
PHYSICAL REVIEW E 98, 062405 (2018)

Jacobian-determinant method of identifying phase singularity during reentry

Teng-Chao Li,1 De-Bei Pan,1 Kuangshi Zhou,2 Ruhong Jiang,2 Chenyang Jiang,2 Bo Zheng,1,3,* and Hong Zhang1,†
1Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China

2Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

(Received 8 April 2018; revised manuscript received 13 October 2018; published 11 December 2018)

Reentrant spiral waves (also called rotors) have been observed in the heart muscle during cardiac arrhythmias
and are nowadays targeted by ablation therapy in order to cure certain heart rhythm disorders. Phase singularity
(PS) is considered to represent the organizing center of the spiral wave and the spatiotemporal behavior of the
spiral wave can be extensively quantified by tracking PS. Recent clinical studies suggested that ablating the tissue
at PS locations may cure atrial fibrillation. However, for experimental data, typically only one state variable, i.e.,
the voltage, is recorded. Accordingly, the calculation of phase and the identification of PSs must be carried out
by using one variable. Here, a Jacobian-determinant method using one variable in reconstructed state space is
proposed and the advantages of the method are demonstrated.
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I. INTRODUCTION

Spiral waves are one of the most striking spatiotemporal
patterns existing in diverse physical, chemical, and biolog-
ical systems. They have been observed in the Belousov-
Zhabotinsky (BZ) reaction [1,2], in the catalytic oxidation of
CO on platinum [3], during the aggregations of Dictyostelium
discoideum amoebae [4], and in the cardiac tissue [5–7]. Due
to the close relevance to cardiac diseases such as tachycardia
and fibrillation, such kinds of patterns have raised broad inter-
est [8–10]. The global behavior of a spiral is quite complex,
but some features can be well described by the motion of its
rotation center and the center is usually defined by a phase
singularity (PS). A PS is a site at which the phase of the site
is arbitrary; the neighboring elements exhibit a continuous
progression of phase that is equal to ±2π around this site [11].

The transition from a stable to a drifting or meandering
PS trajectory and then to spiral wave breakup may corre-
spond to the transition from stable to polymorphic electrical
arrhythmias and then to fibrillation which leads to sudden
cardiac death [12,13], such that the accurate identification of
the PS is particularly important in the heart. Recently, Narayan
and colleagues have suggested that ablating the tissue at PS
locations may cure fibrillation of the cardiac atria [14].

A classic method to determine the PS location is to com-
pute where the isocontours of two-state variables intersect
[15–18]. This method allows for the identification of PS at
each instant of time but suffers from the lack of clear crite-
ria for selecting the particular isocontour and the necessity
to know the spatiotemporal behavior of two-state variables.
Though robust and suitable for numerical simulations, this
method is not applicable to experimental data, for which
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typically only one dependent variable (generally voltage V )
is recorded.

A similar method involves choosing a particular choice of
isocontour value or an origin V ∗ in state space, and the site of
maximal wave-front curvature can be used to track PS move-
ment [19]. This approach alleviates the need for two-state
variables, since only the transmembrane potential isocontour
is used but again requires the choice of a particular isopo-
tential. However, the particular isopotential establishment is
crucial for appropriate tracking of the PS of rapidly rotating
waves [20]. Moreover, by using this method, the sites of
maximal curvature on concave wave fronts, i.e., “inner points”
that cannot be PSs, are also identified as PSs. Alternatively,
the so-called zero-normal-velocity method [21] consists of
finding the point on a chosen isopotential line which exhibits
a zero time derivative. This method has been used in many
settings including experiments [22–25].

The subsequent methods use a time delay–embedding tech-
nique to calculate phase φ from a two-dimensional recon-
structed state space, which is topologically equivalent to the
true state space [26], and the identification of PS has been
carried out manually using one variable [11]. In Ref. [27], the
authors demonstrated that the phase can be calculated by using
the Hilbert transform–based approach, which also alleviates
the need for two-state variables.

Phase maps φ(x, y, t ) can be obtained by using the above
methods to calculate phase at every site (x, y) of the spiral
wave for each instant of time t . A spatial PS occurs at a site
where all phase values converge. Iyer and Gray developed an
algorithm to locate PS during reentry by computing the line
integral of the change of the phase around each pixel [28].
Bray et al. [29] used a convolution method to locate PS: The
concept of topological charge is implemented as a series of
convolution operations to detect a spatial phase distribution
of 2π around a pixel, the distinguishing characteristic of a
PS. Recently, a location-centric method that looks for the
phase discontinuity point at which PS occurs was proposed
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by Lee et al. [30]. The authors emphasized that their method
is limited on the condition that voltage changes continuously
over time. Note that the above methods require calculating the
local phase φ(x, y, t ), while the definition of the phase can
vary from study to study.

In this paper, we propose an alternative method of PS iden-
tification, i.e., the Jacobian-determinant method. The method
is performed in a reconstructed state space, such that only one
variable is needed. Furthermore, the phase does not need to
be calculated in this method. We illustrate the principle of this
method and a comparison with other methods is given.

II. METHODS

A. Two-state variable model

We now consider a classic two-variable FitzHugh-Nagumo
(FHN) model [31,32],

∂V

∂t
= 1

ε

(
V − V 3

3
− W

)
+ D∇2V, (1a)

∂W

∂t
= ε(V + β − γW ), (1b)

where V and W are fast and slow variables, respectively;
D is the diffusion coefficient; and ε, β, and γ are model
parameters. In this paper, Eq. (1) is integrated on a uniform
x−y grid with no-flux boundary conditions via the Euler
algorithm. Numerical simulations are conducted by using
fixed steps �x = �y = 0.05 and �t = 0.0005. The size of
the system is Lx = Ly = 25, consisting of 500 × 500 grid
points.

B. Jacobian-determinant method

For numerical simulations, phase can be directly achieved
from the two-state variables. Due to normally only one
variable, i.e., voltage V , being recorded in experiments, the
calculation of phase using one variable has already been ac-
complished by using a reconstructed state space [11,26]. The
phase can be calculated by using the time delay–embedding
technique from a two-dimensional reconstructed state space
as follows:

φ(x, y, t ) = arctan 2[V (t + τ ) − V ∗, V (t ) − V ∗]. (2)

The arctan 2 function returns a value of phase between −π

and π depending upon the value and signs (+/−) of the two
input variables. The constant V ∗ is the origin of the phase
space and the best choice of V ∗ can be computed numerically
whether the spiral wave is stationary or not [33].

The phase can also be calculated by using the Hilbert
transform–based approach [27]:

φ(x, y, t ) = arctan 2(V ′(t ),H [V ′(t )]),

where V ′(t ) = V (t ) − Vmean(t ) and H is the Hilbert trans-
form. One advantage of this approach is that it does not require
a judicial choice of τ in Eq. (2). However, the signal must meet
some conditions for reliable phase computation: Techniques
that use the Hilbert transform approach must ensure that the
mean potential over each activation cycle is subtracted from
the original electrogram for reliable phase computations [34].

Phase analysis of cardiac arrhythmias, particularly atrial
fibrillation, has gained interest because of the ability to detect
organized stable spirals and target them for therapy. However,
the lack of methodology details in publications on the topic
has resulted in ongoing debate over the phase mapping tech-
nique [35,36]. Bray and Wikswo [27] also pointed out that
globally choosing a short τ for the time delay–embedding
method (2) achieves the same desired effect in the phase plane
as the orthogonality of the Hilbert-transformed signal. Thus,
for simplicity, we will discuss the PS by using Eq. (2) in the
following, where the phase is calculated by using the time
delay–embedding technique.

PS can then be described in terms of topological charge
[37–39], which is defined as

nt = 1

2π

∮
�

∇φ · d
−→
l , (3)

where � is a closed curve surrounding the PS. A PS occurs
when the line integral of the change of phase around a point is
2π or −2π , i.e., nt = 1 or −1, which depends on the chirality
of a spiral [40,41].

Following the topological current theory [40–43], it can be
proven that

nt = sgn[D(V/x)PS], (4)

where D(V/x) is the Jacobian determinant,

D(V/x) =
[
∂V (t )

∂x

∂V (t + τ )

∂y
− ∂V (t )

∂y

∂V (t + τ )

∂x

]
. (5)

D(V/x)PS is the value of D(V/x) at the PS.
First, we consider meandering (nonstationary) spiral

waves. Spatial distributions of the fast variable V at an instant
time t = 90 are shown in Fig. 1(a). According to Eq. (5), we
numerically calculated the values of the Jacobian determinant
D(V/x), as shown in Fig. 1(b). For a counterclockwise spiral,
one can see that D(V/x) is localized at the PS: D(V/x)
takes its maximum value approximately at the PS (nt =
sgn[D(V/x)PS] = +1), while it is almost zero in other re-
gions. Note that for a clockwise spiral, the PS is distinguished
by its sharp local minimum of D(V/x): D(V/x) takes its min-
imum value approximately at the PS (nt = sgn[D(V/x)PS] =
−1). The property that the Jacobian determinant D(V/x)
is localized at the PS provides an identification of the PS
position for a counterclockwise (or clockwise) spiral by max-
imizing (or minimizing) D(V/x).

In Fig. 1(c), the middle red and blue isolines are the
values of V (t ) and V (t + τ ) of the grid that reaches the
maximum of D(V/x), respectively. Hence, the intersection
of these two middle lines is identified as the PS, which is
denoted by a green circle in a zoomed-in image in Fig. 1(d).
∇V (t ) and ∇V (t + τ ) are vectors denoted by the red and the
blue arrows in Fig. 1(d). Specifically, D(V/x) = |∇V (t )| ·
|∇V (t + τ )| · sin θ (−π < θ � π ), where θ is the angle be-
tween the vectors ∇V (t ) and ∇V (t + τ ) and is measured in
the counterclockwise direction from the vector ∇V (t ). One
can see the values of D(u/x) depend on three variables, i.e.,
|∇V (t )|, |∇V (t + τ )|, and θ . Far away from the PS, the two
vectors ∇V (t ) and ∇V (t + τ ) are almost parallel to each
other and thus D(V/x) is nearly zero, while near the PS,
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FIG. 1. FHN model with ε = 0.22, β = 0.70, and γ = 0.80 is
used; a time delay τ = 0.1T and an instant time t = 90 are chosen,
where T = 13.114 is the rotation period of the spiral. (a) A snapshot
of the spatial distribution of the fast variable V . (b) Numerical values
of the Jacobian determinant D(V/x ). (c) The middle red isoline
V (t ) = 0.377 is the value of V of the grid that reaches the maximum
of D(V/x ) in (b), and the other four red isolines are V (t ) ± �V and
V (t ) ± 2�V . Similarly, the middle blue isoline and the other four
blue isolines correspond to V (t + τ ) = 0.09, V (t + τ ) ± �V , and
V (t + τ ) ± 2�V , respectively. �V = 0.5 is chosen in both the red
and blue cases. (d) The region enclosed by black dashed lines in (c)
is zoomed in. The red and blue arrows are vectors that denote ∇V (t )
and ∇V (t + τ ), respectively, and the arrows point to the directions
where V increase. The green circle is the center of the image, which
also corresponds to the grid that reaches the maximum of D(V/x ).

∇V (t ) and ∇V (t + τ ) cross each other and D(V/x) takes its
maximum value at the PS.

C. Other methods

Gray et al. [33] showed that inappropriate origin choice can
lead to an error in the identification of the number and lifetime
of spiral waves, and the best choice of the state space origin
was discussed. They first considered a stable, i.e., rigidly rotat-
ing (stationary), spiral wave since such a spiral wave exhibits
rotational symmetry around the center of rotation, which can
be denoted as (x∗, y∗) in Cartesian coordinates. At each site
(x, y) the state variables will be periodic in time except at
the site (x∗, y∗) where no oscillations occur because of the
rotational symmetry. They suggested that the best choice of
the state space origin for the definition of φ [see Eq. (2)] is the
value of the state variable at (x∗, y∗) defined as V ∗. If the site
(x∗, y∗) is chosen for the definition of PS identification, then
the PS trajectory during one rotation will be a point. Gray et al.
further showed that one can seek a rotationally symmetric
spiral wave solution in a polar coordinate system [44], under
such circumstance the state at the center of this spiral wave

FIG. 2. Schematic representation of the simplified phase-integral
method [47]. The change in phase between two adjacent points
ranges from −π to π . (a) The phase-integral method calculates the
line integral of the change in phases at a candidate point with its eight
neighbor points. (b) Four points indicated by the stars are identified
as PSs by the phase-integral method and the real PS exists at the
intersection of these four points. (c) The simplified phase-integral
method. Only four points are required to calculate the line integral
and the center of the four points is considered as a PS candidate.

solution V ∗ can be computed numerically whether the spiral
wave is stationary or not, and the center of rotation (x∗, y∗) in
Cartesian coordinates becomes ρ = 0 in the polar coordinate
system.

In this paper, we use the open source software DXSPIRAL

[45,46] since it is dealing with spiral waves on a polar grid in
a disk. V ∗ can be obtained at ρ = 0 and the rotation period of
the spiral T can also be given. To get a similar precision with
�x = 0.05 in direct numerical simulations, we use a disk of
radius of 12.5 with 250 radial and 124 circumferential grid
cells. We have obtained V ∗ = −1.139 with the chosen model
parameters as described in Fig. 1, which is consistent with the
result given by Gray et al. in Table I of Ref. [33].

With the phase-integral method [28], PS is calculated based
on the line integral of the phase around a PS point equal
to ±2π [see Eq. (3)]. The path length of the line integral
can be varied. Apparently a smaller path length is of more
desirable precision. The phase-integral method [28] uses a
path length of eight points as shown in Fig. 2(a), and tracks
as many as four PSs at one time, which are denoted by the
black star in Fig. 2(b), and the real PS lies at the common
junction of these four points indicated by a black dot. In this
paper, we adopted the simplified phase-integral method [47]:
by using a path length of only four points and the center of the
four points is considered as a PS candidate, which is denoted
by a black dot as one can see in Fig. 2(c). Our numerical
simulations with spiral waves in both meandering and rigidly
rotating cases showed that the phase-integral method and the
simplified phase-integral method are equivalent, and that the
latter one is time saving.

For comparison, the third method we use for the identifi-
cation of a PS is the convolution method developed by Bray
et al. [29]. They demonstrated that the line integral of Eq. (3)
at location (x, y) can be solved by making the following
convolution operation:∮

�

∇φ · d
−→
l ∝ ∇x ⊗ ky + ∇y ⊗ kx, (6)

where kx = φ(x + �x, y) − φ(x, y), ky = φ(x, y + �y) −
φ(x, y), ⊗ is the convolution operator, and ∇x , ∇y are the
convolution kernels. In this paper, we use an updated set
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of convolution kernels discussed in [20]. The line integral
in Eq. (3) divided by 2π would not be exactly ±1 due to
discretization error, so we use an absolute margin of error with
0.001 [48].

The fourth method is the location-centric method which
was proposed by Lee et al. [30]. They selected the PS only
based on the phase difference �φ = φ(t + 1) − φ(t ) at a
local site without checking the phase changes at the site’s
neighbor points, where φ(t ) is the phase at time t . A candidate
site is considered as the PS if the phase difference satisfies the
condition �φ < M , where M is set to −π .

The fifth method is the zero-normal-velocity method de-
veloped by Fenton and Karma [21]. In this method, the PS
can be defined as the point where the excitation wave front
meets the repolarization wave back of the action potential,
or equivalently as the point of zero normal velocity along
the boundary between depolarized and repolarized regions of
the cardiac tissue. It is simple to show that this point is the
intersection point of the lines,

V (x, y, t ) = V ∗, ∂tV (x, y, t ) = 0. (7)

The equivalence of the phase-integral and the zero-normal-
velocity approaches has been demonstrated experimentally
[22]. In this paper, we call Eq. (7) the zero-normal-velocity
method I. In the Appendix, we proved that the zero-normal-
velocity method I is equivalent to the phase-integral method
(3) when the time delay τ is extremely small; i.e., τ � 1.

In practice, especially in experiments, ∂tV (x, y, t ) is cal-
culated roughly from [V (x, y, t + τ ) − V (x, y, t )]/τ . In this
case, the method (7) changes to

V (x, y, t ) = V ∗, V (x, y, t + τ ) − V (x, y, t ) = 0, (8)

which we call the zero-normal-velocity method II and is
equivalent to the phase-integral method (3) (more details can
be found in the Appendix).

III. RESULTS

A. Comparison with other methods

Now we compare the PS locations determined by the
Jacobian-determinant method with other five methods. To
produce the PS trajectory by each method, we calculate PS
points in a time duration 100 and the time interval of the PS
detection is 1; we define the PS-detecting error rate as the
number of false results (false-positive plus false-negative PSs)
divided by the total number of true PSs [20]. The simplified
phase-integral method, the convolution method, the Jacobian-
determinant method, the zero-normal-velocity method II, and
the zero-normal-velocity method I, whose PS trajectories are
shown in Figs. 3(a), 3(b), and 3(d)–3(f), respectively, have a
0 error rate of the PS detection. Nevertheless in Fig. 3(c), the
location-centric method is of 67% error rate.

We also explored the effects of different choices of time
delay τ in the PS identification. In the meandering (nonsta-
tionary) case, the PS-detecting error rates of different meth-
ods are shown in Table I. One can see that the simplified
phase-integral method, the convolution method, the Jacobian-
determinant method, and the zero-normal-velocity method II
have a 0 error rate of the PS detection with different time
delays while the location-centric method is of high error rate.

FIG. 3. Six methods of identifying the PS in a time duration 100;
the parameters are the same as in Fig. 1. The time interval of the PS
detection is 1 and the time delay τ = 0.1T . (a) Using the simplified
phase-integral method; (b) using the convolution method; (c) us-
ing the location-centric method; (d) using the Jacobian-determinant
method; (e) using the zero-normal-velocity method II; (f) using the
zero-normal-velocity method I which is not related to τ .

Next we consider rigidly rotating (stationary) spiral waves.
For simplicity, model parameters are chosen the same as in
Fig. 1 except that parameter β is tuned to 0.78, with which one
can get V ∗ = −1.256 by using the software DXSPIRAL. Table I
also shows PS-detecting error rates of different methods and
time delays with stationary spiral waves. The location-centric

TABLE I. PS-detecting error rates. The zero-normal-velocity
method I is not related to τ .

Nonstationary Stationary

Time delay τ 0.05T 0.1T 0.05T 0.1T

Simplified phase-integral method 0 0 0 0
Convolution method 0 0 0 0
Location-centric method 86% 67%
Jacobian-determinant method 0 0 0 0
Zero-normal-velocity method II 0 0 0 0
Zero-normal-velocity method I 0 0
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FIG. 4. The effect of noise. (a) A snapshot of the spatial distri-
bution of the fast variable η. (b) Numerical values of the modified
Jacobian determinant D(V/x ). The noise amplitude η = 0.003 and
the other parameters are the same as those in Fig. 1.

method fails to detect any PS, due to the usage of the location-
centric method being limited on the condition that voltage
changes continuously over time as mentioned in [30]. Nev-
ertheless, other methods show their robustness with different
choices of time delays, since in all cases the error rates are 0.

Furthermore, we also explored the influence on PS tracking
with a bigger time delay such as τ = 0.25T . For nonstationary
spiral waves, the performance of the PS identification is sim-
ilar to τ = 0.05T or τ = 0.1T . However, for the stationary
case with the chosen model and parameters, the simplified
phase-integral method, the convolution method, the location-
centric method, the Jacobian-determinant method, and the
zero-normal-velocity method II experience problems since
phase loops cross over in reconstructed state space and phase
cannot be defined uniquely, such as in Fig. 2(a) of Ref. [28].

B. Effect of noise

There are many realistic situations in which noise cannot
be neglected [49,28]. In order to study the effect of noise on
localizing PSs in model simulations, we add spatiotemporal
white noise σ (x, y, t ) [49] to the right-hand side of Eq. (1a),
in which 〈σ (x, y, t )〉 = 0, 〈σ (x, y, t )σ (x ′, y ′, t ′)〉 = ηδ(x −
x ′)δ(y − y ′)δ(t − t ′). To decrease the effect of noise, we can
use a modified Jacobian determinant:

D(V/x)i,j =
i+2∑

i ′=i−2

j+2∑
j ′=j−2

D(V/x)i ′j ′ .

That is, now the value of D(V/x) at site (i, j ) is replaced
by the mean value of D(V/x) at adjacent sites. Spatial dis-
tributions of the fast variable V and the modified Jacobian
determinant in the presence of noise are shown in Fig. 4. One
can see that the Jacobian determinant D(V/x) gets bumpy in
the presence of noise; however, D(V/x) is still localized at
the PS and it takes its extremum approximately at the PS. The
PS position for the spiral still can be identified by finding the
site where D(V/x) takes its extremum.

When the noise is very weak, e.g., the noise amplitude η =
1.0 × 10−10, the PS-detecting error rates of all the methods
do not vary and are the same as in Table I. However, when
we increase η to 0.003, most of the PS-detecting error rates
increase, while the error rate of the Jacobian-determinant
method is zero. When we further increase η to 0.009, the

TABLE II. PS-detecting error rates with spatiotemporal white
noise. The spiral is nonstationary and the time delay τ = 0.1T . The
zero-normal-velocity method I is not related to τ .

η = 0.003 η = 0.009

Simplified phase-integral method 5% 100%
Convolution method 7% 100%
Location-centric method 71% 100%
Jacobian-determinant method 0 0
Zero-normal-velocity method II 8% 100%
Zero-normal-velocity method I 100% 100%

error rates of other methods are high while the error rate of
the Jacobian-determinant method is still zero (see Table II for
details). The zero-normal-velocity method I is very sensitive
to noise: When the noise amplitude η = 1.0 × 10−9, the PS-
detecting error rate is already 42%. The zero-normal-velocity
method II is not sensitive to noise, the same as the simpli-
fied phase-integral method and the convolution method. The
reasons are as follows: The zero-normal-velocity method II
is equivalent to the phase-integral method, while the zero-
normal-velocity method I is equivalent to the phase-integral
method in the case of τ � 1 (for details, please see the
Appendix).

C. Multiple spiral waves

During fibrillation, multiple rotating waves are often ob-
served on the heart. Now, we consider a larger system (Lx =
Ly = 50, consisting of 1000 × 1000 grid points) where there
coexist three spiral waves [two clockwise spirals and one
counterclockwise spiral; see Fig. 5(a)]. In Fig. 5(b), we nu-
merically calculated the values of the Jacobian determinant
D(V/x) according to Eq. (5). One can see that D(V/x)
takes its extremum approximately at the three PSs, while
it is almost zero in other regions. For the counterclock-
wise spiral D(V/x)PS > 0, while for the two clockwise ones
D(V/x)PS < 0. The trajectories of the three PSs produced by
the Jacobian-determinant method are shown in Fig. 5(c) and
the error rate of the PS detection is 0.

D. Effect of spatial resolution

Optical and electric mapping are two well-known methods
that are commonly used for acquiring electrograms during
fibrillation. The optical mapping method has been capable
of recording the transmembrane potential from thousands of
sites over the whole heart with high spatial and temporal res-
olution [5,50]. However, clinical usage of optical mapping in
humans may not be available due to the toxicity of the required
voltage-sensitive dyes. In the electric mapping approach,
the surface of the heart (epicardium and/or endocardium) is
brought in contact with an array of unipolar and/or bipolar
electrodes with necessary acquisition hardware and analyzed
using specific software. In clinical usage, although mapped
with several electrodes in an array, the spatial resolution, i.e.,
number of electrodes per unit area, is usually inadequate to
represent every single point on the surface of the heart [34,51].
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FIG. 5. The Jacobian-determinant method of identifying multi-
ple PSs. A time delay τ = 0.1T and an instant time t = 15 are
chosen. The model and its parameters are the same as in Fig. 1.
(a) A snapshot of the spatial distribution of the fast variable V .
(b) Numerical values of the Jacobian determinant D(V/x ). (c) PS
trajectories of the three meandering spiral waves in a time duration
25. The blue and the red dots correspond to the PSs of the clockwise
and the counterclockwise spirals, respectively.

If Fig. 1(a) (500 × 500 pixels) is taken as an example of a
real system, then Fig. 6(a) (50 × 50 pixels) could be viewed
as a map of voltage data recorded by the electrodes placed on
the surface of the heart. The pixels of Fig. 6(a) are much fewer
than those of Fig. 1(a), since only 1% of the data from the
real system are recorded. However, the basic property of the

FIG. 6. The spatial resolution of the fast variable V is decreased
to 50 × 50 pixels. The parameters are the same as in Fig. 1, except
in (d) parameter β is tuned to 0.78. (a) A snapshot of the spatial
distributions of the fast variable V and the same instant time t = 90
is chosen as in Fig. 1. (b) Numerical values of D(V/x ) at t = 90. (c)
Tip trajectories of a meandering spiral wave. (d) Tip trajectories of a
rigidly rotating spiral wave.

Jacobian determinant still remains as we can see in Fig. 6(b):
D(V/x) is still localized at the PS. PS trajectories are shown
in Fig. 6(c), which is similar to Fig. 3(d). We also studied a
rigidly rotating spiral wave, and the PS trajectories are shown
in Fig. 6(d), which shows this method works well, too.

In order to study the effect of spatial resolution in detail,
we investigate the PS-detecting error rates for different spatial
resolutions in Table III: 64 × 64, 32 × 32, 16 × 16, and 8 × 8.

TABLE III. PS-detecting error rates of the Jacobian-determinant
method for different spatial resolutions. The spiral is stationary.

τ 64 × 64 32 × 32 16 × 16 8 × 8

0.01T 23% 50% 98% 92%
0.02T 0 4% 87% 91%
0.03T 0 0 51% 89%
0.04T 0 0 4% 89%
0.05T 0 0 0 88%
0.06T 0 0 0 86%
0.07T 0 0 0 84%
0.08T 0 0 0 79%
0.09T 0 0 0 37%
0.10T 0 0 0 8%
0.11T 0 0 0 0
0.12T 0 0 0 0
0.13T 14% 10% 8% 5%
0.14T 24% 66% 77% 34%
0.15T 63% 85% 90% 59%
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For simplicity, we only consider the stationary spirals. One
can see that the zero error rate region for the time delay τ be-
comes narrow as we decrease the spatial resolution. Note that
only 8 × 8 electrodes are available in clinical usage currently
[14] and in this case the error rate of the Jacobian-determinant
method is low only for τ ∈ [0.10T, 0.13T].

E. Cardiac model

In order to ensure that the Jacobian-determinant method
of localizing PSs can be applied to cardiac data, we analyze
spiral waves generated with the Luo-Rudy model [52]:

∂V

∂t
= −Iion

Cm

+ ∇ · (D∇V ), (9)

where V is the membrane potential; Cm = 1 μF/cm2 is the
membrane capacitance; D = 0.001 cm2/ms is the diffusion
current coefficient; the total ionic currents Iion are deter-
mined by ionic gates, whose gating variables are obtained
as solutions to a coupled system of nonlinear ordinary dif-
ferential equations; and the parameters are simplified as in
Ref. [53]. The Luo-Rudy model is integrated on the 3 cm ×
3 cm medium with no-flux boundary conditions via the Euler
method. The space and the time step are �x = 0.0075 cm,
�y = 0.0075 cm, and �t = 0.00125 ms, respectively.

A meandering clockwise spiral is considered and the spa-
tial distribution of the membrane potential V at an instant
time t = 90 ms is shown in Fig. 7(a). In Fig. 7(b), the middle
red and blue isolines are the values of V (t ) and V (t + τ )
of the grid that reaches the minimum of D(V/x) [Fig. 7(c)],
respectively. The intersection of those two middle lines is the
PS. Near the PS, the isolines of V (t ) and V (t + τ ) cross each
other, which is the same as the spiral of FHN in Fig. 1(c).
The PS of the clockwise spiral is distinguished by its sharp
local minimum of D(V/x)(nt = sgn[D(V/x)PS] = −1). In
Fig. 7(d), the PS positions for the clockwise spiral are iden-
tified by minimizing D(V/x) [or by maximizing |D(V/x)|]
and the PS-detecting error rate is 0.

IV. DISCUSSION

All the above discussed methods except the Jacobian-
determinant method require choosing the state space origin
V ∗. One can see that the simplified phase-integral method, the
convolution method, the zero-normal-velocity method II, and
the zero-normal-velocity method I have a 0 error rate of the
PS detection when we use the best choice of the state space
origin V ∗. In Ref. [33], Gray and colleagues pointed out that
the choice of V ∗ influences the identification of the PS. For
example, inappropriate origin choice can lead to an error in the
identification of the number and the lifetime of spiral waves.
In Ref. [20], Nattel and colleagues showed clearly that the
state space origin V ∗ for contour-line establishment is crucial
for appropriate tracking of the PSs of rapidly rotating waves.
Too high a state space origin may result in missing PSs and
failing to follow them on a frame-to-frame basis. Too low a
voltage threshold risks double detection of a wavelet. The best
choice of the state space origin can be obtained for simple
models such as FHN; however, in realistic cardiac myocyte
models and in experiments, V ∗ is hard to obtain [33]. Here,

FIG. 7. The Luo-Rudy model is used; a time delay τ = 5 ms and
an instant time t = 90 ms are chosen. All parameters are chosen
the same as those in Fig. 3A(a) in Ref. [53]. (a) A snapshot of the
spatial distributions of the membrane potential V . (b) The middle
red isoline V (t ) = −68.68 mv is the value of V of the grid that
reaches the minimum of D(V/x ), and the other four red isolines are
V (t ) ± �V and V (t ) ± 2�V . Similarly, the middle blue isoline and
the other four blue isolines correspond to V (t + τ ) = −37.63 mv,
V (t + τ ) ± �V , and V (t + τ ) ± 2�V , respectively. �V = 5 mv is
chosen in both the red and blue cases. (c) Numerical values of the
Jacobian determinant D(V/x ). (d) The trajectory of the PS obtained
by the Jacobian-determinant method in a time duration 150 ms. The
time interval of the PS detection is 5 ms.

one can see that an advantage of the Jacobian-determinant
method is that V ∗ is not needed. Another advantage of the
Jacobian-determinant method is that the local phase φ(x, y, t )
does not need to be calculated and this would be convenient
for the purposes of PS tracking, since the definition of phase
can vary from study to study [11,27,33,35,36].

V. CONCLUSION

We found that the Jacobian determinant D(V/x) in the
reconstructed state space takes its extremum approximately
at the PSs, while it is almost zero in other regions. In other
words, the PSs are distinguished by their sharp local extrema
of D(V/x). This property provides an identification of the PS
positions by maximizing |D(V/x)|. It is a counterclockwise
spiral when D(V/x)PS > 0 (i.e., nt = +1) and a clockwise
one when D(V/x)PS < 0 (i.e., nt = −1). Using this method,
we can identify the PSs within a very short time interval; this
enables a description of spiral waves on a timescale much
shorter than the period of rotation.
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APPENDIX

According to Eq. (2), the phase of the point (x, y), where

V (x, y, t ) = V ∗, V (x, y, t + τ ) = V ∗, (A1)

is arbitrary. That is, the intersection of these two contours (A1)
can be identified as the PS (see Fig. 1). Qu et al. used the
method (A1) to calculate PS in Ref. [53]. Note that the method

(A1) is equivalent to the phase-integral method [28] when the
space steps �x, �y → 0 [see Eq. (3) and Fig. 2].

When the time delay τ is extremely small, i.e., τ � 1,

∂tV (x, y, t ) = [V (x, y, t + τ ) − V (x, y, t )]/τ + O(τ ).

Therefore, the method (A1) (in the case of τ � 1) is equiva-
lent to

V (x, y, t ) = V ∗, ∂tV (x, y, t ) = 0,

which is just the zero-normal-velocity method I (7). In con-
clusion, the zero-normal-velocity method I (7) is equivalent
to the phase-integral method (3) in the case of τ � 1 and
�x, �y → 0.

On the other hand, ∂tV (x, y, t ) in Eq. (7) is calcu-
lated according to [V (x, y, t + �t ) − V (x, y, t )]/�t where
the time step �t � 1. If we replace �t by the time
delay τ in Eq. (7), that is, ∂tV (x, y, t ) is calculated
roughly from [V (x, y, t + τ ) − V (x, y, t )]/τ , the zero-
normal-velocity method I (7) will change to the zero-normal-
velocity method II (8) which is the same as the method (A1).
Since the method (A1) is equivalent to the phase-integral
method (3) when �x, �y → 0, the zero-normal-velocity
method II (8) will be equivalent to the phase-integral method
(3) when �x, �y → 0.
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