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In this work we study pedestrian-pedestrian interactions from observational experimental data in diluted
pedestrian crowds. While in motion, pedestrians continuously adapt their walking paths trying to preserve
mutual comfort distances and to avoid collisions. Leveraging on a high-quality, high-statistics data set, composed
of several few millions real-life trajectories acquired from state-of-the-art observational experiments (about
6 months of high-resolution pedestrian tracks acquired in a train station), we develop a quantitative model
capable of addressing interactions in the case of binary collision avoidance. We model interactions in terms
of both long-range (sight based) and short-range (hard-contact avoidance) forces, which we superimpose on our
Langevin model for noninteracting pedestrian motion [Corbetta et al., Phys. Rev. E 95, 032316 (2017)] (here
further tested and extended). The model that we propose here features a Langevin dynamics with fast random
velocity fluctuations that are superimposed on the slow dynamics of a hidden model variable: the intended
walking path. In the case of interactions, social forces may act both on the intended path and on the actual
walked path. The model is capable of reproducing quantitatively relevant statistics of the collision avoidance
motion, such as the statistics of the side displacement and of the passing speed. Rare occurrences of actual
bumping events are also recovered. Furthermore, comparing with large data sets of real-life tracks involves an
additional computational challenge so far neglected: identifying automatically, within a database containing very
heterogeneous conditions, only the relevant events corresponding to binary avoidance interactions. In order to
tackle this challenge, we propose a general approach based on a graph representation of pedestrian trajectories,
which allows us to effectively operate complexity reduction for efficient data classification and selection.
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I. INTRODUCTION

When we walk in a known environment or we explore a
new venue, a path is planned in our minds (our “intended
path”). As other pedestrians approach us, or as we learn
features of the environment (e.g., better directions toward a
target destination), this path is continuously adjusted. Either
as an impulsive act or as a timely planned adjustment, we
sidestep to maintain comfort distances among ourselves and
other close by pedestrians. This comes with a modification
of our intended walking paths that bend in order to prevent
contacts or collisions with others.

The aim of this paper is to quantitatively understand and
model the dynamics behind these path changes, in the simplest
condition of two pedestrians walking in opposite directions,
trying to avoid each other (“pairwise avoidance”; see Fig. 1).
This is the first necessary step to understand the interaction
physics between pedestrians, before attempting to tackle more
complex situations.

The dynamics of path changes is a challenging subject
within the broader and compelling issue of understanding
the flow of pedestrian crowds [1]. Not only is this scientific
topic fascinating because of its connections with the physics
of emerging complexity [2], pattern formation [3,4], and

active matter [5,6], but it is also extremely relevant for its
applications for the design, safety, and performance of civil
facilities [7,8].

Because of the macroscopic analogies between crowd and
fluid flows [9], modeling pedestrian dynamics in terms of
interacting matter particles has become an emerging approach
[6]. This analogy underlies proper translations between pas-
sive fluid particles, which move under the action of classic
interaction forces, and active pedestrians in crowds that inter-
act via social forces [10]. Social forces abstract pedestrian-
pedestrian interactions in a Newtonian-like way. As such,
we expect that mutual repulsive interaction (social) forces
may act to ensure comfort distances and collision avoidance,
possibly modifying pedestrians’ intended paths.

Despite the growing scientific and technological interest
for the motion of pedestrian crowds, our quantitative under-
standing remains relatively limited, especially in comparison
to other kinds of active matter systems [11]. A major limita-
tion comes from the fact that high-quality experimental data,
with high resolution in space and time, still remain scarce.
An important point to be understood is that pedestrian motion
has a strong variability, which can be decoupled from average
trends only by considering measurements with extremely
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FIG. 1. Mutual avoidance of two pedestrians walking in opposite
directions (pairwise avoidance). Pedestrians walk trying to follow
straight intended paths (snapshot i), around which they perform
random fluctuations (cf. Sec. IV). Individual motions, however,
remain influenced by the dynamics of peers. As a peer approaches,
the intended path is adjusted (snapshot ii) to ensure maintenance of
mutual comfort distance (snapshot iii). We investigate and model
quantitatively the avoidance dynamics (cf. Sec. V) with reference
to three distances d , transversal to the direction of motion, and
characteristic of the interaction: (i) before adjusting the intended
path (at the entrance of our observation window), (ii) when the two
pedestrians are side-by-side, and (iii) when pedestrians leave our
observation window.

high statistics. For instance, in the case of a narrow corridor
[12], one needs tens of thousands of measured trajectories
to estimate the amplitude of the observables’ fluctuations
(e.g., fluctuations in walking position, velocity, etc.) and to
characterize the occurrence of related rare events. In this
paper we employ data from tens of thousands of avoidance
events to investigate quantitatively and model the changes in
intended paths from pairwise avoidance. The measurement
of these events was achieved through a months-long real-life
experimental campaign that we performed in the main walk-
way of the train station of Eindhoven, the Netherlands, with
state-of-the-art automated pedestrian tracking (see Fig. 2).

The current scarceness of high-quality measurement data is
probably related to technical challenges connected to the ac-
quisition of pedestrian trajectory data. Collecting data in real-
life conditions demands robust individual tracking techniques,
i.e., techniques that remain accurate regardless of factors such
as illumination, clothing, presence of objects, crowd density,
and so on.

The analysis of pedestrian dynamics in a real-life setting
involves, moreover, an additional challenge so far neglected:
the automated crowd scenario classification. To illustrate this,
let us consider the trajectories collected over weeks in a
measurement zone within, e.g., a station or a mall. These
trajectories will certainly encompass different and alternating
crowd scenarios. For instance, these can include pedestrians
walking undisturbed (i.e., with no peers walking in their
neighborhood), pedestrians in small or large social groups,
diluted or dense crowd streams in counterflows, diluted or
dense crowd streams in coflows, and so on (indeed, all these
scenarios occur in the measurements considered in this paper;
see Fig. 2). If we focus on a given scenario that is defined
by a set of parameters (for instance, pedestrians walking in
a unidirectional flow at an assigned density level), and we
compare the measurements from the occurrences of such
a scenario, we expect to observe analogous features up to
random fluctuations. Besides, as the number of observed
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FIG. 2. Experimental setup used in our 6-month-long pedestrian
tracking campaign at the train station in Eindhoven, NL; cf. Sec. II.
(a) Planar layout of the north entrance hall of Eindhoven train station
(as it was between 2013 and early 2015). The measurement area
is shaded. The entrance hall, facing the bus terminal of the city,
leads to a 70-m-long tunnel connecting to the south side of the
city. The rail platforms are reachable from the tunnel via several
side staircases. Our pedestrian dynamics recordings employed four
overhead KinectTM [22] sensors (K) with partially overlapping view.
The sensors were attached to the side of the overhang and were
supported by metallic arms [cf. (b)]. The snapshot in (b) was taken
from point Q, i.e., in the vicinity of a structural pillar (P) (about 5 m
upstream of the recording area).

occurrences increases, we can quantify with higher and higher
accuracy the statistics of fluctuations and of the rare events
characteristic of the scenario. For instance, people walking
undisturbed are expected to have similar speed within fluc-
tuations. If instead we consider social groups, we expect to
measure velocities consistently lower than in the undisturbed
case [13]. Similarly, we expect counterflow occurrences to
exhibit mutual similarities, yet to feature different charac-
teristic fluxes than coflow conditions [14,15]. The scenario
considered in this paper involves pairs of pedestrians mutually
avoiding each other. To analyze the scenario including statistic
fluctuations, we aggregate and analyze as an ensemble all the
trajectories occurring under such conditions.

More in general, we are interested in subcollections of our
observational experimental data pertaining to a given scenario
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of interest, from now on referred to as a selected scenario
(Ssel). Each Ssel is itself defined by a set of control param-
eters (e.g., number of pedestrians involved, flow conditions
considered, etc.). All occurrences of a Ssel in the experimental
data set constitute the experimental data, which we investigate
as in a traditional laboratory experiment. Differently from
a laboratory experiment, the pedestrians involved are not
instructed to perform a predefined dynamics (cf. e.g., [16]);
rather they can freely walk, without potential biases from
the experimental setting. Identifying the subset of trajectories
belonging to a target scenario is thus a necessary first step in
our investigation. Since we deal with hundreds of thousands of
trajectories, this identification cannot be performed manually.
In fact, this would demand an exhaustive visual analysis of
thousands of hours of sensors’ footage (something that has
been routinely performed by humans in other smaller scale
investigations, e.g., to select groups in Ref. [17], to classify
walking patterns in Ref. [18], or to isolate people waiting in
Ref. [19]). More in general, this identification task underlies
a classification problem in which we associate each trajectory
with its scenario.

Automatizing the trajectory classification task is the second
aim of this paper, and it is instrumental to analyze the dynam-
ics of path changes. While automatic classification is widely
studied in connection with, e.g., images, text, or speech con-
tent [20], to the best of our knowledge this topic remains not
yet addressed in the context of scenarios made of (pedestrian)
trajectories. Once more, this likely relates with the fact that
extensive data collection campaigns for pedestrian dynamics
remain a rarity.

In this paper we target a twofold state-of-the-art ad-
vancement. First, we propose a representation strategy for
pedestrian dynamics measurements, based on graphs, to for-
mally identify scenarios and automatically classify and select
real-life trajectory data on such a basis. Second, we ad-
dress quantitatively the dynamics of path changes and related
pedestrian-pedestrian social forces in the case of avoidance
events involving two individuals (i.e., no third individual plays
a role in the dynamics). For this we propose a Langevin-like
model, built by extending our previous quantitative model for
the diluted (i.e., undisturbed and noninteracting) pedestrian
dynamics [12] (cf., e.g., [5,21] for a general modeling ref-
erence on Langevin equations). The model is constructed in
two steps. First, we generalize the diluted dynamics model
to address a richer phenomenology, which is given by a
mixture of pedestrians walking and (in tiny percentages)
running. Second, we introduce and validate pairwise social
forces that act simultaneously on the actual trajectory and on
the intended path which we consider a model variable too.
This force model enables us to reproduce quantitatively our
measurements of the pairwise avoidance dynamics including
fluctuations and rare events (actual impacts).

The content of this paper is as follows. In Sec. II we
describe our measurement campaign and the acquired data,
in the order of millions of trajectories. This sets a basis for
both the methodological and the modeling contributions of
this work, that are in Sec. III and Secs. IV and V, respectively.
In Sec. III we tackle the trajectory selection and classification
issue. In Sec. IV we address the motion of undisturbed pedes-
trians. This is a necessary building block for Sec. V, in which

we analyze and model the dynamics of pairwise avoidance
and of the intended path. Section VI closes the paper with a
summary and final discussion.

II. MEASUREMENT CAMPAIGN

The pedestrian dynamics data employed in this work have
been collected in the period from October 2014 to March
2015 through a 24/7 real-life campaign at Eindhoven train
station. Our data acquisition took place in the initial section
of the main walkway of the station as presented in Fig. 2. The
walkway is one of the major pedestrian pathways between the
north side and the south side of the city with crowd traffic
during the entire day. Different dynamics ordinarily occur,
such as coflows and counterflows with density ranging from
extremely low (one pedestrian in the entire walkway at night
time) to high during the morning peak commute times [14].
We aimed at an exhaustive individual tracking with high space
and time resolution and overall we collected about 100 000
trajectories per day and approximately five millions in total.

Four overhead Microsoft KinectTM sensors [22] with par-
tially overlapping view recorded imaginglike data, specifically
depth maps, at the rate of 15 frames/s. Depth maps encode
in grayscale levels the distance between each filmed pixel
and the camera plane; thus regions closer to the overhead
sensors, such as heads, result in darker shades. We blend
the four depth map signals into a single stream covering the
entire measurement region of which we report few frames
(already postprocessed to include, e.g., individual trajectories)
in Fig. 6. As in our previous investigations (e.g., [23,24])
and following Refs. [25,26], we use cluster-based analyses
of depth maps to perform accurate localization of pedestri-
ans’ bodies and heads on a frame-by-frame basis. Finally,
we employ particle-tracking algorithms to extract individual
trajectories from the output localization step. We leave further
technical details on the detection and tracking procedures to
Appendix A.

III. REPRESENTATION AND CLASSIFICATION
OF CROWD FLOW DATA

In this section we define two subsets of the trajectories
collected in our measurement campaign (cf. Sec. II), which
we will use to investigate, respectively, the dynamics of
undisturbed flows, considered in Sec. IV, and the dynamics
of the pairwise avoidance, considered in Sec. V. These sub-
sets will be the output of a more general representation and
classification construct, based on graphs, introduced here.

The underlying issue, as stated in Sec. I, is that large-scale
measurements of pedestrian dynamics in real-life conditions
typically include different scenarios frequently and randomly
changing (see also [27]). For instance, around commuting
time, in the walkway in Fig. 2, the flow changes abruptly
from diluted to dense. Every few seconds, the typical bidi-
rectional pedestrian flow rapidly turns into a unidirectional
dense stream composed of the passengers who had just arrived
by train. The scenarios of our interest (undisturbed flow and
pairwise avoidance) happen as well, yet alternate at random
with others. Instead, we would like to investigate the dy-
namics of these selected scenarios (cf. Sec. I) separately and
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TABLE I. Bijective correspondences between real-life measurements and their representation in the graph G: summary of concepts and
notation (cf. Sec. III).

Real-life measurement Graph representation

trajectory set � graph G

trajectory (i.e., pedestrian) p ∈ � node p ∈ G

p and q interacting pedestrians edge e = (p, q ) in G̃

scenario set of conditions identifying a subgraph G̃s ⊂ G̃

realizations of the scenario connected components in G̃s

pedestrians walking undisturbed (all realizations) subgraph G̃1 ⊂ G̃ of the singleton nodes
undisturbed pedestrian p (one realization) p ∈ G̃1

pedestrians in pairwise avoidance (all realizations) subgraph G̃2,a ⊂ G̃ of dyads with opposite walking direction
single pairwise avoidance event of p and q (one realization) dyad {p, q} in G̃2,a connected by an edge

use the data from the realizations of individual scenarios to
increment our statistics. For instance, thousands of times per
day, pedestrians walking undisturbed cross our measurement
area. We expect all of them to exhibit a similar behavior
whose statistics we can accurately determine thanks to the
large number of trajectories. Analogously, we expect pairs of
pedestrians in avoidance (cf. Fig. 1) to show similar features
in all realizations of the same dynamics.

In the following subsections we provide a strategy to
operate with a Ssel. This involves the capability of (i) defining
formally and quantitatively a Ssel and (ii) efficiently classify-
ing and aggregating trajectories based on whether or not they
are realizations of such a Ssel.

In conceptual terms, given the set of measured trajectories,
say, the set � = {p}, we construct a representation of � in
terms of a graph G with a bijective correspondence between
trajectories and graph nodes. This representation, reduced
in complexity with respect to the original data set, suitably
allows us to define a Ssel as a set of conditions that identify
subgraphs of G (Sec. III A). The desired output, i.e., sets of
trajectories that are a realization of a Ssel, is associated with
the connected components of these subgraphs. Trajectories
occurring in the same instance of a selected scenario are in the
same connected component (and, conversely, the complement
of the subgraph identifies trajectories that are not a realization
of the given selected scenario).

In Sec. III B we define two subgraphs G̃1 ⊂ G and G̃2,a ⊂
G, whose connected components identify, respectively, real-
izations of diluted flows and of pairwise avoidance, that we
will use as experimental comparisons for the models consid-
ered, respectively, in Secs. IV and V. In Table I we report a
summary of the symbols and concepts used throughout this
section.

A. Graph-based representation

The graph-based representation technique, described in the
preceding paragraphs and below, significantly improves what
was previously proposed by us in Ref. [27], allowing richer
and more parametric scenario classification (the improvement
occurs through node annotations and edge weighting). Be-
cause of the bijective correspondences between pedestrians
and trajectories and between trajectories and graph nodes,
in the following we will refer to pedestrians, trajectories,
and nodes interchangeably, which we will identify with the
generic symbols p and/or q.

We build G as follows. We scan in chronological order
the set of experimental trajectories (Sec. II) and add a node
p to G when a new trajectory is found. We further annotate
each node with scalar observables of the trajectory. These are
average walking velocity, trajectory length, ultimate direction,
and starting and ending positions.

As we scan the trajectory data we also introduce edges
between nodes. In particular, if pedestrians p and q appear
simultaneously in one or more recorded frames, we add an
edge e = (p, q ) between the associated nodes.

We vector-weight the edge e with scalars quantifying the
pairwise dynamics of p and q. The weight �w(e) reads

�w(e) = (min(d ), max(d ), τ ), (1)

where d is the distance between p and q (cf. Fig. 1), of
which we retain the minimum (min) and the maximum (max)
observed values, and τ is the joint recording time, i.e., the
duration p and q are both present in our recording window.
We report the graph construction algorithm in Fig. 3. We
stress that the procedure to construct the graph is efficient in
the sense that it is linear in time with the number of frames
measured: just one pass of � is necessary to construct G.

B. Flow classification

The representation via G enables us to formally define a
Ssel and efficiently classify observational data in scenarios,
both by exploiting the graph topology. In this subsection we
introduce the general approach starting from the specific cases
of interest for Secs. IV and V.

In Sec. IV we aim at analyzing the dynamics of undisturbed
pedestrians. Singleton nodes in G (i.e., edge bereft) provide a
first, yet incomplete, collection of these pedestrians. In fact, no
other pedestrians potentially perturbing their dynamics were
observed while they were crossing our facility (the singleton
condition would otherwise be violated).

Singleton nodes of G, however, identify just a subset of
pedestrians walking undisturbed. In fact, it is reasonable to
assume that all individuals remaining sufficiently far from
their first neighbor walked undisturbed as well. To correctly
classify these cases, heuristically speaking, we remove edges
from the nodes that are sufficiently far apart from their neigh-
bors and reduce them to singletons.

More formally, we consider a reference pedestrian p as
potentially influenced by a pedestrian q, if q enters p’s
neighborhood Ip (to be geometrically defined below) for at
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FIG. 3. We represent the recorded crowd dynamics with a graph
G. This reduced description enables automatic classification of
different flow scenarios (cf. Sec. III). Employing the three sample
frames (a)–(c), we schematize the graph construction algorithm. As a
pedestrian, e.g., pedestrian 1 in (a), appears in our recording window,
we add a corresponding node in the graph G. When two pedestrians
are simultaneously in the recording window, e.g., 1 and 2 in (b), we
connect the associated nodes with an edge. As further pedestrians are
recorded the graph is expanded. In (c), we imagine that pedestrians
3 and 4 entered the observation window after pedestrian 1 left.
Therefore, their nodes are connected to one another and further
just with the node representing pedestrian 2. We include additional
information in the graph, crucial for the classification task. Each
node is annotated with scalar observables of the associated pedestrian
trajectory (e.g., average velocity and direction) and each edge is
weighted with scalar observables of the pairwise dynamics of the
nodes (e.g., minimum and maximum distances and joint observation
time). In the corridor setup considered, annotating the direction on
each node means identifying one between two possibilities: either
toward the bus terminal or toward the city center (cf. Fig. 2).

least one frame. We define the region Ip (see Fig. 4) consid-
ering two criteria: (i) Pedestrians walking at short distances
(say, smaller than a given threshold dm) most likely have an
influence on the respective dynamics, therefore

min(d ) < dm ⇒ q ∈ Ip; (2)

(ii) pedestrian interactions are anisotropic privileging the mo-
tion and sight directions over the transversal directions [1,28].
Therefore, letting dy,m be a given threshold for the transversal
distance, we set

min(dy ) < dy,m ⇒ q ∈ Ip (3)

(cf. parameters in Table II). We stress that determining if q ∈
Ip or p ∈ Iq consists just of a single check on the vector-
weight �w(e) of the edge e = (p, q ).

In the case in which two pedestrians p and q, connected
by an edge e, exert no influence on the motion of each other
[according to the metric criteria in Eqs. (2) and (3)], we re-
move the edge e. This operation returns a sparsified subgraph
G̃ ⊂ G, likely with an increased number of singletons. Let us
call G̃1 the subgraph of singletons of G̃. Here G̃1 identifies
all the realizations of undisturbed flows, i.e., the experimental
data for our analysis in Sec. IV (further technical constraints
on the data set are described in Sec. III C).

FIG. 4. Sketch of the region Ip around pedestrian p. We consider
the dynamics of p as potentially being influenced by another pedes-
trian, say q, if, at any time, q entered in Ip . Conversely, if, for a time
interval τ no longer than τm, q entered in Ip or likewise p entered in
Iq , we consider the pair (p, q ) as noninteracting (even if the two
pedestrians appear in the same frames; cf. Fig. 6). By removing
the edges in G (cf. G construction in Fig. 3) associated with such
noninteracting pedestrians we obtain G̃, in which only potentially
interacting pedestrians are connected by edges [cf. Sec. III B, Table I,
and Fig. 5(b)]. The region Ip is parametrized by the lengths dm

and dy,m, the minimum length for interaction and the minimum
transversal length for interaction, respectively. (cf. Table II).

As we expect all singleton nodes to be associated with a
similar dynamics (undisturbed pedestrians), we expect con-
nected components with similar edge topology, weights, and
annotation to exhibit similar dynamics and thus to be re-
alizations of the same scenario. In this sense, we formally
define a Ssel by specifying an edge topology and ranges for
weights and annotations. This selects a subgraph G̃s ⊂ G̃, and
all the connected components of G̃s are associated with the
realization of the scenario.

We exploit this concept to retain data about avoidance
dynamics of pairs (Sec. V). We find pairs of pedestrians in
avoidance among the dyads (connected components of two
nodes) in G̃. Specifically, we retain only those dyads in which
(i) the walking directions of the two pedestrians are opposite
and (ii) the two pedestrians initially faced each other. We call
G̃2,a the subgraph of such dyads, to be used in the analyses in
Sec. V. (As in the case of G̃1, also here we consider further
technical constraints, discussed in Sec. III C.) In Fig. 5, we
report a schematic description of the selection of avoidance
pairs, while some examples of real data selected via the
procedure reported here are in Fig. 6.

We finally stress that we use pairwise metric properties
[i.e., �w(e)] as a discriminant of the occurrence of an in-
teraction. It has been recognized recently that pedestrian
interactions, especially at high densities, can be determined
by factors beyond the sole metric [2] as it happens, e.g., for
social animals [29]. As here we restrict the study to free-flow
conditions and to one-to-one interactions, analyses based on
metric arguments appear sufficient.

C. Data sets

In this technical section we discuss the restrictions and
transformations further applied to the trajectory sets selected
by G̃1 and G̃2,a to yield the data sets employed in the
following sections. The restrictions specified below identify
further subgraphs within G̃1 and G̃2,a . We refrain however
from introducing new symbols and maintain, with an abuse of
notation, these identifiers for the subgraphs.
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TABLE II. Parameters employed in the construction of the graph-based representation (Sec. III), in the undisturbed dynamics model
(Sec. IV), and in its extension to include pairwise avoidance (Sec. V). The pairwise avoidance model extends the undisturbed dynamics model
and preserve all its parameters but the percentage of runners. This percentage is reduced following the observations.

Parameter Value Note

Graph-based representation

dm 2.4 m min distance for interaction
dy,m 0.8 m min transversal distance

for interaction
τm 5 frames = 1/3 s min time for interaction
τM 20 frames = 4/3 s min interaction time

retained (Sec. III C)

Undisturbed dynamics

up,w 1.29 ms−1 walkers
up,r 2.70 ms−1 runners percentage

σx 0.25 ms−3/2

σy 0.25 ms−3/2

αw 0.037 m−2 s walkers
αr 0.0015 m−2 s runners percentage
β 1.765 m−2 s
ν 0.297 s−1

yp 0.0 m
runners percentage 4.02%

Pairwise avoidance

θ1 20◦

θ2 90◦

μ 1.0 s−1

R 2.4 m
r 0.6 m
A 1.5 m s−2

B 0.7 m s−2

runners percentage 0.2%

Data set for diluted flow analysis (Sec. IV: constraints on G̃1)

(i) Restriction to straight intended paths and quasirecti-
linear trajectories. We aim at analyzing the fluctuations of
the undisturbed motion when occurring around intended paths
that are straight. In these conditions, we expect to observe tra-
jectories that are quasirectilinear. From energy minimization
arguments (cf. [30]), we expect intended paths to be straight
when it comes to reach targets in obstacle-free environments.
In our data set, we could however also observe largely erratic
trajectories formed, e.g., of circular sections or of parabolic
arcs. As these trajectories are out of our modeling purpose,
we discard them after we identify them through the procedure
described in Appendix B.

(ii) Coordinate system. Limiting our scope to quasirecti-
linear trajectories, we rotate them for convenience such that,
in an (x, y) reference system, x is the longitudinal walking
direction and y is the direction of the transversal fluctuations
(quasirectilinear trajectories have generally different inclina-
tions depending on their starting position (cf. Fig. 14)). The
details of the rotation procedure are in Appendix B.

Data set for pairwise avoidance analysis
(Sec. V: constraints on G̃2,a)

Time thresholding of pairwise dynamics. Due to the finite-
ness of our observation window, the joint observation time

for a pairwise dynamics can be limited to a few frames. For
instance, this occurs when a pedestrian of the pair is about to
leave as the second enters the domain. To exclude these cases
from our data set we impose a lower bound τM on the joint
recorded time, i.e., we require τ > τM . We choose τM to be
comparable to the crossing time of the observation window of
an undisturbed pedestrian. Notably this restriction guarantees
that the point in space at which the two pedestrians of the pair
are closest is roughly in the middle of the observation window.

IV. UNDISTURBED MOTION

In this section we model the dynamics of pedestrians
walking undisturbed (also referred to as free flow), keeping
as a quantitative reference the measurements collected from
the setup in Fig. 2 (cf. Sec. II) and selected through G̃1 (cf.
Secs. III B and III C). The free flow motion is a limit condition
for the dynamics, as it involves pedestrian densities at its low-
est levels. We consider it as a reference condition for which
we interpret pairwise interactions (analyzed in Sec. V) as
perturbations. We proceed to deduce a model for undisturbed
conditions and we then compare it with our measurements in
terms of probability distribution functions.

Individuals crossing a large corridor typically move fol-
lowing straight intended paths along quasirectilinear trajecto-
ries (cf. Sec. III C). Besides this variability in the individual
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FIG. 5. Occurrences of mutual avoidance of two pedestrians
walking in opposite directions are selected automatically using the
graph representation. In this figure we summarize the whole process
that leads from (a) G to (e) the subgraph G̃2,a . First, the graph
representation in (a) is sparsified, removing the edge should two
pedestrians not be interacting (according to the condition in Fig. 4),
yielding the subgraph G̃ in (b). (c) We then isolate the subgraphs of
G̃ constituted only of dyads (connected components with two nodes)
that are isolated to further retain only (d) and (e) the cases in which
the walking directions of pedestrians are opposite, i.e., one pedestrian
walks toward the bus station and the other one toward the city center
(cf. node annotations in Fig. 3). In this last step we further filter to
retain pairs of pedestrians whose interaction time satisfies τ > τM .

intended paths, each pedestrian performs small and high-
frequency random fluctuations (about 1 Hz due to walking
physiology). Moreover, as observed in Ref. [12], rare large
fluctuations in the motion occur too. Such rare large devi-
ations include trajectory inversions. In Ref. [12], these two
apparently independent fluctuating phenomena were treated
as realizations of a unique Langevin stochastic dynamics with
a bistable longitudinal velocity potential. In other words, the
dynamics was treated in terms of a longitudinal velocity u

exhibiting small fluctuations around a stable state u = up plus
occasional velocity inversion events u → −u (for which the
dynamics stabilizes on u = −up).

Here we provide a twofold extension of the Langevin
model in Ref. [12] for the wider, longer, and less constrained

FIG. 6. Examples of depth maps collected in our experimental
campaign (cf. Fig. 2 and Sec. II). Individual trajectories have been
superimposed on the depth maps in postprocessing. Moreover, the
panels include realizations of scenarios of interest. Panel (a) contains
one realization of pairwise avoidance (pedestrians 210 and 212,
joined by a thick black line) and one undisturbed pedestrian (209;
we report the circular region of radius dm around them that remains
not visited by others). Panel (b) contains two realizations of pairwise
avoidance (pedestrians 63 and 64 and pedestrians 65 and 67). Note
that we can have multiple pairwise avoidance realizations in the same
frame, on the condition that there are no interactions between them.
The graph representation flexibly allows us to define these scenarios
and efficiently recover them in the measurements.

walking area considered (cf. Fig. 2). For the sake of complete-
ness, we first present the extended model and then we discuss
it in view of our previous work [12].

For convenience, we adopt a coordinate system (x, y),
where x is a longitudinal coordinate along the walking di-
rection, i.e., along the intended path, which we consider as
a straight line parallel to the longitudinal direction of the
corridor, and parametrized by the variable yp. The variable y

accounts for transversal position, so y − yp identifies the fluc-
tuation around the intended path. We model the longitudinal
and transversal dynamics as uncorrelated Langevin motions
satisfying

dx

dt
= u(t ), (4)

dy

dt
= v(t ), (5)

du

dt
= f (u) + σxẆx, (6)

dv

dt
= −2νv(t ) + βg(y) + σyẆy, (7)

where u and v are, respectively, the longitudinal and transver-
sal velocity components, ν and β are positive model param-
eters, and Ẇx and Ẇy are independent, δ-correlated-in-time
Gaussian noise scaled by the positive coefficients σx and σy .
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FIG. 7. Probability distribution functions of walking velocity and positions for undisturbed individuals: comparison between measurements
(filled red dots) and simulations of Eqs. (4)–(7) (empty black circles) (simulation parameters listed in Table II). The panels contain (a)
longitudinal velocities u, (b) transversal velocities v, and (c) transversal positions (y, assuming yp = 0). Pedestrians walk most frequently
at around 1.29 m/s [cf. (a)]. In addition, we observe a tiny fraction of running pedestrians, about 4 %, contributing to the hump at above 2 m/s
and pedestrians turning back, providing negative velocities contributions. (b) Transversal fluctuations in velocity appear well approximated
by a Gaussian distribution, while (c) transversal positions exhibit small deviations from a Gaussian behavior. Our model [Eqs. (4) and (6)]
reproduces quantitatively the complete longitudinal velocity statistics inclusive of the running hump as well as the inversion events. The
transversal dynamics is also well approximated as a stochastic damped harmonic oscillator [Eqs. (5) and (7)].

(We assume, consistently with [12], σx = σy ; cf. Table II. Our
choice for the noise is common and made for simplicity, yet it
is not mandatory; see, e.g., [5].) The features of the dynamics
are finally incorporated in the two functions f (u) and g(y).

As in Ref. [12], we choose f (u) as possibly the simplest
smooth model for a bistable dynamics, i.e., as the gradient of
a double-well (velocity) potential. In formulas it reads

f (u) = −4αiu
(
u2 − u2

p,i

) = −∂uαi

(
u2 − u2

p,i

)2
, (8)

with ±up,i the expected stable velocities and αi the modu-
lating factor of the force. As a first extension of the model
in Ref. [12], we introduce the subscript i to enable multiple
populations all behaving identically except for the stable
velocity value. This allows one to distinguish, e.g., people
walking at usual speed and runners.

The function g(y) models the restoring impulse towards
the intended path. In formulas, it reads

g(y) = −2(y − yp ) = −∂y (y − yp )2. (9)

This marks a second, yet fundamental, extension to the model
in Ref. [12]. In fact, a wide corridor enables a continuous
choice of straight intended paths that remain unchanged dur-
ing the motion (in formulas, ẏp = 0). In turn, in Sec. V
we describe interactions considering a dynamics also for the
variable yp.

In Fig. 7 we compare the measured and modeled pedestrian
motion in terms of probability distribution functions of lon-
gitudinal and transversal velocity and transversal fluctuations
with respect to the intended path. The figures include data
from N = 47 122 trajectories of average time length 2 s (i.e.,
31 frames). Approximately 34% of the trajectories are from
undisturbed pedestrians walking towards the bus terminal (the
rest are from undisturbed pedestrians walking towards the city
center). The comparison is performed with 47 122 trajectories
simulated via (4)–(7) and calibrating the parameters as in
Ref. [12] (values reported in Table II).

In the longitudinal velocity (u) probability distribution
[Fig. 7(a)] we observe different regimes: Most likely people

walk with speed fluctuating around 1.29 m/s. Moreover, about
4% of the pedestrians run across the walkway: This results in
the hump on the right-hand side of the distribution. Finally,
rare events such as turning back trajectories and stopping
are present which provide contributions in the left tail and at
around 0 m/s, respectively. By adopting the measured ratio of
walkers and runners, simulations quantitatively reproduce the
observed velocity distribution. We observe Gaussian transver-
sal fluctuations of the velocity (v) that Eqs. (5) and (7) capture.
Slight deviations from the predicted Gaussian fluctuations in
transversal position (y) are instead observed.

V. PAIRWISE AVOIDANCE

In this section we model the dynamics of the pairwise
avoidance and of the related changes in the intended path (cf.
the conceptual sketch in Fig. 1 and measured cases in Fig. 6).
We consider these dynamics in the simplest condition involv-
ing exclusively two pedestrians walking in opposite directions
and avoiding each other while remaining sufficiently far (i.e.,
not influenced) from any other individuals. In this sense, we
deal with avoidance in diluted conditions. We compare with
our measurements selected through the (connected compo-
nents of the) subgraph G̃2,a (cf. Secs. III B and III C; each of
the two nodes of the dyads in G̃2,a corresponds to one of the
two pedestrians involved). This scenario represents for us the
first building block to treat quantitatively interaction dynamics
on top of the undisturbed motion (Sec. IV). In the following
we first describe our model and then we compare it with the
measurements in terms of probability distributions.

To model the pairwise avoidance we consider two indi-
viduals, each modeled following Eqs. (4)–(7) plus coupling
terms affecting both individual positions (x, y) and individual
planned paths yp. In other words, the individual state is now
described by the triplet (x, y, yp ) (and derivatives), with yp

entering the dynamics as a variable and not as a constant
parameter. We model the coupling terms as social forces
[10,31], acting on the whole triple (x, y, yp ) (Fig. 8).
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FIG. 8. Schematics of the interaction forces considered. (a) The
intended path of a pedestrian is modified on a twofold basis: by
long-range, sight-based (thus anisotropic) forces [cf. Eq. (16)] and
by short-range contact-avoidance forces [cf. Eq. (17)]. Long-range
forces are bounded within a circular sector of radius R and angular
semiamplitude θ located in front of the individual (i.e., aligned with
the intended path). Short-range forces are frontal and bounded within
a circular region of radius r . (b) Long-range sight-based interac-
tions, e.g., with the pedestrian marked with a cross, yield forcing
Fvision in the orthogonal direction with respect to the intended path.
(c) Short-range forces provide isotropic Fshort,x = Fshort,y, although
frontal only, contact avoidance, e.g., of the pedestrian marked with a
cross.

Let p1 and p2 be two pedestrians in an avoidance event.
Adopting the point of view of one of the two, say, p1, and
using the same (x, y) reference system used in Sec. IV, we
model the dynamics as

dyp

dt
= ẏp(t ), (10)

dẏp

dt
= Fvision − 2μẏp(t ), (11)

dx

dt
= u(t ), (12)

dy

dt
= v(t ), (13)

du

dt
= −4αiu

(
u2 − u2

p,i

) + σxẆx − exFshort, (14)

dv

dt
= −2νv − 2β(y − yp ) + σyẆy − eyFshort + Fvision,

(15)

where the unit vector of components (ex, ey ) is directed
from p1 to p2 and μ is a positive model parameter. We
superimpose on the undisturbed dynamics in Eqs. (4)–(7)
two (social) forces Fshort and Fvision, encompassing respec-
tively, two influencing elements of the interaction dynam-
ics (see also sketches in Fig. 8). Here Fshort is a short-
ranged contact-avoidance force; it mimics one’s immediate
and strong collision-avoidance reaction to individuals in the
very vicinity and acts on the velocity variables u and v. In turn,
Fvision mimics the sight-based avoidance maneuvers having
longer and anisotropic range. In addition, Fvision acts in the
transversal direction only, affecting both, and equally, the
transversal velocity v and the intended path yp. This modeling
choice follows the idea confirmed from measurements that
avoidance not only yields lateral motion, but also provides a
persistent change of our intended paths.

We model both forces with a decaying exponential of the
squared distance between pedestrians (as common practice in
the pedestrian dynamics community [10]). In formulas, they
read

Fvision = −sgn(ey )A exp(−d2/R2)χ1(θ̃ ), (16)

Fshort = B exp(−d2/r2)χ2(θ̃ ), (17)

where A and B are positive parameters, d is the (scalar)
distance between the two considered pedestrians (cf. Fig. 1),
r and R are scaling factors for the interaction ranges, θ̃ is
the angle between the line joining the two pedestrians and
the horizontal, and χj (θ̃ ) = 1 for |θ̃ | < θj and 0 otherwise
(j = 1, 2).

The coupled systems of Langevin equations (10)–(15) for
p1 and p2 feature, as a whole, a one-dimensional translational
symmetry group. Letting (x1, y1, yp,1) and (x2, y2, yp,2) be
the states of p1 and p2, respectively, the symmetry reads

y1, yp,1, y2, yp,2 → y1 + c, yp,1 + c, y2 + c, yp,2 + c

for any real number c. In other words, the dynamics is
invariant up to a rigid translation of the transversal position
and planned path of both individuals.

We compare the model and data first in terms of the abso-
lute transversal distance between p1 and p2: |�y| = |y1 − y2|
(cf. Fig. 9) (Similarly to the undisturbed case discussed in
Appendix B, pairs of measured trajectories underwent also
a rotation procedure to align with our coordinate system.
Details are reported in Appendix C.) We expect |�y| to well
approximate the transversal distance between the intended
paths |yp,1 − yp,2| once considered at the ensemble level, i.e.,

〈�y〉ens = 〈|y1 − y2|〉ens ≈ 〈|yp,1 − yp,2|〉ens, (18)

where 〈·〉ens denotes an ensemble average over the measure-
ments (we indicate with Eens[·|E], the conditioned ensemble
average, where E is the conditioning event). We expect, in
fact, individual fluctuations with respect to the intended paths
be negligible after the (ensemble) average.

We measure |�y| at three phases of the interaction:
(i) the first appearance of p1 and p2 in our observation window
[|�yi | in Fig. 9(a)], (ii) the time instant, in the following
referred to as ts , when the pair is side-by-side [|�ys | in
Fig. 9(b)], and (iii) the last simultaneous appearance of the
pair in our observation window [|�ye| in Fig. 9(c)]. We report
our measurements and simulation results in terms of two
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FIG. 9. Considered phases of the counterflowing pairwise dy-
namics for the scatter plots in Figs. 10 and 11. (a) Sketch of
the entrance, i.e., the first moment of simultaneous appearance of
the pedestrian pair in our observation window. (b) Sketch of side-by-
side walking, which occurs when the two pedestrians have the same
longitudinal position. (c) Sketch of the exit, i.e., the last moment
in which the two pedestrians appear together. (a) |�yi |, (b) |�ys |,
and (c) |�ye| indicate the absolute lateral distance between the two
pedestrians in phases (a), (b), and (c), respectively (see also (i)–(iii)
in Fig. 1).

scatter plots targeting two halves of the interaction dynamics:
S1, describing the avoidance maneuvers until the side-by-side
phase [plane (|�yi |, |�ys |), Fig. 10], and S2, describing the
following regime [plane (|�ys |, |�ye|), Fig. 11].

For S1 (and analogously for S2), a synthetic view of the
data can be obtained by computing the ensemble average of
|�ys | conditioned to |�yi |, namely,

e(|�ys |) = Eens[|�ys | | |�yi |]. (19)

Considering the approximation in Eq. (18), we expect this
function to represent the deviation of the intended paths. The
scatter plots in Figs. 10–12 include data from 9089 avoidance
events (i.e., pairs of pedestrians) either experimentally mea-
sured (left panels) or simulated (right panels). In Figs. 12(a)
and 12(b) we compare data and simulations in terms of the
average conditioned distances [Eq. (19)] for cases S1 and S2,
respectively. We observe the following.

Case S1. We expect avoidance maneuvers, especially when
collision is imminent, i.e., for |�yi | � sb, sb being the size
scale of the human body. In this condition, we expect a mod-
ification of intended paths to yield 〈|�ys |〉ens > 〈|�yi |〉ens,
which is consistent with our measurements in Fig. 10(a). From
the experimental measurements we have

〈|�ys |〉ens ≈ 0.75 m for |�yi | → 0 (20)

and similarly in the case of simulations [Fig. 10(b)]. In
contrast, a decreasing influence of |�yi | on |�ys | is expected
as the former increases, since no interaction is at play at
large transversal distances. As a consequence, we expect the

average trend

〈|�ys |〉ens ≈ 〈|�yi |〉ens for |�yi | � sb, (21)

i.e., a relaxation of 〈|�ys |〉ens towards the diagonal of the
plane (|�yi |, |�ys |). We observe such an expected trend
[which we obtain in simulations per the scaling and anisotropy
in Eq. (16)] only for |�yi | < 1.4 m. In the case |�yi | >

1.4 m, 〈|�ys |〉ens lies slightly below the diagonal line, sug-
gesting an average end-distance contraction. As the distance
increases, false positive and false negative cases emerge in the
selection operated by G̃2,a . In this case, these determine the
overweight of the region below the diagonal in Fig. 10(a), thus
the inflection of the 〈|�ys |〉ens curve.

Case S2. The interaction dynamics in Fig. 1 conjectures
that the change in intended path mostly occurs to ensure
avoidance, hence before the two pedestrians are closest in
space. Afterward it plays a negligible role. In formulas the
conjecture reads

yp,1 − yp,2 ≈ const (postinteraction). (22)

Considering the approximation in Eq. (18), Eq. (22) is con-
sistent with our measurements and simulations, reported in
Figs. 11(a) and 11(b), respectively. In these,

〈|�ye|〉ens ≈ 〈|�ys |〉ens (postinteraction) (23)

holds for |�ys | > 0.8 m, while at lower |�ys |, i.e., for very
close passing distances (observed very rarely), we measure
a small tendency to increase the transversal distance in the
postinteraction stage. This can be an inertial phenomenon:
Pedestrians avoiding each other, yet passing by each other at
very close distance, keep on increasing their mutual distance.
This aspect is modeled via the frontal isotropic short-range
contact-avoidance force in Eq. (17).

Avoidance impacts further on the walking speed s =√
u2 + v2, which we adopt as a second comparison term

between model and experimental measurements. Around the
time instance ts of minimum distance [Fig. 9(b)] speed is
temporarily adjusted and reduced from the undisturbed flow
regime (Fig. 7). Considering a time window spanning 0.66 s
before ts (i.e., [ts − 0.66 s, ts]) and a time window spanning
0.66s after ts (i.e., [ts, ts + 0.66 s]), in Figs. 13(a) and 13(b),
respectively, we compare the speed distributions measured
and predicted by the model. Also in this case we find excellent
agreement.

Pairwise avoidance, finally, is not always a successful op-
eration. As a rare event, two people can bump into each other,
having their minimum distance min(d ) becoming comparable
to their diameter. It is important that such rare events remain
captured, in statistical terms, by the model, e.g., for their
implication in safety. In Fig. 13(c) we report the cumulative
distribution of collisions as a function of min(d ). In the range
[0.3, 0.6] m the distribution measured and the distribution
predicted by the model present an exponential growth in
perfect agreement, with about 40 cases recorded in both cases
for min(d ) � 0.5 m.

VI. DISCUSSION

In this paper we investigated quantitatively the pedestrian-
pedestrian avoidance interactions occurring in diluted
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FIG. 10. Absolute lateral distance at the entrance [|�yi |, x axis; cf. scenario (a) in Fig. 9] vs absolute lateral distance when side-by-side
[|�ys |, y axis; cf. scenario (b) in Fig. 9]. Each sample in the scatter plot represents (a) a measured or (b) a simulated pair of pedestrians in
counterflow. The function e(|�ys |) is reported as a solid line [cf. the definition in Eq. (19), i.e., e(|�ys |) encodes the ensemble average value
of |�ys | conditioned on |�yi |]. The diagonal |�ys | = |�yi | represents the dynamics for which the lateral distance of a pedestrian pair remains
unchanged between scenarios (a) and (b) (in formulas d�y

dt
= 0). In other words, both pedestrians walked straight (modulo a constant lateral

offset). e(|�ys |) departs from the diagonal for low |�yi |, which identifies pedestrians walking towards each other, and avoiding each other.
As |�yi | grows, interactions and collisions vanish, hence the asymptotic tendency toward the diagonal line. A synthetic comparison limited to
the average trends [Eq. (18)] is reported in Fig. 12(a). The bottom and left panels in (a) and (b) report the (marginal) distributions of |�yi | and
|�ys |.

conditions comparing with measurements obtained in a real-
life pedestrian tracking campaign. As two individuals walk
in opposite directions on a shared space, avoidance maneu-
vers become necessary should a collision be avoided; these
maneuvers affect, at the same time, the path observed and
the intended path. We modeled this scenario in terms of
a sight-dependent interaction force and a collision-deterring
force, which we superimposed on a Langevin model for
the undisturbed pedestrian motion. Overall the state of each
individual was treated as a triple of variables including the

components of the position plus a spatial variable representing
the intended path.

We performed the experimental campaign employing a
state-of-the-art pedestrian tracking method, which in a period
of over 6 months enabled us to collect a data set of about
five millions high-resolution individual trajectories. Using
real-life data acquired from 24/7 tracking allows us, at the
same time, to accurately quantify characteristic fluctuations
and rare events in the dynamics (as events appearing only
once in 1000 or once in 10 000 cases can be measured)
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FIG. 11. Absolute lateral distance when side-by-side [|�ys |, x axis; cf. scenario (b) in Fig. 9] vs absolute lateral distance at the exit [|�ye|,
y axis; cf. scenario (c) in Fig. 9]. Each sample in the scatter plot represents (a) a measured or (b) a simulated pair of pedestrians in counterflow.
Once avoidance is ensured, the lateral distance is maintained until the exit from our observation window, as the scatter sample is concentrated
around the diagonal |�ys | = |�ye|. A synthetic comparison including only the average trends [Eq. (18)] is reported in Fig. 12(b).
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FIG. 12. Average absolute lateral distance: comparison between data and simulations. (a) Absolute lateral distance when at the entrance
(|�yi |, x axis) vs side-by-side [conditioned average e(|�ys |), y axis]. Data and simulation lines are reported from Figs. 10(a) and 10(b),
respectively. (b) Absolute lateral distance when side-by-side (|�ys |, x axis) vs at the exit [conditioned average e(|�ye|), y axis]. Data and
simulation lines are reported from Figs. 11(a) and 11(b), respectively.

and avoid potential biases related, e.g., to the construction
of laboratory or artificial experimental conditions (in which
the dynamics to measure has been predefined and enforced
by the experimenter). Acquiring data in a real-life scenario,
however, is somehow similar to acquiring data from different
laboratory experiments, each having different experimental
parameters, that follow one another in random order. Ideally
one wants to retain only the measurements pertaining to the
occurrences of a selected scenario and aggregate them to
perform ensemble statistical analyses. As operating a manual
selection of measurements (as done in the past) would be
impossible at the scale of our data set, in the first half of
the paper we proposed a method efficiently automatizing the
selection. Representing the measurement through a graph, we
were able to formally define scenarios of interest as well as
efficiently identify them within the data set. Selecting pairwise
avoidance events in diluted conditions implies, from a naive
perspective, a nonlinear scan of the data set: We are searching
for pairs of trajectories that are mutually close while being
far from any other at any time. With the method proposed, a

single pass of the data set first and a linear pass of the graph
edges next are sufficient to identify all the target events.

We analyzed the dynamics considering probability distri-
bution functions that, due to our extensive data set, result
in being very well resolved even in the tails (rare events).
Our models target and reproduce quantitatively the stochastic
behavior observed. At the level of the undisturbed motion,
considering a mixture of walkers and runners, we could
reproduce the nontrivial longitudinal dynamics which shows
fluctuations around two average speed values, one for walkers
and one for runners, plus rare U-turning events. This was
possible via considering a double-well, i.e., bistable, velocity
potential for each of the two populations. The interplay of
the white noise excitations and the gradient-type velocity
dynamics captures both small fluctuations around the average
velocity and rare velocity inversions, which occur with a
transition to the negative velocity stable state.

We addressed pairwise avoidance considering social-force-
like interactions between undisturbed pedestrians, which we
extended to affect a hidden variable of the system introduced
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FIG. 13. Speed distribution (i.e., distribution of the velocity modulus s) (a) before and (b) after the encounter. Each time frame contributes
one measurement per pedestrian. (a) Frames in the time interval [ts − 0.66 s, ts], where ts is the time instant of the side-by-side encounter, are
considered. (b) The considered time interval is [ts , ts + 0.66 s]. Note that for the pedestrians that are interacting, we have a reduced number
of runners (0.2%), and this is shown in the smaller percentage of speed values that are larger than 2 m/s. (c) Cumulative distribution of the
minimum distance min(d ) between the two pedestrians of the pair. Data and simulation are compared; the inset shows the same distribution
on a linear scale. This cumulative distribution expresses the number of collisions that occurred vs predicted. Effectively a collision happens for
min(d ) smaller than or equal to the body diameter (about 0.5 m). Experimental data and simulations agree quantitatively on the exponential
decaying trend.
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in this work: the individual intended path. Despite being
hidden for single realizations, we believe that the variations
in intended path can be measured on the basis of ensemble
averages, which we computed on the transversal distances
between the pedestrians. Should pedestrians be in the path of
a possible collision (initial transversal distance below 1.4 m),
their intended paths are deflected, such that when passing by
one another the mutual distance is no lower than 0.75 m.
After the moment the passing occurs, no further modifications
in intended paths were recorded. By including the intended
path in the dynamics and subjecting it to the social force,
we could reproduce quantitatively the observed dynamics
including speed reductions in the proximity of the passing as
well as the number of collision events.

This work is a methodological and modeling step to treat
quantitatively, in a statistically accurate sense, interactions
in crowd dynamics. We believe that the present approach
can be extended to analyze situations characterized by higher
complexity and density, increasingly common in civil infras-
tructures.
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APPENDIX A: TECHNICALITIES OF PEDESTRIAN
TRACKING AT EINDHOVEN TRAIN STATION

Our data collection employed an array of four overhead
KinectTMsensors in order to obtain our depth-map streams at
VGA resolution (640 × 480 pixels) and at 15 frames/s (fps).
The four views were in partial overlap and were merged
into one large canvas like those in Fig. 6. The merging
algorithm and registration algorithms, treated in Ref. [14],
rely on the fact that a depth map is an overhead perspective
view containing (by definition) the height of each pixel. Such
information is sufficient to obtain an axonometric view (i.e.,
an aerial view in the limit of a far observer) from each of
the four streams. Considering a depth map via the cylindrical
coordinates (θ, ρ, h), where ρ is a radial coordinate (i.e.,
ρ = 0 is the image central axis), θ is an angle spanning the
image space around the image axis, and h is the altitude from
the ground (normalized such that h = 1 is the floor and h = 0
is the camera plane), we employed the mapping

(θ, ρ, h) 
→ (θ, ρh, h) (A1)

that displaces each point to its vertical line. Note that ρh �
ρ holds and ρh = ρ is true only at the ground level (i.e.,
the ground level is invariant under this transformation). Ex-
tracting the lowest depth value (topmost) for each vertical
line yields the desired axonometric view. Axonometric views
can be merged by simple superposition which requires just
the knowledge of the reciprocal positions of the cameras.
Such registration and calibration steps have been performed
manually after sliding a cart endowed with elements of known
size underneath the cameras (cf. [14] and the Appendix in
[32]).

The four KinectTM sensors were connected in pairs to two
computers whose system time has been synchronized with
O(1) ms precision through Network Time Protocol (NTP).
To the best of our knowledge, the moment at which a depth
image is taken by a KinectTMis not controllable or triggerable.
Hence, we let the four sensors record (maintaining 15 fps)
and then we associated simultaneous images a posteriori. This
yields a maximum error of 33 ms, i.e., approximately 3 cm
considering an average walking speed of 1 m/s, i.e., less than
7 pixels (where the conversion 230 pixel ≈ 1 m holds).

Merged depth images were processed to detect pedestrian
positions via the stochastic clustering algorithm proposed
independently in Refs. [25,26]. We employed the same im-
plementation of our previous works [12,23,33], to which we
refer for further details.

Differently from [12,23,33], we revised the tracking ap-
proach for increased robustness. As in Refs. [12,23,33],
pedestrians are tracked by employing the classical particle
tracking velocimetry (PTV) approach (e.g., [34]) and specif-
ically through the OpenPTV library [35]. However, each
detected pedestrian is considered via five different points: (i)
the centroid of the body, (ii) the estimated head top position
(centroid of the points within the fifth depth percentile), (iii)
the estimated head-neck position (centroid of the points within
the tenth depth percentile), (iv) the estimated head-neck-torso
centroid (centroid of the points within the 20th depth per-
centile), and (v) the upper half of the body (centroid of the
points within the 50th depth percentile).

We performed five independent trackings, considering only
one of these five positions at a time and for all pedestrians.
Hence, we compared the five tracking results for consistency,
considering reliable the tracks for which at least three out of
five tracking results were in agreement.

We smoothed the obtained trajectories for noise reduction
with the Savisky-Golay algorithm [36], a common approach
in PTV (e.g., [37]), with window size 5 and polynomial
degree 2.

APPENDIX B: COORDINATE TRANSFORMATION
FOR UNDISTURBED PEDESTRIAN TRAJECTORIES

In Fig. 14 we include different average measurements of
the undisturbed motion. We observe that pedestrian trajec-
tories, although generally straight, are not parallel to the
axis of the station walkway (i.e., the horizontal direction in
Fig. 14). To employ the (x, y) coordinate system introduced
in Sec. IV, we rotate each trajectory to have the longitudinal
direction aligned with the x axis. To this aim, we perform
a second-order polynomial fitting of the two components of
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FIG. 14. Average (a) and (d) paths and (b) and (c) velocities of undisturbed pedestrians going to (a) and (b) the city center and (c) and (d)
the bus terminal [cf. sketch in Fig. 2(a)]. Average paths (a) and (d) are computed by binning the trajectories by their initial points and then by
averaging them in time (the number of trajectories per bin is reported). Average velocities (b) and (c) are computed by employing a grid of
10 × 5 tiles. The background colormap reports the average speed in m/s, according to the colorbar on the right.

each trajectory [in the horizontal-vertical reference of Fig. 14,
say, (ξ, η)] as a function of time. In formulas, we fit

t 
→ (ξ, η)

via

t 
→ (aξ t
2 + bξ t + cξ , aηt

2 + bηt + cη ). (B1)

Hence, we rotate each trajectory to align the tangent line of
the polynomial fit at t = 0 to the x axis, i.e.,

(x, y)T = 1

b2
η + b2

ξ

(
bξ bη

−bη bξ

)
(ξ, η)T .

Performing such a transformation, trajectories that are straight
are simply aligned to the x axis. In turn, U-shaped trajectories,
the most common example of inversion dynamics, get just
their first (and possibly last) portion aligned with the x axis.

Quasirectilinear trajectories

We use a similar fitting approach to distinguish trajectories
that are quasirectilinear (straight but small fluctuations) from
trajectories that exhibit large curvature or even U-turns. We
split each trajectory in blocks of seven frames (i.e., about half
a second, starting from the first frame) that we independently
fit as in Eq. (B1) [see Fig. 15(a)]. In case the last block of a
trajectory contains fewer than seven frames we neglect it. We
estimate the angular slope of each block with reference to the
horizontal direction as

φ = |arctan(bη/bξ )|. (B2)

Rectilinear trajectories satisfy s.d.(φ) ≈ 0+, where we eval-
uated the standard deviation (s.d.) on a block basis. In
Fig. 15(b) we report the joint distribution of s.d.(φ) and

the number of blocks per trajectory (i.e., a measure of the
trajectory length). Neglecting the very short trajectories (the
one-block case), we notice that most of our measurements
lie in the low-s.d.(φ) region having between two and six
blocks. These trajectories are mostly straight and encompass
normal walking velocities. These feature Gaussian transversal
fluctuations as discussed in Fig. 7(b).
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FIG. 15. (a) Analysis of the diluted motion assumes the trajec-
tory to be a fluctuation around a straight intended path, which we
call quasirectilinear. In order to isolate quasirectilinear trajectories,
each track is divided into sets of seven contiguous frames (e.g.,
indexed by i). For each set the angle φi between the average ve-
locity and the longitudinal direction in the corridor (ξ ) is evaluated.
Quasirectilinear trajectories [as in (a)] feature low variance within
the set {φi}. Trajectories exhibiting instead significant drifts (high
curvature, i.e., high {φi} variance) are neglected. (b) Joint distribution
of s.d.(φ) [x axis; cf. Eq. (B2)] and the number of blocks (y axis; one
block gathers seven consecutive frames) for undisturbed pedestrians.
The number of measurements per bin (1◦ × 1 block) follows the
logarithmic colorbar. The region marked identifies the trajectories
employed.
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FIG. 16. Coordinate transformation for pedestrian pairs in avoid-
ance for analysis convenience. Trajectories get rotated around the
entrance point to compensate for intended paths not parallel to the
corridor axis and then individually translated to conserve the mini-
mum pedestrian distance. Compare the algorithm in Appendix C.

APPENDIX C: COORDINATE TRANSFORMATION
FOR PEDESTRIAN PAIRS IN AVOIDANCE

In the analysis of pairwise avoidance interaction we per-
formed a coordinate transformation, in similar spirit to Ap-
pendix B, to bring the pairs of trajectories to a coordinate
system convenient for the analysis and removed of average
motions. The rationale for the transformation adheres to the
following: (i) The minimum distance between pedestrians
cannot be altered and (ii) the intended path of a pedestrian
entering a given position is the same as an undisturbed
pedestrian entering the same position. The deviations from
such intended paths are what determines the �y variables. In
algorithmic terms we proceeded as follows.
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FIG. 17. Average transversal distance for cases (a) S1 and
(b) S2 (cf. Sec. V) as a function of the parameter dm used to sparsify
the graph G. (a) In case S1 a dependence on dm can be observed for
|�yi | > 1 m. Consistently with Sec. V, as the region Ip grows in
size, i.e., more and more pairs are included, the asymptotic behavior
in Eq. (21) is recovered with increased accuracy. (b) In case S2 no
particular dependence on the parameters is observed.

(1) Given a (ξ, η) grid (coarse) as in Fig. 16, we calculated
the average motion of undisturbed pedestrians directed both
to the city center and to the bus terminal. We let θ1,C (ξ, η)
and θ1,T (ξ, η) be the angles of the average velocity with the
longitudinal axis of the corridor (ξ direction).

(2) Trajectories for pairs in interactions are rotated around
their entering point (ξ0, η0) of an angle −θ1,C (ξ0, η0) or
−θ1,T (ξ0, η0) (dependent on the direction). This compensates
for intended paths that are straight but not parallel to the ξ axis
to respect (ii).

(3) Trajectories are translated apart to respect (i).
The quantities �yi , �ys , and �ye are finally calculated

after these roto-translations.

APPENDIX D: SENSITIVITY
OF THE GRAPH-BASED SELECTION

The parameters that we employed to sparsify the graph
G and select pairs of pedestrians avoiding each other have
been chosen considering a typical size scale of the interaction.
Nevertheless, it is reasonable to expect a sensitivity of the dis-
tributions in Figs. 10(a) and 11(a) with respect to these param-
eters. This sensitivity appears minimal, considering, for in-
stance, average trends from Eq. (19). In Figs. 17(a) and 17(b),
corresponding, respectively, to Figs. 10(a) and 11(a), we
plot Eq. (19) dependent on the parameters dm and dy,m. For
computational reasons the data are restricted to only one day
of measurements (27 November 2014).
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