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Mechanical perspective on chemotaxis
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Cell motion in response to external chemical cues (chemotaxis) is a fundamental step in many physiological
and pathological phenomena. The ability of cells to move onto two-dimensional flat substrates requires the
activation of numerous intracellular mechanical and chemical mechanisms to achieve cell polarization and
dynamic assembly and reorganization of the actin network. In this work we aim to bridge the gap between the
mathematical models focusing on the mechanics of cell motion and the one describing the final motion of the cell
in response to the external chemical field. We thus develop a one-dimensional continuous model representing
cell migration, taking into account the mechanical stress inside the cell, the intracellular signaling molecules
triggered by external factors, such as an external chemical field, and the actin dynamics during polymerization
and depolymerization. The proposed model is solved numerically to simulate cell behavior during biologically
relevant conditions and to study different mechanisms of conversion of the external field onto the intracellular
chemical messenger, here called the polymerizing factor. The model is able to reproduce the transitions from the
nonmigrating to the migrating regime, possibly triggered by the external chemotactic gradient, which is amplified
by the internal chemical dynamics. More complex migratory behaviors can be described, as well, by including
intracellular regulatory pathways of the polymerizing factor. Thus, the proposed model, even though kept as
simple as possible, provides an interesting insight onto possible mathematical laws defining cell migratory
velocity inside external chemical field gradients.
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I. INTRODUCTION

A. Biological background

Cell motility is a complex and dynamic process which is
essential for many physiological and pathological conditions,
such as wound healing, leukocyte response during immune
surveillance, tumor growth, embryogenesis, and morphogen-
esis [1]. The ability of cells to crawl onto two-dimensional flat
substrates requires the spatial and temporal self-organization
of the cytoskeleton, a dynamic protein network that extends
throughout the cytoplasm, from the nucleus to the plasma
membrane, providing mechanical resistance to deformations
and allowing cells to migrate.

Cell migration is conventionally described according to a
cycle of four active phases, induced by ATP hydrolysis [2–7]:
(1) the protrusion driven by polymerization of the branched
actin network at the leading edge of the cell (the lamel-
lipodium); (2) the adhesion to the substrate of the protruding
part by engagement and disengagement of transmembrane
adhesion molecules, mainly integrins; (3) the cytoskeleton
contraction due to the activity of myosin motors; and (4)
the actin network depolymerization and tail detachment with
consequent retraction at the cell rear. Although many aspects
of this cycle are shared among different cells, the details can
differ greatly, depending on the cell type and on external
factors, such as the environmental conditions. In particular,
the different steps of the migratory process are observed most
distinctly in slow-moving cells, such as fibroblasts, whereas,
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in fast-moving eukaryotic cells, all the steps are spatially
coordinated and are highly synchronized in time, so that the
phases follow each other so rapidly that they almost occur
simultaneously [7–10]. Furthermore, the inner equilibrium
of the system at a subcellular level is actually dynamic, not
only when the cell is steadily migrating, but also when it
is apparently at rest [11]: the monomeric, or globluar, actin
(G-actin) diffuses inside the cytosol and continuously attaches
to the barbed ends of the rodlike polymerized filamentous
phase (F-actin) while losing monomers at the pointed end
(treadmilling) [5]. Moreover, the assembled actin filaments
are backward transported by the myosin motors (retrograde
flow) [5,12–15].

To be more precise, recent evidence suggests that different
classes of actin filaments exist performing specific functions
[16], and at least two populations, the lamellipodial actin
and the lamellar actin, are located at the leading edge, con-
tributing to cell motility [17]. These sets of actin filaments
are synthesized in response to different stimuli and have
different kinetics, and, even though they all require actin-
filament assembly into a precise structure (e.g., the helical fil-
aments in eukaryotic cells), they are independently nucleated
and disassembled into the common pool of actin monomers
[16]. Furthermore direct transitions between the states are
extremely rare [16], so that the different actin networks can
be considered autonomous.

The initiation of the lamellipodial actin polymerization
that leads to lamellipodium protrusion and cell migration
requires a polarization of the cell in order to discriminate
the leading edge from the trailing edge and implies a loss of
symmetry from the stationary nonmoving configuration. Cell
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FIG. 1. Various physical, mechanical, and chemical cues can
trigger the polarization of the cell and the initiation of the lamellipo-
dial actin polymerization that leads to lamellipodium protrusion and
cell migration. Independently from their origin, these external stimuli
are converted into internal gradients of signaling molecules, here
called the polymerizing factor, that in turn guide the cytoskeleton
mechanisms performing the motile response.

polarization can be either triggered by various physical and
chemical stimuli (e.g., external stresses, substrate rigidity,
light, temperature, matrix proteins, or soluble substances),
whose asymmetric patterns are detected by the cell and
used as an external compass [18,19], or self-regulated (i.e.,
spontaneous) [20–22], leading to a biased persistent random
walk even in the absence of spatial and temporal cues. In-
dependently from its origin, either mechanical or chemical
and either external or internal, the stimulus is converted into
internal gradients of signaling molecules, here called polymer-
izing factors, that in turn guide the cytoskeleton mechanisms
performing the motile response [23] (see Fig. 1). Therefore,
in this paper we will focus on cell motion triggered by an
asymmetry of a generic polymerizing factor, denoted by c,
neglecting, in the first instance, the upstream reasons causing
this imbalance. In this respect, a discussion of the relation-
ship between intracellular and extracellular signaling and the
related consequences can be done a posteriori, such as in
Sec. III F with particular reference to chemotaxis, which is the
directed migration of cells in response to an external chemical
field, denoted by n.

Specifically, cells can migrate towards the source of solu-
ble chemical agents (chemoattractants) or down the gradient
of the chemical in question (chemorepellent). The soluble
chemical agent binds to surface receptors [24] and stimu-
lates cells to move in a process that encompasses directional
sensing (localization of the source), chemotactic signaling
(transmission of the external information to the cytoskeleton
by creation of an internal gradient of signaling molecules that
act as second messengers to activate downstream molecular
pathways), asymmetric cytoskeleton redistribution, activation,
and adaptation (through feedback mechanisms in order to
dynamically adapt to spatiotemporal changes of external gra-
dients) [19,23–28].

The capability to respond to the external spatial gradi-
ent relies on two quantitative parameters: the sensitivity to
the relative steepness of the gradient (i.e., the degree of its
slope) and the average (midpoint) absolute concentration of
a chemoattractant across a cell [19]. Accordingly, cells must
possess at least two specialized mechanisms, achieved at the
level of second messengers, that enable this type of sensing:
thresholding (i.e., the ability to subtract the minimum level

of signal necessary to activate the downstream response) and
amplification to allow shallow gradient sensing. These mech-
anisms are achieved through complex downstream signaling
pathways organized into an interdependent redundant network
that leads to the activation of many proteins [6].

The major, but not unique, routers of chemotactic signal
transmission inside both amoeboid and mesenchymal cells
is the PI3-kinase (PI3K) signaling that target molecules of
the Ras GTPase superfamily [6,25]. These proteins distribute
asymmetrically inside the cell and govern polarization along
with directing cell motion. In particular, the PI3-kinase sig-
naling produces the phosphatidylinositol 3,4,5-trisphosphate
(PIP3) that acts as an amplifier, sensitizer, and orchestrator
of chemotaxis [25]. The Ras GTPase superfamily acts as a
common regulator and signal distributor along the front to the
back of the cell and contains a large number of molecules,
such as Ras, Rac, Rho, and Cdc42. The Ras proteins are
attached to the cell membrane and function as a primary hub
to set up chemotactic signaling at the membrane. On the
other hand, Rac and Cdc42 act at the cell front to establish
polarity and initiate lamellipodia expansion via regulated
actin nucleation and polymerization [6,25], which is triggered
either by catalysers of the polymerization process or more
frequently by inhibitors of capping proteins blocking actin
polymerization. Finally, Rho GTPases cluster both at the
front, where they promote membrane protrusion, as well as
at the rear, where they regulate myosin filament assembly
and contractility [19,24,25]. We remark that other signaling
pathways exist, and they might be either redundant or specific
for a particular cell type in order to account for different
chemotactic behaviors [19]. Indeed, while the different phases
required for cell motility are rather well understood at the
cell and macroscopic level, the underlying biochemistry and
the mechanics of the whole active continuum system are still
under investigation [1,5,29].

B. Mathematical modeling background

With the purpose of taking a stride towards the quantita-
tive understanding of how cells achieve motion, considering
mechanical and chemical cues, the mathematical modeling
of cell migration has received an increasing attention over
the last years. Due to the various spatial and temporal scales
involved in cell migration, numerous modeling approaches
have been proposed, addressing different questions. We here
briefly discuss only the most relevant literature for the purpose
of this paper, and we refer the interested reader to the reviews
of the field [9,20,25,30,31]. Specifically, continuous models
provide a promising framework for describing cell motility,
when the focus is the whole cell or an ensemble of cells, since
they are computationally cheaper with respect to discrete
models tracking many subcellular constitutive parts. They also
allow one to formulate constitutive laws that can be experi-
mentally tested at an observable spatial scale [32]. Continuous
models may describe the cell either as a viscous fluid [33–37]
or a viscoelastic material [11,38,39] with additional terms
to model the active cytoskeleton behavior. Other alternative
continuum approaches describe the cell either as a polar gel,
in the framework of the theory of liquid crystals, introducing
a vector field indicating the local actin filament orientation
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[21,40–43], or as a biphasic material, composed by a solid
(the actomyosin network) and a liquid (the cytosol) phase
[32,44–47], with polymerization and depolymerization rep-
resented by mass transfer between the phases. The intrinsi-
cally bistable nature (polar versus nonpolar stable states) of
the migratory process [20], that makes cells stop (nonpolar
symmetric state) or migrate along a specific direction (polar
asymmetric state) with various mechanisms corresponding to
macroscopically different behaviors and velocities, has been
included in these kinds of models in terms of nonlinear
constitutive equations for the cellular material [32,45,47],
which determine the multiplicity of the stable regimes. Oth-
erwise, the so-called wave-pinning model [37,48] can be
used to relate the existence of this bistable cell behavior to
the nonlinear exchange between active (membrane-bound)
and inactive (cytosolic) forms of proteins (such as the Rho
GTPases), that diffuse inside the cell. Notwithstanding, in
all the works mentioned above the influence of external
stimuli, such a chemoattractant or chemorepellent field, on
the migratory process have always been neglected. On the
other hand, mathematical models focusing on cell chemotaxis
[49,50] generally use empirical laws to link cell motion to the
external chemical gradient, without looking at the cell me-
chanical and subcellular chemical dynamics. Moreover, when
the subcellular mechanisms have been addressed, through
several excitation-inhibition models explaining the conversion
of a shallow gradient of chemoattractant to activation at
the front of the cell and internal chemical signaling [51–
55], the final cell motion has not been investigated. Only
recently, some mathematical and computational efforts have
been conducted to account both for cell mechanics along with
biochemical cues in the process of cell migration [56–62].
Notable examples are the work conducted by Marée et al.
[56], that integrates the signaling biochemistry with an actin-
based motility model inside a cellular Potts model (CPM)
framework, and the pseudopod-centered computational model
of Neilson et al. [57], in which the outwards normal velocity
is proportional to the concentration of a local chemical factor
(i.e., the pseudopod activator), and it is counterbalanced by
a curvature-based contraction velocity. However, the focus
of these preliminary works [56–58] is mainly related to the
solution of the dynamics of the signaling molecules and
biochemical cues inside a moving cell, without a thorough
description of the mechanics guiding the motility process,
and the chosen computational framework are not suitable
to properly describe stresses and deformations. More recent
works [59,59–61] have made a breakthrough on the descrip-
tion of the mechanics of cell motion in response to internal
and external chemical cues. Specifically, in the work of Elliott
et al. [59], the evolution of the cell membrane is guided by a
balance of forces that act normal to the surface, whereas in Shi
et al. [60] a viscoelastic mechanical model has been proposed
to simulate cytoskeleton-mediated cellular deformations and
movements, in which the local velocity of the cell perimeter
is related to the total net stress acting on the cell, including
contributions from passive components (i.e., surface tension),
protrusive forces (proportional to a signal representing actin
polymerization), and elastic stresses (ensuring surface area
conservation). However, in these works [59,60] the mecha-
nism of actin polymerization and depolymerization is not in-

cluded in the model. Finally, in a very recent paper, Moure and
Gomez [61] have proposed an interesting phase-field model
of cell motion in response to a chemical field, considering
cell mechanics. The outstanding two-dimensional and three-
dimensional numerical simulations are able to reproduce cell
behavior on planar substrates, flat surfaces with obstacles,
and fibrous networks. However some biologically observed
mechanisms, such as the retrograde flow of actin filaments at
the cell boundary, are not included in this framework. Further-
more, this very detailed description of the phenomenon and
the complexity of the diffuse-domain approach are unlikely to
lead to simple mathematical relations linking the cell velocity
to the external field guiding cell directional motion.

C. Aim of this work

In the present work, we want to make a step towards the
mechanical modeling of cell migration taking into account
chemomechanical cues. In particular, we believe that, despite
the high complexity reached in the numerical simulations of
such process [56,57,59–61], the development of a simple one-
dimensional model encapsulating mechanical and chemical
cues could be of great value in highlighting some peculiarities
of cell migration and might allow us to extrapolate possible
relations between the cell velocity and the external factor
leading to cell motion (e.g., the external chemical field), which
can possibly replace well-known equations of cell motions
(e.g., the Keller-Segel model for chemotaxis [50]).

In particular, the mathematical model illustrated in this
paper is inspired by the work done by Recho et al. [35,36]
and by Ambrosi et al. [37], where a minimal one-dimensional
model for an active gel, describing the moving cell, has been
presented. Differently from Refs. [35,36] we explicitly define
the evolution inside the cell of globular and lamellipodial fil-
amentous actin. Furthermore, unlike previous works [37] that
link directly the polymerization and depolymerization only
to the cell internal stress, we here introduce the spatiotem-
poral evolution of the polymerizing factor in response of a
given external stimulus, which triggers actin polymerization
and depolymerization, also through the inhibition of capping
proteins blocking the polymerization of actin filaments.

Without going into details in the whole subcellular network
of reactions, whose interactions are still not well understood
and seem to be highly cell-specific, in Sec. II we present the
theoretical model of cell migration triggered by the spatiotem-
poral evolution of a generic signaling molecule. The obtained
system of equations is then solved numerically, and the results
are reported in Sec. III, considering biologically relevant con-
ditions along with the possibility to include a posteriori the
influence of the external chemical field on the overall process
and to obtain bistable cellular behaviors. Finally, the main
outcomes of the work and future developments are discussed
in Sec. IV.

II. MATHEMATICAL MODEL

In order to move, a cell needs to polarize and dynamically
reorganize, both in space and in time, its actin network and its
adhesion to the underlying substrate. As stated in the introduc-
tory section, many internal and external factors can lead to cell
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polarization and subsequent migration. In particular, in the
presence of an external chemical field, the symmetry breaking
leading to self-propulsion can be related to the chemoattrac-
tant availability: the cell detects the external chemical cue
by surface receptors that transmit these signals into the cell,
translating the outer signal into a separate, internal one of
polymerizing factors, passing through several signaling cas-
cades organized into an interdependent redundant network. In
any case, when polarized, the cell loses its circular symmetry,
decentering its nucleus and acquiring an elongated shape. The
high aspect ratio of a moving cell suggests to represent the
moving entity as a one-dimensional strip [39], spanning in
the interval [a(t ), b(t )] of the x axis, where the location of
the boundaries a(t ) and b(t ) is to be determined. Further-
more, neglecting the curvature of the lamellipodial leading
edge and averaging the physical quantities along the vertical
and transverse direction [5,36], it is possible to consider the
one-dimensional projection of the complex three-dimensional
dynamic problem on the direction of locomotion, in order to
greatly increase the mathematical tractability of the problem.

At a very general level, the cell can be viewed as a vesicle
separated from the exterior by a bilayer lipid membrane,
attached from inside to a thin cortex layer maintaining the
cell’s shape. The interior of the cell is filled with the cy-
tosol, which is treated as a passive medium inside which
the nucleus and other organelles are immersed. The active
machinery inside the cytosol, responsible of self-propulsion,
is given by the cytoskeleton, a continuously renewed network
of actin filaments cross-linked by myosin motors, that can
exert contractile stresses, and that is mechanically linked to
the cell exterior through the dynamic expression of adhesion
proteins [2]. These sites of adhesion act as molecular clutches
that provide grip to the substrate for the lamellipodium to
protrude forward during motility. This interaction between
the cell and the substratum can be assumed to be passive
[36,37], and the generated shear stress can be represented, in
this minimal setting, as a drag viscous force proportional to
the lamellipodial actin-averaged velocity. Following [36,37],
the one-dimensional continuum layer representing the cell is
in frictional contact with the background, assumed rigid, and
the balance of linear momentum, neglecting inertia, reduces to

∂σ

∂x
= βv, (1)

where v(x, t ) is the vertically averaged horizontal velocity of
the lamellipodial actin network (measured with respect to the
rigid substrate) and β is a frictional parameter representing
the dynamical adhesion between the cell and the substrate.
In principle, the frictional parameter should be related to the
engagement and disengagement of transmembrane receptors
mediating adhesion, whose dynamics could depend on both
intracellular and extracellular mechanical and chemical cues
(e.g., the chemoattractant concentration, the rigidity of the
substrate, or the intracellular signaling molecule). However, in
a first approximation it is reasonable to take it constant. Then
we consider that the cell behaves as a one-dimensional vis-
cous gel with a spatially homogeneous prestress, representing
active contraction generated at the microscale by molecular
motors [12,39,41,63], so that, after vertical and transverse

FIG. 2. Schematic representaion of lamellipodial actin polymer-
ization and depolymerization and retrograde flow inside a moving
cell.

integration, the stress σ (x, t ) inside the cell reads

σ = χ + μ
∂v

∂x
, (2)

where χ is the contractile active stress and μ is the shear
viscosity of the actin meshwork, seen as a continuum gel,
moving with the same velocity v as the lamellipodial actin
network. We remark that in principle, χ could depend on some
internal molecular signaling and on the distribution of myosin
motors, but in a first approximation it could be considered
constant, assuming that the chemicals do not significantly in-
fluence the active stress generation and that the myosin motors
are uniformly distributed [37]. Furthermore, it is reasonable to
neglect the bulk elastic stresses of the cell since it relaxes over
a timescale of 1–10 s [11,35,64] which is much shorter than
the characteristic timescale of motility experiments (some
minutes up to hours). Thus, while the actual rheology of the
cell cytoskeleton is much more complex [65], such a simple
model is sufficient to point out some basic mechanisms of cell
locomotion, and therefore it is well accepted [36,37,39].

Combining Eqs. (1) and (2), we obtain

μ

β

∂2σ

∂x2
− σ + χ = 0, (3)

which, coupled with proper dynamic boundary conditions
(BCs), gives the evolution of the stress inside the cell.

In particular, accounting for the tension of the cell mem-
brane [37], we can set

σ (a(t )) = −k[L(t ) − L0], σ (b(t )) = −k[L(t ) − L0], (4)

where k is the membrane elastic modulus, L(t ) = b(t ) − a(t )
is the length of the cell, and L0 is the length of the cell for
which no tension is exerted at the cell ends. Then the cell
motion problem is totally defined by prescribing the evolution
of the moving boundaries. In particular, at the leading and
trailing edge of the cell the velocity is determined by the
vector sum, projected along the direction of motion, of the
cytoskeleton material velocity and the polymerization and
depolymerization velocity of the lamellipodial branched actin
network (see Fig. 2), so that

ȧ(t ) = −vpol (a(t )) + v(a(t )) = −vpol (a(t )) + 1

β

∂σ

∂x

∣∣∣∣
a(t )

,

(5a)

ḃ(t ) = vpol (b(t )) + v(b(t )) = vpol (b(t )) + 1

β

∂σ

∂x

∣∣∣∣
b(t )

,

(5b)
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where the fact that v is given by Eq. (1) was used and an ex-
pression for the velocity of polymerization along the outward
normal to the boundary, vpol = vpoln, has to be determined
in order to close the system. We remark that, by convention,
vpol is positive when the polymerization velocity is directed
toward the outside of the cell [i.e., the edge located in b(t )
moves towards the right, whereas the boundary in a(t ) moves
towards the left].

As observed in the introductory section, the basis for
cell shape changes and migration is the polymerization of
actin filaments in the protruding regions of the cell and the
disassembly of these filaments in the regions of the cell
being withdrawn. The whole process, at the subcellular level,
depends on the flow of free and lamellipodial branched actin
network. The G-actin monomers can freely diffuse inside the
cytosol (i.e., they are passively transported by Brownian mo-
tion from regions of higher to regions of lower concentration)
and can attach to the barbed ends of the growing branched
actin network inside the lamellipodium. Then the newly poly-
merized actin is backward transported by the myosin motors
(actin retrograde flow) until it disassembles inside the body
of the cell. So, if there is not enough polymerization at the
border of the cell, its border retracts (ḃ < 0), otherwise it
advances. Without going through the microscopic description
of the mechanisms and the different actin types involved in
this complex process, which are still under study from the
biological point of view [16], we here propose a modifica-
tion of the minimal theoretical model proposed in Ref. [37],
where only the influence of stress on actin dynamics has
been considered, in order to include the effect of intracellular
signaling molecules (that might also be an inhibitor of capping
proteins), here denoted by c(x, t ), on the overall process.
In particular, we focus on the fact that the presence of this
polymerizing factor c favors the formations of lamellipo-
dial branched actin network recruiting and assembling actin
monomers. The other types of actin filaments involved in
different cell functions [16] are assumed in equilibrium with
the monomer concentration. The lamellipodial polymerized
actin anchors to the substrate at the leading edge of the cell
and is transported at the velocity v by the rest of the actin
network due to the action of myosin motors, whereas the
monomeric free actin diffuses inside the cytosol (considered
at rest with respect to the substrate) with diffusion coefficient
Da , down the concentration gradient towards the cell leading
edge (that acts as a sink for the G-actin [66]) where it finally
attaches to the polymeric filaments. Therefore, considering
a closed system, the concentration of globular actin, called
m, and the concentration of lamellipodial filamentous actin,
denoted by p, obey the following equations:

∂m

∂t
− Da

∂2m

∂x2
= −�(m,p, c, σ ), (6)

∂p

∂t
+ ∂

∂x
(pv) = �(m,p, c, σ ), (7)

where �(m,p, c, σ ) is the net assembly and disassembly
rate of filamentous actin, and consequently the net loss and
production rate of globular actin. In general the assembly
and disassembly rate �(m,p, c, σ ) definitely depends on the
availability of actin monomers (that can polymerize at the

barbed ends when they are not capped), on the presence
of actin filaments (that can depolymerize), and it might be
possibly determined either by the polymerizing factors, with
dimensionless concentration c(x) (scaled with respect to a
characteristic reference concentration that will be specified in
the simulations) [25,67], or by the stress inside the cell (since
G-actin monomers detach in the body of the cell with a rate
proportional to the stress [13,68]). Even though the effect of
the internal stress on the polymerization and depolymerization
process has been widely investigated [37,68], the influence
of internal signaling molecules, which are fundamental, for
instance, during chemotaxis, has been poorly investigated.
Thus, without going into details, since the primary intracel-
lular chemical activator has not been fully identified [69],
we here consider a generic polymerizing factor c which is
responsible of the mechanism of actin-network assembly and
disassembly. The expression of the polymerizing factor c can
be triggered by different external cues [18,19], such as the
chemical field or the stress, as well as internal cues, such
as random processes. The effect of all these stimuli on the
polymerizing factor does not affect the validity of the present
model and can be included a posteriori, as we will see in
Sec. III F. Namely, we can set �(m,p, c, σ ) ≡ �(m,p, c) in
Eqs. (6) and (7).

In particular, we here assume that actin polymerization
occurs in presence of monomers availability and when the
polymerizing factor c(x, t ) > cpol , whereas actin polymers (if
available) disassemble when c(x, t ) < cpol , thus, setting

�(m,p, c) = k1(c − cpol )+m − k−1(cpol − c)+p, (8)

where the parameters k1 and k−1 are the polymerization
and depolymerization rate, respectively, and (·)+ stands for
the positive part of its argument. The expression chosen for
�(m,p, c) takes into account the thresholding mechanism
[6], achieved at the level of second messengers, that enables
us to determine the minimum level of signal necessary to
activate the downstream response. The dependency of the
polymerization velocity and possibly of other parameters in
the model (such as the contractile active stress or the frictional
parameter) on polymerizing factor availability requires one
to determine its concentration inside the cell, which can be
described by a standard reaction-diffusion equation

∂c

∂t
− Dc

∂2c

∂x2
= −γ c, for a(t ) < x < b(t ), (9)

where Dc is the diffusion coefficient of the chemical and γ

is its decay rate. We remark that the spatiotemporal evolution
of c can be very different from that of the possible external
chemical field, so that the cell can amplify the outer signal n,
achieving steep internal gradients of signaling molecules (am-
plification mechanism [6]). Furthermore, the internal signal
c might be activated also in the absence of external factors.
Proper boundary conditions should be provided in order to
fulfill the description of the chemical signal. In particular, we
assume that the concentration of the polymerizing factor at the
boundary can be taken constant:

c(a(t )) = ca, c(b(t )) = cb. (10)

Certainly, the values of ca and cb are related to the chemoat-
tractant concentration n in a(t ) and b(t ), respectively, or
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eventually to other external cues. However, this dependency
will not affect the validity of the BCs (10), and the link
between the intracellular signaling molecule and the external
chemical field will be discussed in Sec. III F. Finally, in order
to solve the system, proper BCs for Eqs. (6) and (7) and the
expression for the velocity vpol appearing in Eqs. (5) have to
be provided. We consider that the free velocity of polymer-
ization and depolymerization at the leading and trailing edge
is directed along the outward normal to the cell boundary n,
and it is proportional to the net assembly and disassembly rate
of filamentous actin, through the factor δ, which is the length
increment due to the addition of a μM of actin monomer to
the existing network. Thus we set

vpol = δ�(m,p, c)n. (11)

Then the boundary conditions for the monomeric actin can be
obtained by requiring the conservation of the total actin mass,

0 = d

dt

∫ b(t )

a(t )
(m + p) dx =

∫ b(t )

a(t )

∂

∂t
(m + p) dx

+ ḃ(m + p)|b(t ) − ȧ(m + p)|a(t ),

which, recalling (6) and (7), is satisfied by nullifying the actin
flux in a(t ) and b(t ), respectively:

[v(a(t )) − ȧ(t )]p(a(t )) − Da

∂m

∂x

∣∣∣∣
a(t )

−ȧ(t )m(a(t )) = 0,

(12a)[
v(b(t )) − ḃ(t )

]
p(b(t )) − Da

∂m

∂x

∣∣∣∣
b(t )

−ḃ(t )m(b(t )) = 0.

(12b)

Equations (12), together with (11), lead to the following
boundary conditions for the monomeric actin:

∂m

∂x

∣∣∣∣
a(t )

= 1

Da

[
− 1

β

∂σ

∂x
m + δ�(m,p, c)(m + p)

]∣∣∣∣
a(t )

,

(13a)

∂m

∂x

∣∣∣∣
b(t )

= 1

Da

[
− 1

β

∂σ

∂x
m − δ�(m,p, c)(m + p)

]∣∣∣∣
b(t )

.

(13b)

Finally, concerning the polymeric actin involved in lamellipo-
dia formation, due to the hyperbolic nature of Eq. (7), in order
to find a unique solution, we have to impose BCs on the entry
boundaries, i.e., where (v(x, t ) − V(x, t )) · n(x) � 0, with
V(x, t ) the velocity of the cell boundary. Thus, with

[v(a(t )) − V(a(t ))] · n(a(t )) = −v(a(t )) + ȧ(t )

= −vpol (a(t )),

[v(b(t )) − V(b(t ))] · n(b(t )) = v(b(t )) − ḃ(t )

= −vpol (b(t )),

the BC should be prescribed on a(t ) when vpol (a(t )) � 0
and on b(t ) when vpol (b(t )) � 0 (i.e., when vpol is directed
toward the outside of the cell). In particular, we assume
that the concentration of filamentous actin at the boundary

is proportional through α to the rate of polymerization of
monomers at the corresponding boundary:

p(b(t )) = αk1(cb − cpol )+m(b(t )) if vpol (b(t )) � 0,

(14a)

p(a(t )) = αk1(ca − cpol )+m(a(t )) if vpol (a(t )) � 0.

(14b)

Thus the problem of cell motion is totally defined by Eqs. (3),
(6), (7), and (9), coupled with the boundary conditions (4),
(5), (10), (13), and (14).

In particular, taking χ and β independent on the poly-
merizing factor and on the stress, it is possible to decouple
Eqs. (3) and (9) from the rest of the system. Then the solution
of Eq. (3) supplemented with BCs (4) can be analytically
computed, leading to

σ (x, t )=−[χ+k(L(t )−L0)]
e

√
β

μ
[b(t )−x] + e

√
β

μ
[x−a(t )]

1 + e

√
β

μ
L(t )

+ χ

(15)

so that the velocities of the boundaries are

ȧ(t ) = χ + k[L(t ) − L0]√
βμ

tanh

(√
β

μ

L(t )

2

)
− vpol (a(t )),

(16a)

ḃ(t ) = − χ + k[L(t ) − L0]√
βμ

tanh

(√
β

μ

L(t )

2

)
+ vpol (b(t )).

(16b)

Furthermore, in a first approximation, it is possible to assume
that the polymerizing factor diffuses much faster than the bor-
der expansion, so that the time-derivative term in Eq. (9) can
be neglected, and the quasistationary chemical concentration
field inside the cell is given by

c(x, t ) = cacsch

(
L(t )

	c

)
sinh

(
b(t ) − x

	c

)

+ cbcsch

(
L(t )

	c

)
sinh

(
x − a(t )

	c

)
, (17)

where 	c = √
Dc/γ is the diffusive length of the polymerizing

factor. On the other hand, Eqs. (6) and (7) do not admit ana-
lytical solutions, and thus they should be solved numerically.

III. NUMERICAL RESULTS

In this section, we simulate cell motion guided by actin
polymerization in response to the internal polymerizing factor,
by numerically solving the system of Eqs. (2), (6), (7), and
(9) with boundary conditions (4), (10), (13), and (14) on
the domain [a(t ), b(t )] whose boundaries move according
to Eqs. (5). We consider the following biologically relevant
conditions, neglecting, in a first instance, the upstream reasons
of this phenomenon:

(1) The polymerizing factor is the same at both cell ends
and above the threshold that can induce cell polymerization
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TABLE I. Biologically meaningful ranges for the model parameters.

Parameter Description Values Ref.

χ Active contractile stress 102–103 pN/μm2 [39]
μ Cell’s viscosity coefficient 104–105 pNs/μm2 [12,39]
β Cell-substrate friction coefficient 103–105 pNs/μm4 [12,39]
L0 Cell reference length 10 μm [39]
k Cell membrane elasticity 102 pN/μm3 [72]
V Cell characteristic speed 10–30 μm/min [5,12,15]
v Retrograde flow velocity at the cell front 1–6 μm/min [12,14,15]
Da Actin monomers’ diffusion coefficient 3–30 μm2/s [5,12,75]
	c Diffusion length of the intracellular signaling molecule 1–5 μm [69,76]
p, m Polymerized and unpolymerized actin 100–300 μM [12,75]
k1 Polymerization kinetic rate [s−1] –
k−1 Depolymerization kinetic rate [s−1] –
δ F-actin elongation 0.03/k1 μm/(μMs) [75]

ca = cb > cpol (the symmetric polymerization case); this con-
dition can be induced, for example, by an homogeneous and
abundant external chemical concentration, in the absence of
other perturbing factors or spontaneous polarity.

(2) The polymerizing factor is the same at both cell ends
and below the polymerization threshold, ca = cb < cpol (the
symmetric depolymerization case), so that it is insufficient to
trigger the protrusion of lamellipodia. This situation might
correspond to an homogeneous distribution of external factors
(such as chemoattractant or chemorepellent), in the absence of
internal symmetry-breaking signals.

(3) The polymerization factor is higher at the cell front
located in b(t ) than at the cell rear, i.e., either ca � cpol < cb

or cpol < ca < cb (the polarization and asymmetric polymer-
ization case). This last condition can be triggered, for instance,
by the profusion of chemoattractant at the leading front and
its scarceness at the trailing edge, but it can also be related
to a spontaneous polarization of the cell that produce an
asymmetry in the polymerizing factor.
For sake of completeness, we also discuss the remaining
asymmetric cases, specifically ca < cb < cpol (the asymmet-
ric depolymerization case), at the end of Sec. III D. Finally, in
Sec. III F, we study, with particular reference to chemotaxis,
the possible relationship between the intracellular polymer-
izing factor c and the extracellular chemical field n, and we
discuss the related consequences on cell motion.

A. Numerical method

The simulations presented in this section have been ob-
tained using MATLAB (MathWorks, Natick, MA).

Since we have to deal with a moving segment, we mapped
the equations of the system onto a fixed domain [0, 1]. To this
end, we introduced the new space variable

y = x − a(t )

L(t )
∈ [0, 1],

and we rewrote all equations with respect to the comoving
frame. The internal chemical signal was assumed at the
steady state, so that we used the analytic expression given by
Eq. (17), written with respect to the new space variable, to
compute the polymerizing factor distribution. Also the stress

field inside the comoving frame can be analytically computed,
by properly rescaling Eq. (15) with respect to the comoving
variable. On the other hand, the distributions of the actin
monomers and filaments are computed by discretizing the
corresponding Eqs. (6) and (7), written with respect to the
space variable y, using a finite difference scheme. Specifically,
spatial diffusion terms, which contain the second derivatives,
are approximated by central differences in space, convective
terms are discretized using an upwind scheme, and an explicit
Euler scheme was used to model the evolution in time. The
discretization size on the fixed grid was set to be equal to
�y = 0.005, and the time interval �t for each time step was
adapted to ensure that the Courant-Friedrichs-Lewy condition
and the requirement �t < �y/(2Dc ) are satisfied.

B. Parameter estimation

The admissible ranges of values for the model parame-
ters are listed in Table I, as extracted from the literature.
Since biological data on the polymerizing factors are not
available, we considered its concentration to be dimension-
less with respect to the intracellular chemical signal at the
leading edge, so that cb = 1. The active contractile stress
χ = 102–103 pN/μm2 [39] can be inferred by measurements
of the traction force per unit area exerted by the cell on the
surface of adhesion, which can be experimentally obtained
with a variety of methods [70,71]. The viscosity coefficient of
the cell described as an active gel, can be estimated from the
cell’s elastic modulus and the characteristic time of relaxation
[12,39], leading to μ ≈ 104–105 pNs/μm2. Even though the
friction coefficient β, associated with cell adhesion to the
surface, has not been measured directly, its order of magnitude
has been estimated to be ≈103–104 pNs/μm4 in Ref. [39]
and ≈3 × 104 – 105 pNs/μm4 in Ref. [12], considering a
lamellipodial thickness ranging from 0.17 μm [5] up to 1 μm
[12]. Furthermore, considering the elastic modulus of a cell
membrane reported in [72] for a cell with reference length
L0 = 10 μm [39] it is possible to estimate k = 102 pN/μm3,
although recent experiments on supported lipid bilayers [73],
which are valid biomimetic systems for the study of mem-
brane biophysical properties, suggest that cell membrane elas-
tic modulus could be still larger, possibly leading to higher
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Spatial evolution at several times of (a) the stress σ , (b) the intracellular polymerizing factor c, (c) the monomeric actin m, (d)
the lamellipodial polymeric actin p, and (e) the actin network velocity v. Temporal evolution of (f) the velocities of polymerization at the
two ends (red and blue solid line), the velocity of the free boundaries (red and blue dashed line) and the velocity of the center of mass
(green dotted line), (g) the position of the center of mass of the cell, and (h) the cell length, when the concentration of chemicals is above
cpol in both a(t ) and b(t ). In the simulation we set a(0) = 0 μm, b(0) = 10 μm, L0 = 10 μm, χ = 103 pN/μm2, β = 104 pNs/μm4, μ =
104 pNs/μm2, k = 500 pN/μm3, cb = ca = 1, cpol = 0.98, Dc = 1 μm2/s, γ = 1s−1, Da = 10 μm2/s α = 0.5 s, k−1 = 50 s−1, k1 = 0.8 s−1,
δ = 5 × 10−2 μm/μM, mb = 430 μM, ma = 430 μM, pb = αk1(cb − cpol )+mb, pa = αk1(ca − cpol )+ma .

values of the parameter k. The characteristic speed and final
size of the cell can be directly measured from experiments on
a specific cell type, e.g., fish keratocytes move with a velocity
of a few tens of μm/min (up to 1 μm/s) [5,12,15,74] and have
a length of few tens of μm.

For what concerns the dynamics of actin filaments, the
diffusion coefficient of actin monomers has been estimated to
be Da ≈ 3–30 μm2/s [5,12,75], whereas the retrograde flow
at the cell front ranges between ≈1–6 μm/min [12,14,15].
On the other hand, the effective kinetic rates k1 and k−1 for
the proposed model of polymerization are unknown, since the
underlying biochemical reactions for actin polymerization and
depolymerization can be really complex, involving a variety
of multistep reactions and subproducts [5,75]. Therefore in the
simulations we varied them a few orders of magnitude, and in
Table I we report only their descriptions and units of measure.
At the same time the parameter δ which represents the length
increment for filamentous actin, when 1 μM of monomeric
actin binds to the barbed ends, has not been experimentally
measured.

A possible way to estimate k1 and δ is to consider the
exceptionally fast elongation rates of barbed ends in diluted
buffers, which is ≈0.3–3 μm/s for a concentration of unpoly-
merized actin of 10–100 μM [75]. Thus, for the proposed
polymerization velocity, considering for sake of simplicity
cpol = 0, we have k1δ = 0.03 μm/(μMs). We remark that this
conjecture has been formulated only to obtain a physically
admissible estimation of these parameters, and for cpol > 0
the value of k1δ should be greater than 0.03 μm/(μMs) in
order to obtain the same polymerization velocity.

Given the different types of filamentous and globular actin
that coexist in cells, it is not currently feasible to experimen-
tally measure the actin concentration profile across the lamel-
lipod [5]. However, from indirect information, it is possible to
estimate that the polymerized and unpolymerized actin ranges
between 100–1000 μM [5,12,75]. However, a large pool of
actin monomers can be sequestered by actin-binding proteins
in a form unavailable for polymerization, and thus also lower
concentration can be found in literature (≈30–40 μM) [5],
and the lamellipodial branched actin concentration can be
sensitively lower than the reported concentration for the whole
polymerized actin network. The intracellular second messen-
ger, here called polymerizing factor, that is produced on the
activation of chemoattractant receptors should not be allowed
to diffuse very far into the cell in order to establish and
preserve a front-to-tail polarity, and at the same time it must
diffuse over some distance to locally integrate information
from several occupied receptors and preserve cell ability to
detect shallow gradients [69,76]. The polymerizing factor
diffusion is totally defined, as shown at the end of Sec. II,
by a single parameter: the diffusion length, 	c = √

Dc/γ ,
which describes the average distance that a signaling molecule
with diffusion coefficient Dc travels from its source before
it is degraded after a lifetime of γ −1. Thus, the capacity of
this intracellular factor to establish and maintain localized
signals is actually determined by its diffusion length, which
must be small compared to the cell length, but not too much.
In particular, soluble second messengers (e.g., cGMP) with
diffusive lengths of the order of tens of μm cannot preserve
spatial information [69], whereas transmembrane proteins
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Spatial evolution at several times of (a) the stress σ , (b) the intracellular polymerizing factor c, (c) the monomeric actin m, (d) the
lamellipodial polymeric actin p, and (e) the actin network velocity v. Temporal evolution of (f) the velocities of polymerization at the two ends
(red and blue solid line), the velocity of the free boundaries (red and blue dashed line) and the velocity of the center of mass (green dotted
line), (g) the position of the center of mass of the cell, and (h) the cell length, when the concentration of chemicals is below cpol in both a(t )
and b(t ) (color online). In the simulation we set the same parameters as in Fig. 3, except for ca = 1 and cpol = 1.02.

such as receptors (e.g., cAMP-receptor complex) diffuse ex-
tremely slowly with diffusive lengths of the order of the
closest receptor distance (i.e., 	c = 0.2 μm) [69]. Therefore,
second messengers with diffusion length in the order of 	c =
1 − 5 μm are the most efficient in setting a suitable internal
chemical signal and acting as polymerizing factors [76].

C. Symmetric polymerization and depolymerization case

When the concentration of the polymerizing factor at both
cell ends is the same, i.e., in either the symmetric polymeriza-
tion or depolymerization cases (Figs. 3 and 4, respectively),
the total displacement of the center of mass [see Fig. 3(g)
and Fig. 4(g)] is nearly equal to zero, and thus the cell does
not actually move, even though it can shrink or stretch itself.
In both cases the cell reaches a stationary condition, with
a final length which is slightly higher [Fig. 3(h)] or lower
[Fig. 4(h)] than the reference length L0, depending on whether
cpol < ca = cb = 1 or cpol > ca = cb = 1. This result is in
accordance with biological experiments performed on Dic-
tyostelium and neutrophil cells [19], that when stimulated
in a uniform manner (e.g., the entire membrane is equally
accessible to chemoattractant or mechanical stimulants) and
in the absence of spontaneous polarization, grow and retract
protrusions stochastically throughout the plasma membrane.
Thus, even when polymerization occurs, cells do not move
because they cannot form successive protrusions at a single
site on the membrane, thus the cell body is not displaced
towards a single direction.

Furthermore, throughout the simulations, the stress σ ,
the polymerizing factor c, the polymeric actin p involved
in lamellipodia formation, and the monomeric actin m are
symmetric with respect to the center of mass of the cell

[Figs. 3(a)–3(d) and Figs. 4(a)–4(d)], with the field distri-
butions highly dependent on whether actin assembly or dis-
assembly occurs. Specifically, in the polymerization with no
motion case, the stress is compressive close to the cells ends,
due to membrane resistance to cell elongation, whereas it is
positive inside the cell because of the active myosin con-
traction [see Fig. 3(a)]. For what concerns the polymerizing
factor, in this case, for the chosen values of Dc and γ , since
	c = 1 μm, there is only a small portion close to the cell ends
where c(x, t ) > cpol [Fig. 3(b)], and thus polymerization can
effectively occur. Consequently, the monomers concentration
at the steady state is higher inside the cell and lower closer
to the cell boundaries [Fig. 3(c)], due to continuous filaments
assembly, that leads to a peak in the polymeric actin at both
cells ends, denoting the formation of lamellipodia, as shown
in Fig. 3(d). We observe that, with p the concentration of
lamellipodial actin filaments, we correctly have p nearly equal
to zero in the center of the cell. Indeed, the lamellipodial
actin population is merely observed at the leading edge of
the cell and disappears abruptly about 1–3 μm back [17].
The lamellipodial actin also exhibits rapid retrograde flow
(with respect to the lamellar actin population) [17]. Thus, even
though, at the steady state, the polymeric actin cytoskeleton
close to the cell ends grows at a constant rate, it is back-
transported from the boundary to the interior (backward flow)
at the same velocity it is produced [see Fig. 3(f)], so that the
total displacements of the cell ends vanish.

On the other hand, in the symmetric depolymerization
case, the contractile stress inside the cell is positive and homo-
geneously distributed [Fig. 4(a)], since the membrane tension
also acts to restore the reference length of the cell, while
depolymerization of lamellipodial actin inexorably occurs
until, at the steady state, p is null everywhere [Fig. 4(d)], since
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. Spatial evolution at several times of (a) the stress σ , (b) the polymerizing factor c, (c) the monomeric actin m, (d) the lamellipodial
polymeric actin p, and (e) the actin network velocity v. Temporal evolution of (f) the velocities of polymerization at the two ends (red and
blue solid line), the velocity of the free boundaries (red and blue dashed line) and the velocity of the center of mass (green dotted line), (g) the
position of the center of mass of the cell, and (h) the cell length, when ca < cpol < cb (i.e., the cell moves to the right). In the simulation we
set the same parameters as in Fig. 3, except for cb = 1, ca = 0.1, and cpol = 0.4.

c(x, t ) < cpol in the whole cell [Fig. 4(b)]. The concentration
of globular actin m inside the cell increases to satisfy the
mass conservation constraint [Fig. 4(c)]. In this case, at the
steady state neither polymerization [being c(x, t ) < cpol] nor
depolymerization [being p(x, t ) ≡ 0] occurs, and the actin
flow is null everywhere, v(x, t ) ≡ 0, since the stress is con-
stant inside the cell [Fig. 4(e)].

D. Polarization and asymmetric polymerization

The most interesting case occurs when the cell is polarized,
and, in our conjecture, this polarity can then be represented by
an asymmetry in the boundary conditions for the polymerizing
factor c, which in turn can be either related to external
cues or spontaneously generated. For instance, an asymmetry
in the intracellular polymerizing signaling can be induced
when the cell senses an external chemical gradient, i.e., when
the concentration of the chemoattractant or chemorepellent
n(x, t ) on one cell end is higher than at the opposite boundary.
In this case, the imbalance of the internal signaling drives
actin dynamics along with cell motion towards the highest
external chemical concentration and eventual cell extension
or shrinkage. Specifically, we consider the case in which the
polymerizing factor concentration is higher in b(t ) than in
a(t ), so that the cell end in b(t ) becomes the leading edge,
whereas the opposite cell end turns into the trailing edge and
the cell moves to the right. In particular, we consider either
the case in which the intracellular polymerizing signaling
can trigger lamellipodial actin assembly only at the leading
edge, ca � cpol < cb = 1 (see Fig. 5), and the case in which
polymerization occurs both at the leading and at the trailing
edge of the cell, cpol < ca < cb = 1 (see Fig. 6). In both

cases, as shown in Fig. 5(a) and Fig. 6(a), the stress field
continues to be symmetric, with compressive stress at the
boundaries due to cell extension and tension inside the cell
body. This result is due to the assumption that the active
stress is independent on the position and on the actin polymer-
ization. Indeed, in the present formulation, the polarization
dynamics and the stress pattern are fully decoupled, as done,
for instance, in Ref. [37]: the stress field generated by an
asymmetric acto-myosin pattern is not taken into account, as
well as is not considered the influence of the mechanical stress
on the polymerization process. This choice has been made in
order to focus on the influence of internal chemical signaling
on the whole migratory process, while the introduction of the
coupling between the stress field on the acto-myosin concen-
tration would have made the final results, for the perspectives
of this work, less transparent.

On the other hand, the polymerizing factor field reflects the
asymmetric boundary conditions, with a higher concentration
of c at the leading edge (where cb = 1) and a concentration of
the this intracellular signaling molecule in a(t ) below cpol in
Fig. 5(b) and above it in Fig. 6(b). For the particular choice
of Dc and γ , in the simulations 	c = 1 μm, accordingly to
the biological range [69,76], so that the polymerizing factor
rapidly decays inside the cell body and its action is mainly
located at the cell periphery (i.e., either the leading edge in
the case ca � cpol < cb = 1 or both cell ends in the case
cpol < ca < cb = 1). Thus, Figs. 5(b) and 6(b) well represent
the existence of a steep intracellular gradient of signaling
molecules, which triggers the localized polymerization and
depolymerization of actin at the cell boundaries, even when
the external signal, such as the chemoattractant, gradient is
not so pronounced [77]. The spatiotemporal evolution of
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Spatial evolution at several times of (a) the stress σ , (b) the polymerizing factor c, (c) the monomeric actin m, (d) the lamellipodial
polymeric actin p, and (e) the actin network velocity v. Temporal evolution of (f) the velocities of polymerization at the two ends (red and
blue solid line), the velocity of the free boundaries (red and blue dashed line) and the velocity of the center of mass (green dotted line), (g) the
position of the center of mass of the cell, and (h) the cell length, when cpol < ca < cb, i.e., polymerization occurs also at the cell rear. In the
simulation we set the same parameters as in Fig. 5, except for ca = 0.45.

the monomeric and lamellipodial polymeric actin fields is
reported in Figs. 5(c) and 5(d) and Figs. 6(c) and 6(d),
respectively. Independently of the chemical availability at the
rear of the cell, the monomers concentration decreases from
the trailing towards the leading edge [Fig. 5(c) and Fig. 6(c)].
However, in the case in which polymerization occurs also
at the trailing edge (i.e., cpol < ca < cb = 1), the monomers
concentration inside the cell is lower than in the case in
which depolymerization occurs at the rear of the cell. The
lamellipodial actin concentration is higher at the cell front,
with a maximum just behind the leading edge [Fig. 5(d) and
Fig. 6(d)], and it rapidly decreases towards zero in the center
of the cell. Whereas in the case in which ca � cpol < cb = 1,
the lamellipodial actin branched network forms only at the
cell front [Fig. 5(d)], when filament assembly occurs also at
the cell rear, we have another peak of lamellipodial actin at
the trailing edge [Fig. 6(d)]. Finally, Fig. 5(e) and Fig. 6(e)
report the actin network velocity evolution in time and space:
v is always retrograde at the leading edge (i.e., the actin
flow moves in a direction opposite to the direction of cell
motion with respect to the substrate) and anterograde at the
trailing edge (actin and cell move in the same direction), in
accordance with biological findings [12–15]. It is interesting
to observe that, in both cases, the obtained solutions are of a
traveling wave type: the velocity of the traveling wave [green
dotted line in Fig. 5(f) and Fig. 6(f)], which is given by the
slope of the curve representing the position of the center of
mass over time [Fig. 5(g) and Fig. 6(g)], is higher in the case
in which polymerization occurs only at the leading edge of the
cell, whereas the length of the traveling segment, i.e., when
the quasistationary configuration is reached, is reasonably
higher in the case in which cell forms protrusions also at

the trailing edge [Fig. 6(h) versus Fig. 5(h)]. Indeed, when
cpol < ca < cb, the polymerization pushes the membrane at
the cell rear outward, and the velocity of polymerization along
the direction of motion [i.e., −vpol (a)] there is negative [blue
solid line in Fig. 6(f)], leading to cell extending protrusion
also at the rear.

For sake of completeness, we remark that when the poly-
merizing factor is below the threshold set for polymerization
at both cell ends (the asymmetric depolymerization case),
depolymerization occurs at both cell ends until, at the steady
state, the concentration of p is null everywhere in the cell, the
cell does not move and has a length lower than the reference
length L0.

E. Sensitivity analysis

In this section, we perform a sensitivity analysis, studying
how the traveling wave solution varies as a function of the
model parameters. Since the system of Eqs. (2), (6), (7),
and (9) does not admit an analytical solution even when the
traveling wave hypothesis is formulated, the effect of the
different parameters on the solution of the system is studied
numerically. In particular, Figs. 7 and 8 report the traveling
wave velocity VT W (top row) and length LT W (bottom row)
of the cell, changing one parameter at a time. They have
been derived by numerically solving the model for each set
of parameters and reporting the velocity of the center of
mass VCM and the length of the cell b(t ) − a(t ), when a
traveling wave solution is numerically reached. In Fig. 7 the
effect of the parameters related to cell mechanics is studied,
whereas in Fig. 8 the influence of the parameters related
to the chemical polymerization dynamics is considered. For
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FIG. 7. Sensitivity analysis: in each panel we changed only the parameter reported in the horizontal axis, while keeping the others fixed (the
values of the unchanged parameters is specified in the caption of Fig. 5). The charts report the traveling wave velocity (top of each subfigure)
and length (bottom of each subfigure) changing the parameters (a) μ, (b) β, (c) k, and (d) χ . The traveling wave velocity, VT W , and length,
LT W , have been derived by numerically solving the model to the steady state, for each set of parameters.

increasing values of the cell’s viscosity coefficient μ and
the cell-substrate friction coefficient β, the traveling wave
velocity decreases, as expected from the theory, whereas the
length of the traveling segment increases, up to four times
the reference length L0 [see Figs. 7(a) and 7(b)]. On the
other hand, increasing values of the cell membrane elasticity
k makes the cell less extensible and speeds it up, as shown in
Fig. 7(c). The active stress χ slightly influence, in an almost
linear manner, the traveling wave cell velocity and length
[Fig. 7(d)], at least in the range of parameters considered.
We remark that the curves reported in Figs. 7(b) and 7(d)
do not reflect the experimentally observed biphasic behavior

[78–80] of cell speed dependency on the adhesion strength
(that correlate with β in the model) and on the level of myosin
contraction (which is related to χ in our model), i.e., the
cells crawl faster at low and high adhesion strengths when
myosin activity is decreased or increased, respectively [78].
The simplest purely mechanical explanation for the biphasic
migration-velocity response to increased adhesion strength is
that, at low adhesion, contraction pulls weak focal adhesions
at both the cell front and rear; at high adhesion, as well,
contraction cannot overcome adhesion at the cell front or
rear; on the other hand, at intermediate adhesion, an optimum
is reached, with traction generated at the front coupled to

(a) (b) (c) (d)

FIG. 8. Sensitivity analysis: in each panel we changed only the parameter reported in the horizontal axis, while keeping the others fixed (the
values of the unchanged parameters is specified in the caption of Fig. 5). The charts report the traveling wave velocity (top of each subfigure)
and length (bottom of each subfigure) changing the parameters (a) 	c = √

Dc/γ , (b) k−1, (c) k1, and (d) cpol .
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adhesion detachment at the rear. This observation will be
translated into a dependency of the the parameter χ on the
the ability of the cell to bind to the substratum, which in turn
regulates β and the whole polymerization dynamics. Thus, the
biphasic behavior is the outcome of a series of interrelated
process, such as the dynamic organizational state of F-actin
and focal adhesions and the myosin II distribution and activity
in the contractile module [78]. All these factors in turns
depend on the cell’s ability to bind to the substrate, which can
activate and alter different signal-transduction pathways. In
carrying the sensitivity analysis, we preferred to keep all the
parameters independent in order to change one parameter at a
time, without including explicit relations between the different
model parameters and the measurable biological quantities
(e.g., adhesion strength, focal adhesion extension, ECM con-
centration, myosin, and actin distribution). Of course, this is
a virtual setup which is unlikely to be reproduced experi-
mentally, since in biological experiments changing a single
factor will dramatically alter many cellular and subcellular
mechanisms, most of them are even not known. Thus, the
study of the dependency of the parameters β and χ on the ad-
hesion strength, acto-myosin distribution, and environmental
conditions, along with the inclusion of mechanotransduction
pathways (i.e., how adhesion strength and stresses act on the
internal chemical signal c, regulating F-actin assembly and
disassembly), are left for future investigations.

Focusing on the chemical parameters of the model, the
numerical simulations confirm that the parameters γ and Dc

simultaneously affect the traveling wave solution by changing
the diffusive length of the intracellular signaling molecules,
	c = √

Dc/γ . The results reported in Fig. 8(a) show that
when the diffusive length increases the polymerization is less
effective, with the polymerizing factor not clustered at the
cell membrane, and thus the traveling cell length and velocity
decreases for increasing values of 	c.

In the range of parameters considered, the kinetic rate of
actin depolymerization k−1 [Fig. 8(b)] slightly influences the
traveling cell length (≈2 μm increase in cell length for an
increase of three order of magnitude in k−1), and the traveling
wave velocity (less than 0.02 μm/s decrease in cell velocity
for an increase of three orders of magnitude in k−1).

On the other hand, the traveling wave velocity and length
are highly sensitive to the kinetic rate of actin polymerization
k1: as reported in Fig. 8(c), the velocity of the moving cell
and its length increase proportionally to the logarithm of the
parameter k1.

Finally, as expected, the traveling wave velocity and length
decrease when the threshold set for the polymerization cpol

increases, since in this case the velocity of polymerization,
which is proportional to the difference between c and cpol , is
lower. In particular, for a very low value of the parameter cpol

the cell velocity reaches a plateau, whereas when cpol > cb =
1 the cell does not move, since no polymerization occurs.

F. Cell chemotactic velocity

Let us now link the intracellular polymerizing factor to the
external chemical field, in order to plot the velocity curve
shown in Fig. 8(d) with respect to the concentration of a
chemoattractant, inducing cell motion. Without going into the

details of the subcellular mechanisms involved in this complex
process, in order to illustrate that intracellular mechanisms
converting the chemotactic signal n into the cell response
can be included a posteriori, we here postulate different
possible relationships between the polymerizing factor at
the membrane cm(t ) and the signal generated by activated
receptors at the cell boundaries (here assumed to be directly
related to the external chemical field), nm(t ), with m = {a, b}.
Indeed, as already stated, the internal chemical signal cm at
the membrane is a response to extracellular chemoattractants
perceived by transmembrane receptors, possibly mediated by
the activation of protein cascades downstream, and, thus, it
is not necessarily a linear amplification of the external signal
[82]. In particular, in the following, we restrict our focus to
two case studies:

(1) The concentration of the polymerizing factor at the cell
membrane is proportional to the receptor signal and, conse-
quently, to the chemoattractant field at the cell membrane see
Fig. 9(a), top.

(2) The polymerizing factor is activated at the cell bound-
aries by the external chemical concentration through a com-
plex molecular pathway holding inside the cell membrane and
possibly leading to a bistable relation between cm and nm, with
m = {a, b} [see Fig. 9(b), top].
Then in Fig. 9 (bottom), the traveling wave velocity is plotted
as a function of a measure of the chemoattractant gradient
sensed along the cell, defined as the ratio between the dif-
ference in the normalized chemoattractant concentration at
the cell ends and the normalized cell traveling length. In
particular we normalized the chemoattractant field n̄m with
respect to cpol and the cell length LT W with respect to L0,
so that the normalized external chemical field gradients reads
(n̄b − n̄a )/L̄ = [(nb − na )L0]/(cpol LT W ).

The linear relation between cm and nm [Fig. 9(a), top] leads
to a cell velocity which can be said to increase linearly only
for small values of the chemoattractant gradient, accordingly
to the standard chemotactic relation [50]. However, for higher
external chemical field gradients, it saturates [Fig. 9(a), bot-
tom]. This behavior is reasonable from the biological point of
view, since cell velocity cannot grow indefinitely high even
when the cell is subject to an external chemical field with
a really steep gradient. In fact, in the modeling literature
nonlinear relations have been shown to best represent chemo-
taxis on a wide range of chemoattractant concentrations [49].
Furthermore, the predicted velocity versus chemical gradient
curve is in good agreement with the data collected for migrat-
ing leukemia cancer Jurkat cells [62]. Indeed, the performed
experiments highlight that the velocity rapidly increases when
the gradient initially increases, and subsequently the cell
velocity stabilizes to a maximum value. This phenomenon can
be attributed to the saturation of the chemoattractant receptors
at the cell membrane. We remark that the experimentally
measured maximum velocity is of the order of ≈3 μm/min,
which is slightly higher that the one reported in our work
≈0.9 μm/min.

The linear relationship postulated above, even though it
allows to obtain a nonlinear relation between cell velocity and
external chemical field due to the introduced mechanism of
actin polymerization, is an unduly simplistic approximation
of the true signal dynamics [82]. Indeed, as stated in the
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(a) (b)

FIG. 9. Relation between the polymerizing factor cm (m =
{a, b}) and the chemoattractant and receptor signal at the membrane
nm (top) and cell traveling wave velocity as a function of the
normalized gradient of the external chemical concentration (bottom)
in the case in which we postulate either (a) a linear or (b) a bistable
relation [through Eq. (20), setting d = 2 and, in order to minimize the
number of required parameters, βc = βi = 70 s−1, αc = αi = 6 s−1,
Kc = Ki = 30, sm = 70]. We remark that, for this particular choice
of parameters, the concentration of the intramembrane activator, sm,
is considered independent on the chemoattractant field, and thus it is
set equal at both cell ends. The normalized gradient of the external
chemical concentration is (n̄b − n̄a )/L̄ where (n̄b − n̄a ) = (nb −
na )/cpol and L̄ = L/L0. The red (black) square diamond indicates
the transition from the cell at rest to a moving cell, the green (light
gray) pointed arrow indicates a transition to higher speed motion,
conversely the pointed blue (dark gray) arrow denotes the reverse
transition.

introductory section, the cell chemotactic response is medi-
ated through the binding of the detected external signal to
certain classes of surface receptors and through its subsequent
transduction to internal pathways. Therefore in the second
scenario, we consider a more complex link between the per-
ception of the chemoattractant and the polymerizing factor at
the cell membrane. To be specific, we here postulate a mutu-
ally inhibitory feedback loop between the polymerizing factor
at the cell membrane cm and its intramembrane inhibitor,
im, regulated by the membrane activator, sm [see Fig. 10(b)].
This can be, for instance, related to the Rac1-RhoA dynamics
[83,84] [see Fig. 10(a)], whose concentrations take respec-
tively the role of the intracellular signaling molecule at the
cell membrane cm and its inhibitor im. For sake of simplicity,
as done, for instance, in Ref. [85], we neglect the details of
the binding process of the chemoattractant to the receptors,
and we assume that the signal nm generated by the integrin
αvβ3 engagement and by Cdc42, which stimulates Rac1 at the
membrane, is directly related to the external chemoattractant
concentration n, so that the simplified subcellular network can
be represented by Fig. 10(b). With this choice we do not claim
to be exhaustive and we are aware that a huge literature of

FIG. 10. Examples of intracellular pathways regulating actin
polymerization and cell motion: (a) detailed representation of the
biological cascade of intracellular proteins and molecules involved
in the whole process (modified with permission from Ref. [81]);
(b) simplified network of reaction considered to derive the relation
between the external chemical field n and the polymerizing factor
c, through reactions occurring at the cell membrane only. The cyan
solid arrows represent positive activation, whereas the orange dashed
lines stands for negative down-regulations. The abbreviation “Ext.
Env.” stands for external environment.

polarity and chemotaxis models exists (see, for instance, the
review works [53,82,86–88] and the Rho GTPases models
[89–91]). However, so far, no model or set of models have
been proven to be able to capture all the features possibly
occurring in moving eukatyotic cells (see Refs. [53,86,87] for
advantages and drawbacks of each class of models). Typi-
cally, polarization is modeled by reaction diffusion systems,
explaining symmetry breaking from the front to the back of
the cell, and two approaches are used: the first is to consider
the diffusion of chemicals inside the whole cell or a por-
tion of it, with appropriate inhibitory mechanisms to cluster
the signal at the membrane [53,55,92], alternatively, some
models describe chemical distributions only along the cell
perimeter, with eventually some second messengers diffusing
inside the cytosol [85,86]. In the present work we follow
the second route, in order to maintain a single fast-diffusing
chemical regulating actin polymerization inside the cell, as
a result of complex biochemical pathways occurring at the
cell membrane. This modeling approach is consistent with
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the biological observation that the Rho GTPases (e.g., Cdc42,
RhoA, and, at least in some cells, Rac) in their active forms
have been found predominantly bound to membranes and not
cytosolic [93,94]. Therefore, the process of conversion of the
external stimulus into an intracellular second messenger is
likely to occur at (or possibly, close to) the cell membrane.
Then, we decided to focus on the Rho GTPase dynamics,
since these molecules play a central role in all eukaryotic
cells, controlling the organization of the actin cytoskeleton
and adhesion [94] and have been less studied than the well-
known PI3K pathway [92,95]. As suggested by the biological
findings in Ref. [84], we exploit a negative feedback loop
as a transduction mechanism at the cell membrane, since,
in principle, signal amplification does not need to involve
a positive feedback [53], as postulated in previous works
[90,91]. The biochemical model underlying the mutually in-
hibitory feedback loop, without considering the diffusion of
the chemical inside the membrane, which is very slow [93],
taking all concentrations dimensionless for sake of simplicity,
is given by the following set of equations [96]:⎧⎪⎪⎨

⎪⎪⎩
∂cm

∂t
= αc(nm − cm) − Ic(im)cm

∂im

∂t
= αi (sm − im) − Ii (cm)im

for m = {a, b}, (18)

where αc and αi are the rates of synthesis and degradation
of the chemical factors cm and im, respectively, and Ic and Ii

stand for the feedback inhibition of cm and im, that can be
modeled by Hill kinetics [97], so that

Ic(im) = βci
d
m

Kd
c + idm

, Ii (cm) = βic
d
m

Kd
i + cd

m

. (19)

Biologically, K{c,i} represents the ligand concentration pro-
ducing half occupation of the binding sites of the repressed
target, whereas the Hill coefficient d modulates the degree of
function sigmoidity and identifies the level of nonlinearity ex-
hibited by the feedback loop. We remark that the biochemical
feedback loop, defined by Eq. (18), is assumed to hold only at
the cell membrane [i.e., in x = {a, b}], and it is responsible
of determining the boundary condition, ca and cb, for the
polymerizing signal c diffusing inside the cytosol, accordingly
to Eq. (9).

Then, considering the stationary conditions for the system
(18), it is possible to obtain the relation linking the external
chemical field at the cell boundaries nm to the concentration
of the polymerizing factor at the membrane:

nm =
[

1 + 1

αc

Ic

(
αism

αi + Ii (cm)

)]
cm for m = {a, b}. (20)

The relation (20) between the polymerizing factor and the
value of the external chemotactic field at the cell boundary is
plotted in Fig. 9(b), (top). In this case, the resulting relation
between the cell velocity and the chemoattractant gradient,
obtained by means of Eq. (20), is far more complex and is
represented by a bistable curve [Fig. 9(b), bottom] character-
ized by the presence of what we will call in the following
a lower turning point (for lower values of cm and higher
values of nm) and a higher turning point (for higher values
of cm and lower values of nm). In particular, for chemical

concentration gradients between the two cells ends below
a threshold [red square diamond in Fig. 9(b), bottom], the
cell is not able to respond to the external chemical cue.
This critical value stands for the slightest difference in the
external chemical field at cells ends that is able to induce
the polarization of the cell and it is related to the internal
threshold set for the polymerization of the actin network. We
remark that this threshold is in agreement with the biological
observation that the cell cannot detect too shallow chemical
gradients [77,98]. Above this critical value for the normalized
chemoattractant gradient, the cell crawls with a velocity which
is almost linearly growing with increasing gradients of the
chemoattractant field, until the external gradient is so steep
that the cell switches [green (light gray) pointed arrow in the
lower figure in Fig. 9(b), corresponding to the lower turning
point in the upper figure] to the upper branch of the curve,
characterized by higher velocities that grows up to a saturation
level [see the green (light gray) curve in Fig. 9(b), bottom].
We remark that the green (light gray) curve in Fig. 9(b)
(bottom) qualitatively reproduces the ones reported in Song
et al. [98] using Dictyostelium discoideum cells migrating
inside a linear gradients of cyclic adenosine monophosphate
(cAMP), at least in a certain range of chemical gradients.
Indeed, the experimental work in [98] demonstrates the ex-
istence of a lower threshold in the chemical gradient [which
corresponds to the red square diamond in Fig. 9(b) (bottom),
below which the cell experiences random motion, but the
velocity components took average values close to zero; above
this threshold, cells exhibit a directional response and the
chemotactic speed increases gradually with increasing steep-
ness of the gradient until, for a given chemotactic gradient
[corresponding to the green (light gray) pointed arrow in the
lower figure in Fig. 9(b)], the velocity abruptly increases up
to its maximum value. Then the same experimental work [98]
reports a decrease in the cell migratory ability in response
to increasing chemical gradient, which cannot be reproduced
by our curves since it is likely related to the existence of a
second threshold in polymerization [98], not included in our
model. Conversely, decreasing the external chemical gradient,
the velocity of the migrating cell decreases following the blue
(dark gray) curve in Fig. 9(b) (bottom): the cell persistently
migrates with higher velocities inside the external chemical
field with a less steep gradient, until the external gradient
is so shallow that the cell velocity rapidly decreases [blue
(dark gray) pointed arrow in the lower figure in Fig. 9(b),
corresponding to the upper turning point in the upper figure],
and then, for even smaller gradients, the cell stops. We remark
that the values of external chemical concentration gradient
corresponding to the two arrows above define an interval
in which a double-well potential exists, and the temporal
evolution of the perception of the chemoattractant (possibly
influenced by the presence of noise [99]) will set on which
branch the cell will be. This interval of coexistence enlarges if,
for instance, the upper turning point corresponding to the blue
(dark gray) arrow moves to the left. In the limit in which the
upper turning point is formally assumed for negative values,
the upper branch in the graphs in Fig. 9(a) always exists, as
shown in differentiation processes described in Ref. [100]. In
this case, after reaching the upper branch, the cell can persist
in its motion even if the chemotactic cue is switched off.
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This bistable behavior cannot be confirmed by the exper-
imental works by Song et al. [98], since cell migration onto
decreasing values of chemoattractant field was not studied in
that work. However, the capability of cells to exhibit long-
term memory have been experimentally observed [82,101],
leading to speculations on the existence of bistable switchlike
memory modules.

In principle the same reasoning used in this section for
the chemotactic field can be applied to mechanically induced
polarization and motion as that shown in Ref. [74]. Indeed,
it is known that the adhesion with the substrate can activate
various signal-transduction pathways that regulate actin poly-
merization and depolymerization, through the expression of
different internal chemical signals. However, we remark that,
in the case of mechanically induced polymerization, the effect
of external loads and internal stresses on the active stress, χ ,
and on the frictional parameter, β, cannot be neglected.

IV. CONCLUSIONS

In this work we have illustrated a continuous mechanical
model for describing cell chemotaxis on a two-dimensional
flat and rigid substrate, considering the subcellular actin dy-
namics. The whole polymerization-depolymerization process
is controlled by an intracellular polymerizing factor, which
acts as a second messenger during cell chemotaxis in response
to the external chemical field.

The proposed model, bridging the gap between the me-
chanical models of cell migration [11,33–39] and the models
describing cell chemotaxis [49–55], represents an advance-
ment with respect to the state of the art. Indeed, we take into
account not only the mechanical effect involved in cell chemo-
taxis, such as the mechanical interaction with the substrate, the
passive (viscous) and active properties of the cell (described as
a gel composed by the actin network immersed in the cytosolic
liquid), but also the dynamics of actin assembly and disassem-
bly guided by intracellular chemical cues. Differently from
previous works combining the cell mechanics with chemical
cues [59,59–61], we have kept the model as simple as possible
in order to investigate possible relations between the cell
velocity and the external chemical field. At the same time,
our approach substantially differs from the work of Yang et al.
[62], in which a quantitative relationship between cell motility
and chemotactic gradient has been derived, considering the
different physical forces acting on the cell, treated as a rigid
body and neglecting the cell mechanical behavior.

The model equations have been numerically discretized
and solved in order to obtain the distribution in time and space
inside the cell of the stress, the polymerizing factor, the actin
monomers, and the lamellipodium branched actin filaments.
In agreement with biological experiments, we observe that
the lamellipodial actin abruptly disappears about few μm
beyond the leading edge [17], while the actin monomers form
a widespread pool inside the cell available for the formation
of different types of actin [16]. The numerical results also pre-
dict the formation of a steep intracellular signaling molecule
gradient that amplifies external shallow chemoattractant vari-
ations. Furthermore, we show that the polymerizing factor
can be linked, for instance, to the external chemoattractant
availability, and we analyze the cell traveling velocity with

respect to the external chemical gradient, considering dif-
ferent mechanisms of activation of the intracellular second
messenger. The possibility to include a posteriori in the model
the relation between the internal signaling molecules and the
external chemical field is a point of strength of the proposed
model, since it allows us to easily test different mechanisms
of chemical signal transmission and conversion inside the cell
and to possibly include the dependency from other external
factors inside the model (e.g., mechanical stresses during
mechanically induced polarization and motion). In this re-
spect, the proposed model is able to reproduce the absence
of directed migration of a cell inside too shallow chemical
gradients, when no spontaneous polarization occurs, and the
different mechanisms of migration in response to various
gradients and intensities of chemoattractant field.

Without claiming to provide quantitative numerical mea-
surements, the results presented in this work can be evaluated
as a proof of concept towards the definition of a compre-
hensive model of cell chemotaxis, taking into account cell
mechanics and internal chemical kinetics. Nonetheless, these
results need to be quantitatively validated by comparing the
predicted evolution with the real spatiotemporal evolution of
the different quantities inside the moving cell.

Finally, in constructing the model, we have made some
simplifications, that deserve to be studied in more details,
such as the role of mechanical stresses on the actin polymer-
ization and depolymerization process, the mutual interaction
between chemical and mechanical cues and the refinement
of the description of the subcellular pathways converting
the chemical and mechanical external cues in the internal
signaling regulating the whole process. In particular, it could
be interesting to investigate the role of mechanical stresses and
myosin contractility during the transient polarization process
(i.e., when the cell passes from the state at rest to the motile
one) and during the whole cell migration. The introduction of
a dependence of the polymerization velocity on a mechanical
load [37], as well as the dependence of the stress field on
the myosin concentration would be straightforward [35], in
spite of requiring the introduction of an equation describing
the nonhomogeneous distribution of myosin motors and their
coupling with actin dynamics. Future investigations will be
certainly devoted to a more detailed description of the cell-
substrate adhesion and of the mechanotransduction process,
with the inclusion of mechanical feedbacks within the model
itself. Regarding the biochemical aspects of the proposed
model, future works should address the introduction of more
complex mechanisms of signal conversion at the cell mem-
brane, in order to account for cell adaptation [82], i.e., the
capability to respond to the gradient itself rather than to the
absolute value of the signal [86]. Specifically, the capability
of the system to adapt to external gradient can be added in our
model, by including either a specific module for adaptation
or two complementary signals: a fast, local activation signal
followed by a slower, global inhibition signal, both of which
are regulated by the external stimulus, such as in the well-
known LEGI model [82]. Therefore future works will couple
different receptor-mediated signaling pathways implicated in
gradient sensing at the cell membrane, along with multi-
ple cytosolic chemical factors acting on the different stages
of polarization. Finally, it is desirable, from the biological
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point of view, to have a more comprehensive understanding
of the multiple control mechanisms, by identifying specific
molecules and their influence on cell motility [82]. Indeed,
the elucidation of the biochemical pathways underlying cell
motion in response to different external and internal factors
will have a significant impact on understanding physiological

cell behavior as well as human diseases such as cancer and
inflammation.
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