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Mechanisms of dimensionality reduction and decorrelation in deep neural networks
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Deep neural networks are widely used in various domains. However, the nature of computations at each layer
of the deep networks is far from being well understood. Increasing the interpretability of deep neural networks
is thus important. Here, we construct a mean-field framework to understand how compact representations are
developed across layers, not only in deterministic deep networks with random weights but also in generative deep
networks where an unsupervised learning is carried out. Our theory shows that the deep computation implements
a dimensionality reduction while maintaining a finite level of weak correlations between neurons for possible
feature extraction. Mechanisms of dimensionality reduction and decorrelation are unified in the same framework.
This work may pave the way for understanding how a sensory hierarchy works.
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I. INTRODUCTION

The sensory cortex in the brain encodes the structure of the
environment in an efficient way. This is achieved by creating
progressively better representations of sensory inputs, and
these representations finally become easily decoded without
any reward or supervision signals [1–3]. This kind of learning
is called unsupervised learning, which has long been thought
of as a fundamental function of the sensory cortex [4]. Based
on the similar computational principle, many layers of ar-
tificial neural networks were designed to perform a nonlin-
ear dimensionality reduction of high-dimensional data [5],
which later triggered resurgence of deep neural networks. By
stacking unsupervised modules on top of each other, one can
produce a deep feature hierarchy, in which high-level features
can be constructed from less abstract ones along the hierarchy.
However, these empirical results do not have a principled
understanding so far. Understanding what each layer exactly
computes may shed light on how sensory systems work in
general.

Recent theoretical efforts focused on the layerwise prop-
agation of one input vector length, correlations between two
inputs [6], and clustered noisy inputs of supervised classifi-
cation tasks [7,8], generalizing a theoretical work of layered
feedforward neural networks that studied the iteration of the
overlap between the layer’s activity and embedded random
patterns [9]. However, these studies did not address the covari-
ance of neural activity, one important feature of neural data
modeling [10], which is directly related to the dimensionality
and complexity of hierarchical representations. Therefore, a
clear understanding of hierarchical representations has been
lacking so far, which makes deep computation extremely non-
transparent. Here, we propose a mean-field theory of input di-
mensionality reduction in deep neural networks. In this theory,
we capture how a deep nonlinear transformation reduces the
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dimensionality of a data representation and, moreover, how
the covariance level (redundancy) varies along the hierarchy.
Both of these two features are fundamental properties of deep
neural networks, and even information processing in vision
[11].

Our theory helps to advance the understanding of deep
computation in the following two aspects. (i) There exists
an operating point where input and output covariance levels
are equal. This point controls the level of covariance nei-
ther diverging nor decaying to zero, given sufficiently strong
connections between layers. (ii) The dimensionality of data
representation is reduced across layers, due to an additive
positive term (contributed by the previous layer) affecting
the dimensionality in a divisive way. These computational
principles are revealed not only in deterministic deep net-
works with random weights but also in generative deep trained
networks. Our analytical findings coincide with numerical
simulations, demonstrating that the previous empirically ob-
served dimensionality reduction [1,2,5] and the redundancy
reduction hypothesis [12] could be theoretically explained
within the same mean-field framework.

II. A DETERMINISTIC DEEP NETWORK

A deep network is a multilayered neural network perform-
ing hierarchical nonlinear transformations of sensory inputs
(Fig. 1). The number of hidden layers is defined as the depth of
the network, and the number of neurons at each layer is called
the width of that layer. For simplicity, we assume an equal
width (N ). Weights between l − 1 and lth layers are specified
by a matrix wl , in which the ith row corresponds to incoming
connections to the neuron i at the higher layer. Biases of
neurons at the lth layer are denoted by bl . The input data
vector is denoted by v, and hl (l = 1, . . . , d) denotes a hidden
representation of the lth layer, in which each entry hl

i defines
a nonlinear transformation of its preactivation ãl

i ≡ [wlhl−1]i ,
as hl

i = φ(ãl
i + bl

i ). Without loss of generality, we choose the
nonlinear transfer function as φ(x) = tanh(x) and assume that
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FIG. 1. Schematic illustration of a deep neural network. The
deep neural network performs a layer-by-layer nonlinear transforma-
tion of the original input data (a high-dimensional vector v). During
the transformation, a cascade of internal representations (h1, . . . , hd )
are created. Here, d = 3 denotes the depth of the deep network.

the weight follows a normal distribution N (0, g/N ), and the
bias follows N (0, σb ). Random weight assumption plays an
important role in recent studies of artificial neural networks
[13–18], and the weight distribution of trained networks may
appear random [19].

We consider a Gaussian input ensemble with zero mean,
covariance 〈vivj 〉 = rij√

N
for all i �= j (rij is a uniformly dis-

tributed random variable from [−ρ, ρ]), and variance 〈v2
i 〉 =

1. In the following derivations, we define the weighted-sum
ãl

i subtracted by its mean as al
i = ∑

j wl
ij (hl−1

j − 〈hl−1
j 〉),

thus al
i has zero mean. As a result, the covariance of al

can be expressed as �l
ij = 〈al

ia
l
j 〉 = [wlCl−1(wl )T ]ij , where

Cl−1 defines the covariance matrix of neural activity at the
l − 1-th layer (also called the connected correlation matrix
in physics). Because the deep network defined in Fig. 1 is a
fully connected feedforward network, where each neuron at an
intermediate layer receives a large number of inputs, the cen-
tral limit theorem implies that the means of the hidden neural
activity ml and the covariance Cl are given separately by

ml
i = 〈

hl
i

〉 =
∫

Dtφ
(√

�l
ii t + [wlml−1]i + bl

i

)
, (1a)

Cl
ij =

∫
DxDyφ

(√
�l

iix + bl
i + [wlml−1]i

)
φ
(√

�l
jj

(
�x

+ y
√

1 − �2
) + bl

j + [wlml−1]j
) − ml

im
l
j , (1b)

where Dx = e−x2/2dx/
√

2π and � = �l
ij√

�l
ii�

l
jj

. To derive

Eq. (1), we parametrize al
i and al

j by independent normal
random variables (see Appendix A). Equation (1) forms an
iterative mean-field equation across layers to describe the
transformation of the activity statistics in deep networks.

To characterize the collective property of the entire hidden
representation, we define an intrinsic dimensionality of the

FIG. 2. Representation dimensionality versus depth in determin-
istic deep networks with random weights. Ten network realizations
are considered for each network width. ρ/

√
N = 0.05, g = 0.8,

and σb = 0.1. The right inset shows how the overall strength of
covariance changes with depth and connection strength (g), and the
left inset is a mechanism illustration (�0,1,∗ has been scaled by N ).
The crosses show simulation results (g = 0.8) obtained from 105

sampled configurations at each layer, compared with the theoretical
predictions.

representation as D = (
∑N

i=1 λi )
2∑N

i=1 λ2
i

[20], where {λi} is the eigen-

spectrum of the covariance matrix Cl . It is expected that
D = N if each component of the representation is generated
independently with the same variance. Generally speaking,
nontrivial correlations in the representation will result in D <

N . Therefore, we can use the above mean-field equation to-
gether with the dimensionality to address how the complexity
of hierarchical representations changes along the depth.

Based on this mean-field framework, we first study the
aforementioned deterministic deep neural networks. Regard-
less of whichever network width is used, we find that the
representation dimensionality progressively decreases across
layers (Fig. 2). The theoretical results agree very well with
numerical simulations (indicated by crosses in Fig. 2). This
shows that, even in a random multilayered neural network,
a more compact representation of the correlated input is
gradually computed as the network becomes deeper, which
is also one of the basic properties in biological hierarchical
computations [2,21].

To get deeper insights about the hidden representation,
we study how the overall strength of covariance at each
layer changes with the network depth and the connection
strength (g). The overall covariance-strength is measured by
� = 2

N (N−1)

∑
i<j C2

ij , which is related to the dimensional-

ity via � = 1
N−1 [( 1

N

∑
i Cii )2/D̃ − 1

N

∑
i C

2
ii], where D̃ =

D/N , which is derived by noting that tr(C) = ∑
i λi and

tr(C2) = ∑
i λ

2
i . We find that, to support an effective repre-

sentation where neurons are not completely independent, the
connection strength must be sufficiently strong (Fig. 2), such
that weakly correlated neural activities are still maintained
at later stages of processing. Otherwise, the information will
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be blocked from passing through that layer where the neural
activity becomes completely independent. High correlations
imply strong statistical dependence and thus redundancy.
An efficient representation must not be highly redundant
[12], because a highly redundant representation cannot be
easily disentangled and is thus not useful for computation;
e.g., coadaptation of neural activities is harmful for feature
extraction [22].

The dimensionality reduction results from the nested
nonlinear transformation of input data. For a mechanistic
explanation, by noting that �l

ij is of the order O(1/
√

N ), we
expand Cl

ij = Kij�
l
ij + O[(�l

ij )2] in a large-N limit
(Appendix B), where Kij ≡ φ′(x0

i )φ′(x0
j ) and x0

i,j ≡
bl

i,j + [wlml−1]i,j . Then �l 	 g2κ2�l−1 + g2κ2

N2

∑
i (C

l−1
ii )2

where κ ≡ [φ′(x0
i )]2 (the average is taken over the random

network parameters, see Appendix B). For the random
model, N�1 = g2κ2(N�0 + 1), which determines a
critical N�∗ = g2κ2

1−g2κ2 (so-called operating point), such
that a first boost of the correlation strength is observed
when �0 < �∗ (Fig. 2); otherwise, the correlation level
is maintained, or decorrelation is achieved. The iteration
of �l can be used to derive D̃1 = 1

(N−1)�0+1+ϒ
, where

ϒ > 0 and its value depends on the layer’s parameters.
Thus ϒ determines how significantly the dimensionality
is reduced, and the dimensionality reduction is explained
as D̃1 < D̃0 = 1

(N−1)�0+1 . This relationship carries over to
deeper layers (Appendix B), due to an additive positive term
in the denominator of the dimension formula. Therefore,
the decorrelation of redundant inputs together with the
dimensionality reduction is theoretically explained.

III. A STOCHASTIC DEEP NETWORK

It is of practical interest to see whether a deep generative
model trained in an unsupervised way has a similar collective
behavior. We consider a deep belief network (DBN) as a
typical example of stochastic deep networks [5], in which
each neuron’s activity at one hidden layer takes a binary
value (±1) according to a stochastic function of the neuron’s
preactivation. Specifically, the DBN is composed of multiple
restricted Boltzmann machines (RBMs) stacked on top of
each other (Fig. 1). RBM is a two-layered neural network,
where there are no lateral connections within each layer, and
the bottom (top) layer is also named the visible (hidden)
layer. Therefore, given the input hl at the lth layer, the neural
representation at a higher (l + 1-th) layer is determined by a
conditional probability:

P (hl+1|hl ) =
∏

i

e
hl+1

i

(
[wl+1hl ]i+bl+1

i

)
2 cosh

(
[wl+1hl]i + bl+1

i

) . (2)

Similarly, P (hl|hl+1) is also factorized.
The DBN as a generative model, once network parameters

(weights and biases) are learned (so-called training) from
a data distribution, can be used to reproduce the samples
mimicking that data distribution. With deep layers, the net-
work becomes more expressive to capture high-order inter-
dependence among components of a high-dimensional input,

compared with a shallow RBM network. To study the expres-
sive property of the DBN, we first specify a data distribution
generated by a random RBM whose parameters follow the
normal distribution N (0, g/N ) for weights and N (0, σb ) for
biases. Using the random RBM as a data generator allows us
to calculate analytically the complexity of the input data. In
the random RBM, the hidden neural activity h at the top layer
can be marginalized over using the conditional independence
[Eq. (2)]; thus the distribution of the representation v at the
bottom layer can be expressed as (Appendix C)

P (v) = 1

Z

∏
a

{2 cosh([wl+1v]a + ba )}
∏

i

evibi , (3)

where a is the site index of hidden neurons, and Z is the parti-
tion function. Based on the Bethe approximation [23], which
captures weak correlations among neurons, the covariance of
neural activity (the same definition as before) under Eq. (3)
can be computed from the approximate free energy using the
linear response theory (Appendix D). The estimated statistics
of the random-RBM representation are used as a starting point
from which the mean-field complexity-propagation equation
[Eq. (1)] iterates, for the investigation of the dimensionality
and the redundancy reduction in the deep generative model.

Finally, we study the generative deep network where net-
work parameters are learned in a bottom-up pass from the
representations at lower layers. The network parameters for
each stacked RBM in the DBN are updated by the contrast
divergence procedure truncated to one step [24]. With this lay-
erwise training, each layer learns a nonlinear transformation
of the data, and upper layers are conjectured to learn more
abstract (complex) concepts, which is a key step in object
recognition problems [25]. One typical learning trajectory
for each layer is shown in the top inset of Fig. 3(a), where
the reconstruction error decreases with the learning epoch.
The input data and subsequent representation complexity are
captured very well by the theory [Fig. 3(b)]. We use the mean-
field framework derived for deterministic networks to study
the complexity propagation (starting from the statistics of the
input data), which is reasonable, because to suppress the noise
due to sampling, the mean activities at the intermediate layer
are used as the input data when the next layer is learned [24].
Therefore, the stochasticity of the neural response is implicitly
encoded into the learned parameters during training.

Compared to the initial input dimensionality, the represen-
tation dimensionality the successive layers create becomes
lower [Fig. 3(a)], which coincides with observations in the
deterministic random deep networks. This feature does not
change when more neurons are used in each layer. Dur-
ing learning, the evolution of the dimensionality displays a
nonmonotonic behavior [Fig. 3(c)]: the dimensionality first
increases and then decreases to a stationary value. Moreover,
the learning decorrelates the correlated input, whereas, after
the first drop, the learning seems to preserve a finite level of
correlations [the bottom inset of Fig. 3(a)]. These compact
representations may remove some irrelevant factors in the
input, which facilitates the formation of easily decoded repre-
sentations at deeper layers. Our theoretical analysis in random
neural networks will likely carry over to this unsupervised
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FIG. 3. (a) Representation behavior as a function of depth in generative deep networks. Ten network realizations are considered for each
network width. The top inset shows an example (N = 150) of reconstruction errors (ε ≡ ‖h′ − h‖2

2) between input h and reconstructed one
h′ for each layer during learning. The bottom inset shows the overall strength of covariance as a function of depth. (b) Numerically estimated
off-diagonal correlation versus its theoretical prediction (N = 150). In these plots, we generate M = 60 000 training examples (each example
is an N -dimensional vector) from the random RBM whose parameters follow the normal distribution N (0, g/N ) for weights and N (0, σb ) for
biases. g = 0.8 and σb = 0.1. Then these examples are learned by the DBN (see simulation details in Appendix C). (c) One typical learning
trial shows how the estimated dimensionality evolves.

learning system; e.g., the operating point may explain the
low-level preserved correlation.

By looking at the eigenvalue distribution of the covariance
matrix, we find that the distribution for the unsupervised
learning system deviates significantly from the Marchenko-
Pastur law of a Wishart ensemble [26] (Appendix E). For the
random neural networks, the eigenvalue distribution at deep
layers seems to assign a higher probability density when the
eigenvalue gets close to zero, yet a lower density at the tail of
the distribution, compared with the Marchenko-Pastur law of a
random-sample covariance matrix [27] (Appendix E). There-
fore, the dimensionality reduction and its relationship with
decorrelation are a nontrivial result of the deep computation.

IV. SUMMARY

Brain computation can be thought of as a transformation of
internal representations along different stages of a hierarchy
[3,21]. Deep artificial neural networks can also be interpreted
as a way of creating progressively better representations of
input sensory data. Our work provides mean-field evidence
about this picture that compact representations of relatively
low dimensionality are progressively created by deep compu-
tation, while a small level of correlations is still maintained to

make feature extraction possible, in accord with the redun-
dancy reduction hypothesis [12]. In the deep computation,
more abstract concepts captured at higher layers along the
hierarchy are typically built upon less abstract ones at lower
layers, and high-level representations are generally invariant
to local changes of the input [2], which thereby coincides
with our theory that demonstrates a compact (compressed)
representation formed by a series of dimensionality reduction.
Unwanted variability may be suppressed in this compressed
representation. It was hypothesized that neuronal manifolds
at lower layers are strongly entangled with each other, while
at later stages, manifolds are flattened to facilitate that rele-
vant information can be easily decoded by downstream areas
[1,2,21], which connects to the small level of correlations
preserved in the network for a representation that may be
maximally disentangled [28].

Our work thus provides a theoretical underpinning of the
hierarchical representations, through a physics explanation of
dimensionality reduction and decorrelation, which encourages
several directions such as generalization of this theory to
more complex architectures and data distributions, demon-
stration of how the compact representation helps generaliza-
tion (invariance) or discrimination (selectivity) in a neural
system [29,30], and using the revealed principles to control
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the complexity of internal representations for an engineering
application.
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APPENDIX A: DERIVATION OF MEAN-FIELD
EQUATIONS FOR THE COMPLEXITY PROPAGATION IN

DEEP RANDOM NEURAL NETWORKS

We first derive the mean-field equation for the mean
activity ml

i by noting that its pre-activation ãl
i + bl

i = al
i +

[wlml−1]i + bl
i . al

i behaves like a Gaussian random variable
with zero mean and variance �l

ii , depending on the fluctuating
input; thus the average operation for the mean activity can be
computed as a Gaussian integral:

ml
i = 〈hl

i〉 =
∫

Dtφ
(√

�l
ii t + [wlml−1]i + bl

i

)
. (A1)

Analogously, to compute the covariance Cl
ij , one first evalu-

ates the statistics of the pre-activations of units i and j , i.e.,
al

i and al
j , which follows a joint Gaussian distribution with

zero mean, variances �l
ii and �l

jj , respectively, and covari-
ance �l

ij . Therefore, one can use two independent standard
Gaussian random variables with zero mean and unit variance
to parametrize this joint distribution, which results in

Cl
ij =

∫
DxDyφ

(√
�iix + bl

i + [wlml−1]i
)

×φ
[√

�jj

(
�x + y

√
1 − �2

) + bl
j + [wlml−1]j

]
−ml

im
l
j , (A2)

where Dx = e−x2/2dx/
√

2π and � = �ij√
�ii�jj

. The super-

script l is omitted for the covariance of al . It is easy to verify
that the above parametrization of al

i and al
j follows the same

statistics as mentioned above.

APPENDIX B: THEORETICAL ANALYSIS
IN THE LARGE-N LIMIT

In the thermodynamic limit, the covariance of activation
al , �l

ij , is of the order of O(1/
√

N ), where N is the network
width. This is because both the weights and the (connected)
correlations are also of the order of O(1/

√
N ). Thus, one

can expand the covariance equation [Eq.(A2)] in the small
�ij limit. After the expansion and some simple algebra, one
obtains

Cl
ij = Kij�ij + O

(
�2

ij

)
, (B1)

where Kij = φ′(x0
i )φ′(x0

j ) and x0
i,j = bl

i,j + [wlml−1]i,j . It
follows that

�l 	 2

N (N − 1)

∑
i<j

K2
ij�

2
ij

	 g2K2
ij�

l−1 + g2K2
ij

N2

∑
i

(
Cl−1

ii

)2
, (B2)

where K2
ij 	 [φ′(x0

i )]2
2

in which the mean (overline) is taken
over the quenched disorder, based on the facts that the cor-
relation between different weights is negligible and that the
covariance of the mean preactivations of different units is
negligible as well in the thermodynamic limit.

Finally, [φ′(x0
i )]2 = ∫

Dt
∫

Du[φ′(
√

σbu +
√

gQl−1t )]2,
where one independent Gaussian random variable (u) corre-
sponds to the randomness of the bias, and the other Gaussian
random variable (t) corresponds to the random mean preacti-
vation [wlml−1]i because of the random weights. In addition,
gQ specifies the variance of the mean preactivation, with the
definition Q = 1

N

∑
i m

2
i (or spin glass order parameter in

physics). Clearly, Q can be iteratively computed from one
layer to its next layer as follows:

Ql =
∫

Dt

∫
Duφ2(√σbu +

√
gQl−1t

)
. (B3)

Note that the initial Q0 = 0 by the construction of the random
model.

Looking at l = 1 for the random model, one finds
[φ′(x0

i )]2 = ∫
Du[φ′(

√
σbu)]2 ≡ κ as defined in the main

text. It follows that �1 = g2κ2�0 + g2κ2/N . Following the
definition of the normalized dimensionality (D̃ = [Tr(C)]2

NTr(C2 ) ,
an alternative definition of the dimensionality in the
main text), one easily arrives at the relationship between
D̃1 = 1

(N−1)�0+1+ϒ
and D̃0 = 1

(N−1)�0+1 , noting that ϒ ≡
[φ′(x0

i )]4

[φ′(x0
i )]2

2 � 1.

To derive the relationship between dimensionality of con-
secutive layers, we first define Kl

1 = 1
N

∑
i C

l
ii and Kl

2 =
1
N

∑
i (C

l
ii )

2, and then we get the normalized dimensionality
of layer l as

D̃l =
(
Kl

1

)2

(N − 1)�l + Kl
2

, (B4)

which is compared with the counterpart at a higher layer l + 1
given by

D̃l+1 =
(
Kl

1

)2

(N − 1)�l + Kl
2 + (

Kl
1

)2
ϒ

. (B5)

To derive Eq. (B5), we used Eq. (B2). Because the additive
term (Kl

1)2ϒ in the denominator is always positive, Eq. (B5)
explains the dimensionality reduction across layers. The value
of the additive term thus determines how significantly the di-
mensionality is reduced. Its behavior with increasing numbers
of layers can also be analyzed within the large-N expansion.
First, we derive the recursion equation for Kl

1. Using the fact

062313-5



HAIPING HUANG PHYSICAL REVIEW E 98, 062313 (2018)

FIG. 4. The behavior of the additive term (Kl
1)2ϒ as a function

of the network depth.

that �ii 	 gKl−1
1 , one derives that

Kl
1 =

∫
Du

∫
Dtφ2

(√
g
(
Kl−1

1 + Ql−1
)
t + √

σbu
) − Ql,

(B6)

by following the same principle as mentioned above. Second,
according to the definition, it is easy to write that

ϒ =
∫

Dt
∫

Du
[
φ′(√σbu +

√
gQl−1t

)]4{ ∫
Dt

∫
Du

[
φ′(√σbu +

√
gQl−1t

)]2}2 . (B7)

Last, we find that the additive positive term tends to be a very
small value as the number of layers increases (Fig. 4), which
is consistent with the observation in a finite-N system. This
implies that the estimated dimensionality at deep layers be-
comes nearly a constant, due to the nearly vanishing additive
term.

APPENDIX C: TRAINING PROCEDURE OF DEEP BELIEF
NETWORKS

A deep belief network (DBN) is composed of multiple
restricted Boltzmann machines (RBMs) stacked on top of
each other. It is a probabilistic deep generative model, because
after network parameters (weights and biases) are learned (so-
called training) from a data distribution, the model can be used
to reproduce the samples mimicking the data distribution.
With deep layers, the network becomes more expressive to
capture high-order interdependence among components of
a high-dimensional input, compared with a shallow RBM
network.

Learning in a deep belief network can be achieved by
layerwise training of each RBM in a bottom-up pass, which
was justified to improve a variational lower bound on the data
log-likelihood [24]. RBM is a two-layered neural network,
where there are no lateral connections within each layer, and
the bottom (top) layer is also named the visible (hidden) layer.
Therefore, the RBM is described by the following energy

function (also named Hamiltonian in physics):

E(s, σ ) = −
∑
i,a

sawiaσi −
∑

a

bh
asa −

∑
i

bv
i σi, (C1)

where s and σ are the hidden and visible activity vectors,
respectively. bh,v is the hidden (h) or visible (v) bias vector. In
statistical mechanics, the neural activity follows a Boltzmann
distribution, P (s, σ ) = exp[−E(s, σ )]/Z, where Z is the par-
tition function of the model. For a large network, Z can only
be computed by approximated methods [16]. This distribution
can be used to fit any arbitrary discrete distribution, following
the maximal likelihood learning principle; i.e., the network
parameters are updated according to gradient ascent of the
data log-likelihood defined as follows:

L =
∑

a

〈
ln

[
2 cosh

(∑
i

wiaσi + bh
a

)]〉
data

+
∑

i

bv
i 〈σi〉data

− ln Z, (C2)

where the average is performed over all training data samples
(or a mini-batch of the entire data set in the case where
stochastic gradient ascent is used). The gradient ascent leads
to the following learning equations for updating network
parameters:

�wia = η[〈σisap(sa|σ )〉data − 〈saσi〉model], (C3a)

�bv
i = η[〈σi〉data − 〈σi〉model], (C3b)

�bh
a = η[〈sap(sa|σ )〉data − 〈sa〉model], (C3c)

where η specifies a learning rate. Since there are no lateral
connections between neurons at each layer, given one layer’s
activity, the other layer’s activity is factorized as

p(s|σ ) =
∏
a

p(sa|σ ) =
∏
a

e
sa

(
[wσ ]a+bh

a

)
2 cosh

(
[wσ ]a + bh

a

) . (C4)

Similarly, p(σ |s) is also factorized.
There are many approximate methods to evaluate the

model-dependent terms in the learning equations. Here, we
use the most popular method, namely contrast divergence
[24]. More precisely, RBMs are trained in a feedforward
fashion using the contrast divergence algorithm [24], where
Gibbs samplings of the model starting from each data point
are truncated to a few steps and then used to compute model-
dependent statistics for learning. The upper layer is trained
with the lower layer’s parameters being frozen. During the
training of each RBM, the visible inputs are set to the mean
activity of hidden neurons at the lower layer, while hidden
neurons of the upper layer still adopt stochastic binary values
according to Eq. (C4). With this layerwise training, each
layer learns a nonlinear transformation of the data, and up-
per layers are conjectured to learn more abstract (complex)
concepts, which is a key step in object and speech recognition
problems [25].

The DBN learns a data distribution generated by a ran-
dom RBM whose parameters follow the normal distribution
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N (0, g/N ) for weights and N (0, σb ) for biases. g = 0.8 and
σb = 0.1 unless otherwise specified. Using the RBM as a data
generator allows us to control the complexity of the input data.
In addition, the RBM has been used to model many real data
sets (e.g., handwritten digits [24]). In numerical simulations
(Fig. 3 in the main text), we generate M = 60 000 training
examples (each example is an N -dimensional vector) from
the random RBM. Then these examples are learned by RBMs
in the DBN. We divide the entire data set into mini-batches
of size B = 150. One epoch corresponds to a sweep of the
entire data set. Each RBM is trained for tens of epochs until
the reconstruction error (ε ≡ ‖h′ − h‖2

2) between input h and
reconstructed input h′ does not decrease. We use an initial
learning rate of 0.12 divided by �t/10� at the t th epoch, and
an 
2 weight decay parameter of 0.0025.

APPENDIX D: ESTIMATING THE COVARIANCE
STRUCTURE OF A RANDOM RESTRICTED BOLTZMANN

MACHINE

To study the complexity propagation in the DBN, it is nec-
essary to evaluate the statistics of the input data distribution,
which is provided by a random RBM in the model setup of
stochastic neural networks. This is because the estimated co-
variance can be used as a starting point from which the mean-
field complexity-propagation equation iterates. In addition,
characterizing the RBM representation may provide insights
towards deep representations, since RBM is a building block
for deep models and moreover a universal approximator of
discrete distributions [31].

Given the RBM, the hidden neural activity at a higher
layer (e.g., s) can be marginalized over using the conditional
independence [Eq. (C4)]; thus the distribution of the represen-
tation at a lower layer (e.g., σ ) can be expressed as

P (σ ) =
∑

s

P (s, σ ) = 1

Z

∏
a

{
2 cosh

(
[wl+1σ ]a

+ bh
a

)} ∏
i

eσib
v
i , (D1)

where Z is the partition function intractable for a large N .
To study the statistics of the RBM representation, we need
to compute the free energy function of Eq. (D1) defined as
F = − ln Z, where a unit inverse temperature is assumed. We
use the Bethe approximation to compute an approximate free
energy defined by FBethe. In physics, the Bethe approxima-
tion assumes P (σ ) ≈ ∏

a Pa (σ ∂a )
∏

i Pi (σi )1−N [32], where
a (∂a) indicates a factor node (its neighbors) representing
the contribution of one hidden neuron to the joint probability
[Eq. (D1)] in a factor graph representation [16]. Pa and Pi

can be obtained from a variational principle of free energy
optimization [16]. This approximation takes into account the
correlations induced by nearest neighbors of each neuron in
the factor graph, which thus improves the naive mean-field
approximation where neurons are assumed independent.

Covariance of neural activity under Eq. (D1) (the so-called
connected correlation in physics) can be computed from the
approximate free energy using the linear response theory.
However, due to the approximation, there exists a statistical
inconsistency for diagonal terms computed under the Bethe

approximation, i.e., Cii �= 1 − m2
i . Therefore, we impose the

statistical consistency of diagonal terms on a corrected free
energy as F̃Bethe = FBethe − 1

2

∑
i �i (1 − m2

i ) [33–35]. Fol-
lowing the similar procedure in our previous work [16], we
obtain the following mean-field iterative equation:

mi→a = tanh

⎛
⎝bv

i − �imi +
∑

a′∈∂i\a
ua′→i

⎞
⎠, (D2a)

ua′→i = 1

2
ln

cosh
(
bh

a′ + Ga′→i + wia′
)

cosh
(
bh

a′ + Ga′→i − wia′
) , (D2b)

where Ga′→i ≡ ∑
j∈∂a′\i wja′mj→a′ and the correction intro-

duces an Onsager term (−�imi). The cavity magnetization
mi→a can be understood as the message passing from the
visible node i to the factor node a, while the cavity bias ua′→i

is interpreted as the message passing from the factor node a′
to the visible node i. In fact, Eq. (D2) is not closed. {�i} must
be computed based on correlations. Therefore, we define the
cavity susceptibility χi→a,k ≡ ∂mi→a

∂bv
k

[36]. According to this
definition and the linear response theory, we close Eq. (D2) by
obtaining the following susceptibility propagation equations:

χi→a,k = (
1 − m2

i→a

) ∑
a′∈∂i\a

�a′→iPa′→i,k + δik

(
1 − m2

i→a

)
−�iCik, (D3a)

Cik = 1 − m2
i

1 + (
1 − m2

i

)
�i

Fik, (D3b)

�i = Fii − 1

1 − m2
i

, (D3c)

where the full magnetization mi = tanh(bv
i − �imi +∑

a′∈∂i ua′→i ), �a→i ≡ tanh(wia )[1−tanh2(bh
a+Ga→i )]

1−tanh2(bh
a+Ga→i ) tanh2(wia )

, Pa→i,k ≡∑
j∈∂a\i χj→a,kwja , and Fik ≡ ∑

a∈∂i �a→iPa→i,k + δik . It
is easy to verify that Eq. (D3) leads to the consistency for
the diagonal terms. Adding the diagonal constraint through
the Lagrange multiplier � can not only solve the diagonal
inconsistency problem but also improve the accuracy of
estimating off-diagonal terms. After the RBM parameters
(weights and biases) are specified, we run the above iterative
equations [Eqs. (D2) and (D3)] from a random initialization of
the messages and estimate the covariance and the associated
representation dimensionality from the fixed point. These
statistics are used as an initialization condition for the
complexity-propagation equation [Eq. (1) in the main text]
that is used to study the expressive property of the DBN with
trained weights and biases.

We finally remark that, for a trained RBM, some compo-
nents of the correlation matrix may lose the symmetry prop-
erty (Cij �= Cji), likely because of the above Bethe (cavity-
based) approximation incapable of dealing with an irregular
distribution of learned connection weights. The irregularity
means that the distribution is divided into two parts: the bulk
part is around zero, while the other part is dominated by a few
large values of weights (as also observed recently in spectral
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FIG. 5. The eigenvalue distribution of the covariance matrix estimated from the deep computation. (a) The distribution for the deep
networks with random weights (N = 100). One hundred instances are used. In the inset, the distribution at deeper layers is compared with the
Marchenko-Pastur law of a random-sample covariance matrix. The tail part is enlarged for comparison. (b) The distribution obtained from an
unsupervised learning system of deep belief networks is strongly different from the Marchenko-Pastur law. Ten instances are used.

dynamics of learning in RBMs [37]). Our mean-field formula
[Eqs. (D2) and (D3)] may offer a basis to be further improved
to address this interesting special property, although one can
enforce the symmetry by [Cij + Cji]/2 in our mean-field
formula.

APPENDIX E: THE EIGENVALUE DISTRIBUTION
OF THE COVARIANCE MATRIX

To analyze the eigenvalue distribution of the covariance
matrix at each layer of deep networks, we first construct a
random-sample covariance matrix. More precisely, we con-
sider a real Wishart ensemble, where a random-sample co-
variance matrix is defined as 1

N
ξξT in which ξ defines an

N × P matrix whose entries follow independently a normal
distribution N (0, ς2). In fact, ξ can be thought of as a random
uncorrelated pattern matrix. To compare the real Wishart
ensemble with the covariance matrix estimated from the

mean-field theory of deep networks, we choose P = N ,
and ς2 is obtained by matching the range of the eigen-
value. The designed random-sample covariance matrix has the
Marchenko-Pastur law for the density of eigenvalues [26,27]:

μ(λ) = 1

2πλς2
[(λ − λ−)(λ+ − λ)]1/2, (E1)

where λ ∈ [λ−, λ+], λ− = 0, and λ+ = 4ς2.
For the random neural networks, the eigenvalue distri-

bution at deep layers seems to assign a higher probability
density when the eigenvalue gets close to zero, yet a lower
density at the tail of the distribution [Fig. 5(a)], compared with
the Marchenko-Pastur law of a random-sample covariance
matrix. For the unsupervised learning system, we find that the
distribution deviates significantly from the Marchenko-Pastur
law of a Wishart ensemble. The distribution has a Gaussian-
like bulk part together with a long tail [Fig. 5(b)]. Therefore,
the dimensionality reduction and its relationship with decor-
relation are a nontrivial result of the deep computation.
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