoculated soil
I = 0.01 in a nearest-neighbors square lattice.

ber of initially inoculated sites grows as IL2 so the number
of inoculated sites is, for example, two orders of magnitude
less in a system with L = 20 than that of a system with
L = 200. This means that the number of explored clusters for
the propagation of the infection is much limited in small size
systems.

V. DISCUSSION

In this paper we proposed a strategy based on percola-
tion theory on regular (triangular, square, and hexagonal)
lattices to optimize the production of crops in a plantation.
The strategy consists in sowing two varieties of plants with
different susceptibilities to a specific pathogen arranged as a
percolating system in order to maximize the number of plants
that survive an infestation. We assumed that the lattice spacing
in the percolation system coincides with the maximum dis-
tance that the pathogen can travel before entering a state of
dormancy or before dying due to starvation.

We were able to establish a relationship between the perco-
lation threshold of systems with two different probabilities for
the occurrence of the propagation process and the parameters
of the plantation. Namely the pathogen susceptibilities χA and
χB of each type of plant, the mixture M , the fraction of sites
that can initiate infection I , and the percolation threshold of
the lattice in which the plants are sown. We also found that,
under particular conditions of pathogen susceptibility, there
are values of the mixture M for which the disease will only
propagate on finite clusters even if all the soil is sown.

062409-7



J. E. RAMÍREZ et al. PHYSICAL REVIEW E 98, 062409 (2018)

We experimentally measured the pathogen susceptibility
to different varieties of the Phytophtora pathogen of three
chili varieties: “Serrano,” “Arbol,” and “Poblano” which are of
commercial value in Mexico. We found that for the pathogens
catalogued as PcV51, PcV77, and PcV90, there are values
of the mixture M for which the infection will only spread
on finite clusters, independently of the regular lattice that is
considered. On the other hand, we found that the mortality
rate of the plants in presence of PcV01 is relatively high,
so it is not possible to find mixing values for which the
infection propagates on finite clusters. For this particular
case, we determined by computer simulation the production
yield of the three possible pairs of plants for three different
percentages of inoculated soil I = 0.01, 0.05, and 0.10. We
found the production yield is highly sensitive to the amount
of soil inoculated and there is a considerable difference in
production yield for the extreme values of I . In addition,
the production yield for the next-to-nearest-neighbor lattice
is lower than that for the nearest-neighbor lattice due to the
fact that in the 3N square lattice, the number of coordination
is larger than in the 2N square lattice, which means that the
pathogen has more options to spread.

In the most drastic case of pathogen susceptibility, the
“Arbol” variety was measured to have χA = 1, which means
the infection will spread over all the plants regardless of
the percentage of inoculated land when all the soil is sown.
However, when mixed with the “Serrano” variety (χS = 0.6)
on a nearest-neighbor square lattice, we found total production
level curves of 50%, 35%, and 30% of the total cells for
inoculated soil levels of I = 0.01, 0.05, and 0.10, respectively.
On the other hand, on a next-to-nearest-neighbor square lattice
we found production level curves around 30% regardless of
the fraction of the soil inoculated. These results show that
the production of “Arbol” could be improved if sown in
combination with a second variety of chili plant.

We compared the predictions of our model to the simulated
production yield for a crop with a mixing of two chilis sowed
in alternate rows of the lattice. That is sowing one of the
varieties in all sites of a row and filling the next row with
the other type of chili. We found the production yield for
each of the three combinations of chilis does not depend on
the coordination number of the lattice nor on the fraction
of soil initially inoculated. For these varieties with pathogen
susceptibilities close to 1 the production yield is given by
1 − (χA + χB )/2. For example, in the S-A mixing exposed to
PcV01, on the average, half of the initially inoculated plants
will be of the variety A and then the corresponding rows rows
will be completely lost since χA = 1. Consequently, the rows
with variety S will in fact be exposed to the pathogen and only
the resistant plants will survive. At the same time, the infected
plants of variety S will continue propagating the pathogen to
the next row and so on. At the end of the propagation process,
only resistant plants of the variety S will be alive, which
corresponds to 20% of all cells (since the mixing proportion
is 50% and χS = 0.6). And the pathogen will spread over
all the lattice. On the other hand, using our model, there is
a production yield curve corresponding to 50% (∼10% of
variety A+ ∼ 40% of variety S).

In Fig. 9 we show the yield production for the alternate
rows strategy and the maximum percentage observed for the

FIG. 9. Comparison of the production yield between the alternate
rows sowing (filled squares) and the percolation strategy for the P -S
(red), A-P (green), and S-A (blue) mixings, for plants exposed to
PcV01. Simulations of the percolation strategy in 2N (filled circles)
and 3N (triangles) lattices for different fractions of inoculated soil
(I = 0.01, 0.05, 0.1) are shown. Production yield of systems sowed
in alternate rows with different combinations of pathogen suscepti-
bilities (purple points) agree with 1 − (χA + χB )/2 (black curve) for
high susceptibilities values.

percolation strategy in 2N and 3N square lattices. Simulations
of alternate rows sowing for other combinations of pathogen
susceptibilities were performed (see the purple points in
Fig. 9). Note that for those systems where the pathogen
susceptibility is high for both plant varieties, the normalized
production yield is well fitted by 1 − (χA + χB )/2. Finally,
the percolation strategy presented here predicts a better pro-
duction yield than the alternate rows sowing strategy, even in
those systems where the pathogen can reach next to nearest
neighbors in the square lattice for the three analyzed fractions
of inoculated soil.

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented and implemented a model
based on percolation theory to avoid the spreading process
of a pathogen with the capability of movement (by flagella)
through plants with high susceptibility by the sowing of
a plant mixture with less pathogen susceptibility. We have
determined the percolation threshold and the no percolation
condition for these systems considering the following vari-
ables: density of cells sown, pathogen susceptibilities, the
portion of plant mix, and the percentage of inoculated soil.
This strategy can be applied in a whole variety of cases. Also,
for those systems where it is not possible to determine the
no percolation conditions, we presented the corresponding
Monte Carlo simulation. The main result of this approach is
the possibility to raise the production yield of the plant with
high pathogen susceptibility, even when the yield production
is close to zero under traditional sowing conditions.
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The strategy presented here could help farmers to select
the type of plants that would give the best production yield
on their land without applying any pesticides or chemical
products. The required parameters to predict the production
yield for a given mixture of plants are just the percentage of
soil initially inoculated and the pathogen susceptibilities of the
plants involved. One has to consider that applying this model
to a real-life situation, farmers should now be interested in the
physical and chemical properties of harmful microorganisms
that inhabit their land and in the response of the desired plants
to sow in the presence of those pathogens. These properties
would enable them to determine the sowing conditions that
would optimize the harvest.

Since the model allows for available cells, a third plant
variety can be added in the empty spaces. This would clearly
permit farmers to better exploit their agronomic resources
with the only restriction of choosing a more resistant variety of
plant. This proposal is in agreement with polyculture, which
is promoted as a way for sustainable use of soils.

The model could be straightforwardly extended to assess
the effect of additional variables of the pathogen dynamics on

the propagation of the disease, giving a more accurate pre-
diction of the production yield. For example, reinfection and
recovery of some plants were observed on our experiments.
The plant reinfection lapse and the recovery time could be
measured and implemented in our model using an SIR model
approach.

Finally, some other types of variables might also be in-
cluded, such as the care provided by the farmer or the pos-
sibility of having more than one type of pathogen in the field.
This occurs, for example, with P. capsici, whose subvarieties
can all be found in the same parcel.
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