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Disassortativity of percolating clusters in random networks
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We provide arguments for the property of the degree-degree correlations of giant components formed by
the percolation process on uncorrelated random networks. Using the generating functions, we derive a general
expression for the assortativity of a giant component, r , which is defined as Pearson’s correlation coefficient
for degrees of directly connected nodes. For uncorrelated random networks in which the third moment for the
degree distribution is finite, we prove the following two points: (1) Assortativity r satisfies the relation r � 0 for
p � pc. (2) The average degree of nodes adjacent to degree k nodes at the percolation threshold is proportional
to k−1 independently of the degree distribution function. These results claim that disassortativity emerges in giant
components near the percolation threshold. The accuracy of the analytical treatment is confirmed by extensive
Monte Carlo simulations.
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I. INTRODUCTION

All systems are considered as networks if they consist
of elements, and the relation between the elements can be
defined. Owing to the generality of the definition of networks,
various systems such as ecosystems, metabolic interactions,
the World Wide Web, and social relationships are regarded
as networks. Thus far, network science has extracted common
properties from real networks [1,2]. A representative one is the
correlation between degrees of directly connected nodes [3,4].
If similar (dissimilar) degree nodes are more likely to connect
to each other in a network, the network has positive (negative)
degree-degree correlation. We often call a network with posi-
tive (negative) degree-degree correlation an assortative (disas-
sortative) network. Newman discovered that social networks
possess positive degree correlations whereas biological and
technological networks are disassortative [3]. Following the
seminal work of Newman, the degree correlations of complex
networks have been studied extensively. One of the reasons
for this is that the degree correlations affect the behavior
of dynamics on networks. Much effort has been devoted to
examining the relation between the degree-degree correlation
and phenomenological models on networks such as failures,
spreading of diseases or information, and synchronization,
to gain a deep understanding of the character of real-world
networks [5–9].

There are networks in which no direct path along edges
exists between two nodes. Such networks consist of several
connected components. It is noticed that the degree correlation
of a component is different from that of the whole network
if the network is not singly connected. Recent works have
formalized the joint probability of degrees in the giant com-
ponent (GC) whose size is proportional to that of the whole
network by the generating function method and obtained the
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average degree k̄nn(k) of nodes adjacent to degree k nodes
[10] and the assortativity r defined by Pearson’s correlation
coefficient for nearest degrees [11]. As demonstrated for some
random networks [10,11], the GC can have the negative
degree-degree correlation (disassortativity) in spite that the
whole network is degree-uncorrelated. In addition, Tishby
et al. have shown that the correlation between degrees for
the GC in the Erdős-Rényi random graph is always nega-
tive if the network is not singly connected and the average
degree is greater than unity or, equivalently, the GC exists
[11].

The above generating function method can be generalized
to the case of the percolation problem on given substrate
networks. In the percolation problem on networks, each node
is occupied (not removed) with a given probability and is
unoccupied (removed) otherwise. It is known that the system
undergoes the emergence of a percolating cluster, i.e., a GC of
occupied nodes, at a certain value of occupation probability
called as the percolation threshold. It is, however, unknown
what correlation percolating clusters on uncorrelated ran-
dom networks exhibit, especially at and around the perco-
lation threshold where the system exhibits critical behavior
[12].

In this study, we analyze the degree correlation of the
GC generated by the site percolation process on uncorrelated
random networks with arbitrary degree distribution. It is al-
ready known that the site percolation process on uncorrelated
networks does not induce any degree-degree correlation as
long as we focus on the degree-degree correlation of the whole
network consisting of occupied nodes [13]. We extract the GC
from the whole network and examine what degree-degree
correlation is observed from the GC. By formulating the
generating function for the joint probability of degrees of the
GC, we prove that the GC in random networks with arbitrary
degree distribution P (k) always shows disassortativity in
terms of assortativity r if the third moment 〈k3〉 of P (k) is
finite and the networks are not singly connected. In addition,
by analyzing the average degree k̄nn(k) of nodes adjacent to
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degree k nodes, we show that k̄nn(k) at the percolation thresh-
old is proportional to k−1 as long as 〈k3〉 < ∞ and is also
a decreasing function of k near p = pc. These results mean
that the GC possesses disassortativity near the percolation
threshold. The validity of the analytical treatment is confirmed
by extensive Monte Carlo simulations.

The rest of this paper is organized as follows. In Sec. II
we formulate the assortativity r for the GC created by site
percolation using the generating functions. The comparison
between analytical treatment proposed in Sec. II and sim-
ulations is shown in Sec. III. In addition, we show exact
expressions of assortativity r at the critical point for z-regular
random networks and Erdős-Rényi random graphs. In Sec. IV
we further show the disassortativity of the GC by showing
that k̄nn(k) is a decreasing function of degree k. Section V is
devoted to the summary and discussion.

II. ANALYTICAL TREATMENTS

Let us consider an uncorrelated random network with an
arbitrary degree distribution P (k). First, let G0(x) be the
generating function for the probability, P (k), of a randomly
chosen node having degree k, as

G0(x) =
∞∑

k=0

P (k)xk. (1)

Using Eq. (1), the generating function G1(x) for the probabil-
ity of an edge leading to a degree k node is given by

G1(x) = G′
0(x)/G′

0(1) =
∞∑

k=1

kP (k)

〈k〉 xk−1, (2)

where G′
0(x) is the derivative of G0(x) with respect to x

and 〈k〉 is the mean of the degree distribution P (k), 〈k〉 =∑
k kP (k). In this study we concentrate on the site percolation

problem on a given substrate network with P (k): each node is
occupied with probability p and is unoccupied otherwise. In
general, there exists a threshold pc above which an infinitely
large cluster, i.e., a GC, emerges in the thermodynamic limit,
which means that the fraction S of nodes belonging to the GC
becomes S > 0 from p > pc. We denote by u the probability

that one end of an edge randomly chosen from the substrate
network does not lead to a GC. The probability u is given as
the solution of the following self-consistent equation:

u = q + pG1(u), (3)

where q = 1 − p. Using the probability u, we have the frac-
tion S as

S = p[1 − G0(u)]. (4)

The percolation threshold pc is given with the condition that
Eq. (3) has a nontrivial solution of u < 1, yielding S > 0.
For uncorrelated random networks, it is known as pc =
〈k〉/〈k(k − 1)〉 (see Refs. [14,15]).

Let us focus on only degree correlations of GCs formed
by the site percolation in uncorrelated networks. First, we
consider the conditional probability P (GC, k, k′|l, m) that a
randomly chosen edge has two ends with degree k and k′ and
belongs to the GC conditioned on the two ends having origi-
nally l and m neighbors in a substrate network. As pG1(u) is
the probability that one end of an edge is occupied and does
not lead to the GC, p2[1 − Gk−1

1 (u)Gk′−1
1 (u)] represents the

probability that a randomly chosen edge leads to two occupied
ends with degree k and k′ and belongs to the GC. Therefore,
we can write the probability P (GC, k, k′|l, m) as

P (GC, k, k′|l, m) = p2
[
1 − Gk−1

1 (u)Gk′−1
1 (u)

]( l − 1

k − 1

)

× pk−1ql−k

(
m − 1

k′ − 1

)
pk′−1qm−k′

. (5)

Let P (k, k′) and P (GC) be the joint distribution of
degrees in the substrate network and the probability
that an edge belongs to the GC, respectively. The re-
lations P (GC, k, k′) = ∑

l,m P (GC, k, k′|l, m)P (l, m) and
P (k, k′|GC) = P (GC, k, k′)/P (GC) are satisfied. We also
have P (GC) = p2[1 − G2

1(u)] immediately. For convenience,
we denote P (k, k′|GC) as PGC(k, k′) and the subscript GC
is used for conditional probabilities conditioned on the GC.
Using these relations, we find the joint distribution PGC(k, k′)
of degrees on the GC as

PGC(k, k′) = 1 − Gk−1
1 (u)Gk′−1

1 (u)

1 − G2
1(u)

∑
l�k,m�k′

(
l − 1

k − 1

)
pk−1ql−k

(
m − 1

k′ − 1

)
pk′−1qm−k′ lP (l)

〈k〉
mP (m)

〈k〉 , (6)

where we use the relation P (k, k′) = [kP (k)/〈k〉][k′P (k′)/〈k〉] because the substrate network is uncorrelated. The generating
function B(x, y) for PGC(k, k′) is obtained as follows (see the Appendix for details):

B(x, y) =
∑

k�1,k′�1

PGC(k, k′)xk−1yk′−1 = G1(q + px)G1(q + py) − G1[q + pG1(u)x]G1[q + pG1(u)y]

1 − G2
1(u)

. (7)

From B(x, y), the generating function S(x)[= B(x, 1) = B(1, x)] for the marginal distribution QGC(k)[= ∑
k′ PGC(k, k′)],

which is the probability of an edge reaching a node with degree k conditioned on the edge in the GC, is

S(x) =
∞∑

k=1

QGC(k)xk−1 = G1(q + px) − G1(u)G1[q + pG1(u)x]

1 − G2
1(u)

. (8)

Obviously, these generating functions B(x, y) and S(x) are reduced to expressions for generating functions in Ref. [11]
when p = 1. Thus, the present formalism is a generalization of the previous method, in which the site percolation process is
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incorporated. In accordance with the argument in Ref. [11],
assortativity r of the GC is given by B(x, y) and S(x) as

r = ∂x∂yB(x, y) − [∂xS(x)]2

(x∂x )2S(x) − [∂xS(x)]2

∣∣∣∣
x=y=1

. (9)

Substituting Eqs. (7) and (8) into Eq. (9), we can find the
general result for assortativity of the GC as

r = −pg̃2
0 (g1 − g̃1)2(

1 − g̃2
0

)(
g1 − g̃2

0 g̃1 + pg2 − pg3
0 g̃2

) − p
(
g1 − g̃2

0 g̃1
)2 ,

(10)

where

gn = G
(n)
1 (1) = ∂nG1(x)

∂xn

∣∣∣∣
x=1

(11)

and

g̃n = G
(n)
1 (u) = ∂nG1(x)

∂xn

∣∣∣∣
x=u

. (12)

The denominator of the right-hand side in Eq. (10) is equal to
(1 − g̃2

0 )σQGC/p, where σQGC is the variance of QGC(k), and is
a positive real number. Then, the sign of assortativity is deter-
mined by the numerator. Therefore, the assortativity satisfies
an inequality r � 0 for pc � p � 1. The factor (g1 − g̃1)2 in
Eq. (10) claims that if a GC exists, it always exhibits disas-
sortativity independently of the degree distribution because
(g1 − g̃1)2 becomes a nonzero positive value for p � pc. The
result is persistent even at p = 1 when the substrate network is
not singly connected, which is consistent with previous results
in Refs. [10,11]. The zero assortativity is observed only when
the network is singly connected at p = 1 because then the
factor g̃0 becomes zero. It is noted here that assortativity r

cannot be negative in infinitely large networks with 〈k3〉 = ∞
(see Ref. [16]). The factor g2 appearing in the denominator
contains 〈k3〉 and reflects the feature.

III. NUMERICAL CHECK

To evaluate the validity of our analytical treatment for
uncorrelated random networks, we compare analytical esti-
mates of the assortativity r with corresponding simulation
results. In our simulations, we utilize the configuration model
which realizes uncorrelated random networks according to a
predefined degree distribution. In the following subsections,
we concentrate on typical examples, i.e., z-regular random
graphs, Erdős-Rényi random graphs, and scale-free networks.

A. z-regular random graphs

First, let us consider z-regular random graphs as a simple
illustrative example. The degree distribution P (k) of the z-
regular random graph is

P (k) = δkz, (13)

whose percolation threshold is given as

pc = 1

z − 1
. (14)

Figure 1 shows the p dependence of assortativity r .
Grayscale tube lines represent analytical estimates obtained

FIG. 1. Comparison with the analytical treatment and simulation
results for p dependence of assortativity r . The z-regular random
graph is utilized as the substrate network. The grayscale tube lines
represent the results obtained by Eq. (10) with the aid of Eqs. (2)
and (3). The simulation results are for z-regular random graphs with
z = 5 (solid blue line), 4 (dotted green line), and 3 (dashed red line).
The number of nodes used for simulations is N = 106.

from Eq. (10), and the other lines are drawn from Monte
Carlo simulations. In our simulations, we generated 10 net-
work realizations and performed site percolation 103 times
on each realization to take the average of r at given values
of p. On each run, we specify the largest component, which
corresponds to the GC for p > pc, based on the Newman-Ziff
algorithm [17]. The assortativity of the largest component is
evaluated and compared with the result obtained by analytical
treatment. Our analytical estimates for r match perfectly with
the numerical data for p > pc in all cases. The vertical dashed
lines from left to right indicate the percolation thresholds pc

when z = 5, 4, and 3, respectively. Our numerical data assert
that the assortativity r does not show the singular behavior
just at and around the percolation threshold pc even when
the system size goes to infinitely large. This implies that the
analytical expression for the assortativity r at p = pc can
be obtained. Approximating the probability u at p � pc as
u ∼ 1 − ε where ε is an infinitesimal value, we have the
relation

G1(u) ∼ 1 − 〈k(k − 1)〉
〈k〉 ε. (15)

The assortativity rc at p = pc is given by substituting Eq. (15)
into Eq. (10) and taking ε → 0 as

rc = − pcg
2
2

2g1
(
2g2

1 + g2 + 3pcg1g2 + pcg3
) − pc

(
2g2

1 + g2
)2 .

(16)

Using Eqs. (13), (14), and (16), we have the assortativity rc at
p = pc for a z-regular random graph:

rc = − z − 2

5z − 8
. (17)

Large symbols on the edges of grayscale tube lines in Fig. 1
are rc given by Eq. (17) to confirm the accuracy of analytical
treatment.
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FIG. 2. Comparison with the analytical treatment and simulation
results for p dependence of assortativity r . The substrate network
obeys the degree distribution with Eq. (18). The grayscale tube
lines represent the results obtained by Eq. (10) with the aid of
Eqs. (2) and (3). The simulation results are for Erdős-Rényi random
graphs with 〈k〉 = 5 (solid blue line), 4 (dotted green line), and
3 (dashed red line). The number of nodes used for simulations is
N = 106. Ten realizations of networks were generated, and the site
percolation process was performed 103 times for each network to
obtain simulation results.

B. Erdős-Rényi random graphs

The degree distribution P (k) and the percolation threshold
pc for Erdős-Rényi random graphs are

P (k) = 〈k〉ke−〈k〉

k!
(18)

and

pc = 1

〈k〉 , (19)

respectively. Figure 2 shows the assortativity r as a function
of p. The analytical estimates for r match perfectly with the
numerical data for p > pc as is the case with z-regular random
graphs. The assortativity rc at p = pc for Erdős-Rényi random
graphs is given as

rc = − 1
5 , (20)

independently of the average degree 〈k〉 of original graphs.

C. Scale-free networks

Finally, we consider scale-free networks whose degree
distribution obeys P (k) ∼ k−γ for 2 � k � kcut. To argue the
effect of network heterogeneity on the degree correlation of
the GC, in scale-free networks with kcut → ∞, we start by
comparing analytical and numerical results for the case with a
finite cutoff degree, i.e., kcut < ∞. Figure 3 shows the results
for the scale-free networks with exponent γ = 2.5 and cutoff
degree kcut = 103. Monte Carlo data asymptotically reach the
analytical line as increasing the system size N , which implies
that the analytical treatment is valid for infinite networks with
a finite cutoff degree. This also indicates the disassortativity of
the GCs formed by occupied nodes on the scale-free networks
with a finite cutoff degree analytically and numerically. The

FIG. 3. Comparison with the analytical treatment and simulation
results for p dependence of assortativity r . Main panel: The results
are for scale-free networks with exponent γ = 2.5 and cutoff degree
kcut = 103 of the degree distribution. The grayscale tube line repre-
sents the result obtained by Eq. (10) with the aid of Eqs. (2) and
(3). The solid blue, dotted green, and dashed red lines are simulation
results for N = 107, 106, and 105, respectively. Ten realizations
of networks were generated, and the site percolation process was
performed 103 times for each network to obtain simulation results.
Inset: The analytical estimates of r for scale-free networks with
γ = 2.5 and kcut = 105 (solid blue), 104 (dotted green), and 103

(dashed red).

validity of our analytical treatment holds for different values
of γ and kcut (not shown). Based on the analytical treatment,
we display the p dependence of r for scale-free networks with
γ = 2.5 and different values of kcut (the inset of Fig. 3). It is
known for γ < 3 that the percolation threshold approaches
zero as kcut increases. With increasing kcut, the trend that the
assortativity r goes to 0 rapidly above pc which is located on
the left end of the line, is enhanced. This result indicates that
when kcut → ∞, pc goes to 0 and the assortativity r becomes
0 for p > 0.

In addition, the assortativity rc at p = pc as a function of
the scale-free exponent γ is shown in Fig. 4. The grayscale
tube line and the symbols represent the analytical estimate of
rc for networks without and with finite cutoff degrees, respec-
tively. For γ > 5, pc > 0 and rc < 0 even for kcut → ∞. Most
symbols are on the grayscale tube line, indicating that rc is not
sensitive to kcut for γ > 5. For 3 < γ < 5, pc > 0 and rc = 0
when kcut → ∞. The fashion that rc → 0 at kcut → ∞ is also
reflected on the kcut dependence of rc, i.e., the movement of
symbols at fixed γ . The zero assortativity of the GC is because
the right-hand side of Eq. (16) includes 〈k4〉, which diverges
for 3 < γ < 5, in the denominator, where 〈k4〉 is induced
by asymptotically expanding the right-hand side of Eq. (10)
near p = pc. For γ < 3, the kcut dependence of rc in Fig. 4
seems to suggest that rc converges to a finite negative value as
kcut → ∞. However, pc = 0 in this region and rc will become
0 for p > 0, as mentioned above.

Finally, we consider r for p > pc(> 0) for the case of 4 <

γ < 5. In the inset of Fig. 4, we display the p dependence of r

for the scale-free network with γ = 4.5. We find that r always
takes a finite negative value at p > pc, although the assorta-
tivity rc at p = pc becomes 0. The assortativity r includes the
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FIG. 4. Main panel: Analytical estimates of assortativity rc at
p = pc as a function of γ . The grayscale tube line is the result for
scale-free networks with kcut → ∞. Symbols represent the results
for scale-free networks with finite cutoff degree kcut = 105 (red
circles), 104 (green squares), and 103 (blue triangles). All data are
obtained by Eq. (10) with the aid of Eqs. (2) and (3). Inset: p

dependence of the assortativity r . The grayscale tube line represents
the analytical result for scale-free networks with γ = 4.5 and kcut →
∞ of the degree distribution. The line is the simulation result for
N = 106. Ten realizations of networks were generated, and the site
percolation process was performed 103 times for each network to
obtain simulation results.

moments of the degree distribution: 〈k3〉 in r of the whole
network or its GC for p > pc, and 〈k4〉 of the GC at p = pc.
Therefore, r sometimes becomes useless for scale-free net-
works because these moments diverge according to the value
of the exponent γ . However, such zero assortativity never
means that the GC does not have the degree-degree correla-
tion. We consider the disassortativity of the GC in scale-free
networks with an exponent in 3 < γ < 5 in the next section.

IV. BEHAVIOR OF k̄nn(k)

We further discuss the disassortativity of the GC with a dif-
ferent quantity. The average degree k̄nn(k) of nodes adjacent
to degree k nodes is more informative than the assortativity
r . The quantity k̄nn(k) of the GC is calculated from the
probability PGC(k′|k) of degree k′ nodes adjacent to the degree
k nodes in the GC. The probability PGC(k′|k) is given by

PGC(k′|k) = 1 − g̃k−1
0 g̃k′−1

0

1 − g̃k
0

k′P̃ (k′)
〈k̃〉 , (21)

where P̃ (k) = ∑∞
m�k

(
m

k

)
pkqm−kP (m) and 〈k̃n〉 = ∑

knP̃ (k)
(see the Appendix for details). Note that P̃ (k) corresponds
to the degree distribution for the network whose nodes
are randomly occupied with probability p on the sub-
strate network. Equation (21) leads to the average degree
k̄nn(k)[= ∑

k′ k′PGC(k′|k)] of nodes adjacent to degree k

nodes as

k̄nn(k) = 〈k̃2〉
〈k̃〉

[
1 − g̃k−1

0 h(g̃0)

1 − g̃k
0

]
, (22)

FIG. 5. Rescaled k̄nn(k) by 〈k̃2〉
〈k̃〉 as a function of degree k for

scale-free networks with γ = 3.5 and kcut → ∞. Analytical esti-
mates (22) for p = 0.27, 0.28, . . . , 0.40 are shown as the lines from
top to bottom. Here pc = 〈k〉/〈k(k − 1)〉 = 0.2687.

where

h(g̃0) =
∑

k

k2

〈k̃2〉 P̃ (k)g̃k−1
0 . (23)

Figure 5 shows analytical estimates of rescaled k̄nn(k) by
〈k̃2〉/〈k̃〉 as the function of degree k for a scale-free net-
work with γ = 3.5 and kcut → ∞ to which the GC shows
zero assortativity for p � pc. The lines for several values of
p(�pc) indicate that each rescaled knn(k) decreases monoton-
ically with increasing degree k. This means that disassortativ-
ity is observed in the GC formed by percolation processes on
the scale-free network with γ = 3.5 and kcut → ∞.

Finally, we study the behavior of k̄nn(k) near p = pc. Using
Eq. (15), we expand Eq. (22) as follows:

k̄nn(k) ∼ 〈k̃2〉
〈k̃〉

{
1 + 1

k

〈k̃3〉 − 2〈k̃2〉
〈k̃2〉

−
(

1 − 1

k

) 〈k̃3〉 − 〈k̃2〉
〈k̃2〉

〈k2〉 − 〈k〉
〈k〉 ε

}
. (24)

The result means that k̄nn(k) near p = pc is proportional to
k−1 independently of the original degree distribution P (k).
In addition, in the limit of ε → 0, i.e., p → pc, k̄nn(k) is
rewritten as

k̄nn(k) = 〈k̃2〉
〈k̃〉

{
1 + 1

k

〈k̃3〉 − 2〈k̃2〉
〈k̃2〉

}
. (25)

The exact expression (25) of k̄nn(k) at p = pc holds if 〈k3〉 <

∞ because 〈k̃3〉 contains 〈k3〉. To summarize, k̄nn(k) at and
above pc shows the disassortativity of the GC for scale-free
networks with 4 < γ < 5, although rc failed to capture it. For
3 < γ < 4, k̄nn(k) is useless just at pc but again shows the
disassortativity of the GC above pc.

V. SUMMARY AND DISCUSSION

In this work, the degree-degree correlations of GCs formed
by the site percolation process on uncorrelated random net-
works have been analyzed. By formulating the joint prob-
ability of degrees on a GC by means of the generating
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function, we have shown the following general properties of
GCs formed by the percolation process in random networks:
(1) The assortativity r defined by Pearson’s correlation coeffi-
cient for degrees satisfies an inequality r � 0 in the percolat-
ing phase if the third moment 〈k3〉 of the degree distribution
is finite. (2) The average degree k̄nn(k) of nodes adjacent to
degree k nodes at the percolation threshold is proportional to
k−1 if 〈k3〉 < ∞.

As has been shown through this work, the negative
degree-degree correlation (disassortativity) naturally emerges
when we focus on a component of an uncorrelated net-
work. It should be noted that one cannot understand the
degree-degree correlations of whole networks even if we
analyze their components, and one may not be able to un-
derstand correctly the behavior of dynamics on networks
even if we investigate the dynamics on the components.
This probably holds true for real networks constructed by
data: the difference between the degree correlations of the
whole network and of a component would emerge in real-
world networks. It is necessary to pay attention to the lack
of data when we analyze real-world networks because a
lack of data, expressed as the removals of nodes or edges
in percolation processes, would enhance the degree-degree
correlations.

The results in this study are consistent with the previous
result concerning the relation between fractality and disas-
sortativity of real-world networks [18]. The disassortativity
of GCs might be established even if an original network
has a certain strength of positive degree-degree correlation.
However, the behavior of degree-degree correlations of the
GCs in assortative networks is not so simple, as will be argued
elsewhere [19].

We did not discuss the degree-degree correlations of
GCs in scale-free networks with 〈k3〉 = ∞. To evaluate the
correlations of such networks, Spearman’s rank correlation
coefficient of degrees has been utilized [16,20,21]. It is in-
teresting to evaluate degree-degree correlations of GC using
Spearman’s rank correlation coefficient, although we expect
the generality of disassortativity of percolating clusters.

ACKNOWLEDGMENTS

S.M. was supported by a Grant-in-Aid for Early-Career
Scientists (Grant No. 18K13473) and a Grant-in-Aid for JSPS
Research Fellow (Grant No. 18J00527) from the Japan So-
ciety for the Promotion of Science (JSPS) for performing this
work. T.H. acknowledges financial support from JSPS (Japan)
KAKENHI Grant No. JP16H03939.

APPENDIX: DERIVATION OF SEVERAL QUANTITIES

The generating function B(x, y) for PGC(k, k′) in Eq. (7) is calculated as follows:

B(x, y) =
∑

k�1,k′�1

PGC(k, k′)xk−1yk′−1

=
∑

k�1,k′�1

1 − Gk−1
1 (u)Gk′−1

1 (u)

1 − G2
1(u)

∑
l�k,m�k′

(
l − 1

k − 1

)
pk−1ql−k

(
m − 1

k′ − 1

)
pk′−1qm−k′ lP (l)

〈k〉
mP (m)

〈k〉 xk−1yk′−1

= 1

1 − G2
1(u)

∞,∞∑
l,m

lP (l)

〈k〉
mP (m)

〈k〉
l,m∑
k,k′

[
1 − Gk−1

1 (u)Gk′−1
1 (u)

]( l − 1

k − 1

)
pk−1ql−k

(
m − 1

k′ − 1

)
pk′−1qm−k′

xk−1yk′−1

= 1

1 − G2
1(u)

∞,∞∑
l,m

lP (l)

〈k〉
mP (m)

〈k〉 {(q + px)l−1(q + py)m−1 − [q + pG1(u)x]l−1[q + pG1(u)y]m−1}

= G1(q + px)G1(q + py) − G1[q + pG1(u)x]G1[q + pG1(u)y]

1 − G2
1(u)

. (A1)

Using Eqs. (A1) and (8), we obtain components constructing the assortativity r as

∂x∂yB(x, y)|x=y=1 = p2G′
1(q + px)G′

1(q + py) − p2G2
1(u)G′

1[q + pG1(u)x]G′
1[q + pG1(u)y]

1 − G2
1(u)

∣∣∣∣
x=y=1

= p2G′2
1 (1) − p2G2

1(u)G′2
1 (u)

1 − G2
1(u)

, (A2)

∂xS(x)|x=y=1 = pG′
1(q + px) − pG2

1(u)G′
1[q + pG1(u)x]

1 − G2
1(u)

∣∣∣∣
x=y=1

= pG′
1(1) − pG2

1(u)G′
1(u)

1 − G2
1(u)

, (A3)

∂2
x S(x)|x=y=1 = p2G′′

1 (q + px) − p2G3
1(u)G′′

1[q + pG1(u)x]

1 − G2
1(u)

∣∣∣∣
x=y=1

= p2G′′
1 (1) − p2G3

1(u)G′′
1 (u)

1 − G2
1(u)

, (A4)

where Eq. (3) holds. By substituting Eqs. (A2), (A3), and (A4) into Eq. (9), we have Eq. (10).
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The probability PGC(k′|k) is obtained as follows. As QGC(k) = ∑
k′ PGC(k, k′) is given by

QGC(k) = 1 − Gk
1(u)

1 − G2
1(u)

∑
l�k

(
l − 1

k − 1

)
pk−1ql−k lP (l)

〈k〉 , (A5)

we have PGC(k′|k) = PGC(k,k′ )
QGC(k) using Eqs. (6) and (A5) as

PGC(k′|k) = 1 − Gk−1
1 (u)Gk′−1

1 (u)

1 − Gk
1(u)

∑
m�k′

(
m − 1

k′ − 1

)
pk′−1qm−k′ mP (m)

〈k〉

= 1 − Gk−1
1 (u)Gk′−1

1 (u)

1 − Gk
1(u)

k′

p〈k〉
∑
m�k′

(
m

k′

)
pk′

qm−k′
P (m) = 1 − Gk−1

1 (u)Gk′−1
1 (u)

1 − Gk
1(u)

k′P̃ (k′)
〈k̃〉 , (A6)

where P̃ (k) is the degree distribution of connected components consisting of occupied nodes in a network with degree
distribution P (k):

P̃ (k) =
∑
m�k

(
m

k

)
pkqm−kP (m). (A7)

Then, the first three moments of P̃ (k) are as follows:

〈k̃〉 = p〈k〉, (A8)

〈k̃2〉 = p2〈k2〉 + pq〈k〉, (A9)

〈k̃3〉 = p3〈k3〉 + 3p2q〈k2〉 + pq(q − p)〈k〉. (A10)

Substituting g̃0 = G1(u) into Eq. (A6), we have Eq. (21).
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