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Spin-glass model for the C-dismantling problem
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The C-dismantling (CD) problem aims at finding the minimum vertex set D of a graph G(V, E ) after removing
which the remaining graph will break into connected components with the size not larger than C. In this paper, we
introduce a spin-glass model with C + 1 integer-value states into the CD problem and then study the properties
of this spin-glass model with the belief-propagation (BP) equations under the replica-symmetry ansatz. We give
the lower bound ρc of the relative size of D with finite C on regular random graphs and Erdős-Rényi random
graphs. We find ρc will decrease gradually with growing C, and it converges to ρ∞ as C → ∞. The CD problem
is called the dismantling problem when C is a small finite fraction of |V|. Therefore, ρ∞ is also the lower bound
of the dismantling problem when |V| → ∞. To reduce the computation complexity of the BP equations, taking
the knowledge of the probability of a random selected vertex belonging to a remaining connected component
with the size A, the original BP equations can be simplified to one with only three states when C → ∞. The
simplified BP equations are very similar to the BP equations of the feedback vertex set spin-glass model [H.-J.
Zhou, Eur. Phys. J. B 86, 455 (2013)]. Finally, we develop two practical belief-propagation-guide decimation
algorithms based on the original BP equations (CD-BPD) and the simplified BP equations (SCD-BPD) to solve
the CD problem on a certain graph. Our BPD algorithms and two other state-of-art heuristic algorithms are
applied on various random graphs and some real-world networks. Computation results show that the CD-BPD
is the best of all tested algorithms in the case of small C. But considering the performance and computation
consumption, we recommend using SCD-BPD for the network with a small clustering coefficient when C is
large.
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I. INTRODUCTION

In a graph G(V, E ) with N = |V| vertices and M = |E |
undirected edges, there exist some vertices which are crucial
to the connectivity of the graph. The set of these vertices D
is called a C-dismantling (CD) set if its removal yields a
remaining graph in which the size of each connected com-
ponent will be equal to or smaller than C [1,2]. In the past
few years, researchers have worked on the topic of the CD
problem, which asks to find the minimum CD set of a graph,
especially in the case of C taking a finite fraction of N , like
C/N = 0.01, which is also named the dismantling problem
[3–10].

For some real-world networks, such as transportation net-
works and the internet, their robustness and function depend
on their scale and connectivity to a large extent [11–13].
On the other hand, we can also stop epidemic (or computer
virus) spreading by vaccinating people (or computers) who
can divide the infection network to separated components
[14–16]. Therefore, as one of the fundamental problems
in network science, the CD problem relates to many other
important problems and practical applications, ranging from
the percolation problem [17], to the information spreading
[18,19], and so on.

In 2008 Janson and Thomason proved some useful proper-
ties of the CD problem on sparse random graphs [2]. But the
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problem of finding the minimum CD set or the dismantling set
of a certain graph belongs to the nondeterministic polynomial
hard (NP-hard) class of computational complexity [6,20,21].
Therefore, researchers are not pinning their hopes on solving
this problem with a complete algorithm in time bounded
with a polynomial function of M or N but are devoting
their efforts to all kinds of heuristic methods. The starting
points of these heuristic algorithms, even without a strict
proof but whose rationality has been proved by their nice
results in solving the dismantling problem, are the possible
correlations between network structure and network attacking.
Except for some methods based on the vertices’ highest
degree [11,13,22] or betweenness [23], Morone and Makse
considered the information spreading of vertices and proposed
the collective information algorithm [7]. The authors claimed
that it beats all existing heuristic algorithms at that time.
Another algorithm recursively removes vertices having the
highest degree from the 2-core of the graph, which is obtained
by adaptive removal of all leaves [6]. The CD problem can
also be solved with the node explosive percolation algorithms,
which start from a completely dismantled graph and then
reconstructs the graph by adding the removed vertex back
[8,10,24]. Later, some other researchers pointed out that for
random graphs the dismantling problem is equivalent to the
decycling problem, which is also referred to as the feedback
vertex set (FVS) problem and aims to remove as few vertices
as possible to break all cycles in the graph [5,14,25–27]. The
dismantling algorithms stemming from the FVS problem are
characterized by their perfect performance in giving a very
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small dismantling set, and their results are very close to the
theoretically optimal value of the decycling problem [3,4,6].

Most of the studies discussed above mainly focus their
attention on the dismantling problem, where C will be very
large as N → ∞, but they cannot guarantee their performance
in the case of small C. In order to have a more comprehensive
understanding of the CD problem and to solve this problem
efficiently, we focus our attention on the general CD problem
with finite C and propose a spin-glass model with C + 1 states
to describe the constraints in the CD problem. Considering
that the removal cost of a vertex depends on the protection
effort on it, we introduce the spin-glass model considering
the situation where each vertex has variable removal costs.
By using the belief-propagation (BP) equations under the
replica-symmetry (RS) ansatz, we study various properties of
the CD problem, including the lower bound of the relative
size of minimum D with C, the probability of a random
selected vertex belonging to a connected component with size
A, the complexity of the BP equations, and the connection
between CD problem and the FVS problem. What is more,
we also develop two belief-propagation-guide decimation al-
gorithms (CD-BPD and SCD-BPD) to solve the CD problem
on a certain graph. The CD-BPD algorithm is based on BP
equations of our spin-glass model, and the SCD-BPD is a
coarse-gained algorithm of the CD-BPD in large C limit.
Our extensive numerical computations on artificial random
graphs and real-world networks exhibit that the CD-BPD has
significant advantages in solving the CD problem over others
in the case of small C. When C is large, the CD-BPD or
SCD-BPD is also the best algorithm for the CD problem on
networks with a small clustering coefficient [28].

This paper is organized as follows. In the next section
we introduce the spin-glass model for the CD problem and
explain how to compute thermodynamic quantities under the
RS ansatz. The numerical computation results on random
graphs and some real-world networks are given in Sec. III.
In the last section, we conclude our work and discuss some
possible extensions.

II. SPIN-GLASS MODEL OF THE CD PROBLEM

After a graph has been C-dismantled, the remaining graph
will break into numerous connected components not larger
than C. Therefore the minimum CD problem is completely
equivalent to the maximum C-component set problem asking
the maximum set of vertex S = V \ D, so that the vertices in
S and the edges between them form connected components
not larger than C. In the case of C = 1, the C-component
set problem is equivalent to another NP-hard problem: the
vertex cover problem, which has been analyzed with the RS
mean-field method extensively [27,29–32]. Inspired by the
spin-glass model of the vertex cover problem, in this paper
we develop our spin-glass model for the C-component set
problem as well as the CD problem and then analyze its
properties with the RS mean-field method.

In a dismantled graph, if vertex i ∈ S is in the connected
component Cα , we use an integer value Ai = |Cα| to present
the state of vertex i in our spin-glass model, where |Cα| means
the size of Cα or the number of vertices in Cα . If the vertex i ∈
D, we say the vertex i is in a connected component with size

0 and Ai = 0. In the CD problem, the size of each remaining
connected component must be equal to or smaller than C, so
Ai can take only C + 1 different integer values from 0 to C.
A microscopic configuration A ≡ {A1, A2, . . . , AN } of graph
G is called legitimate if and only if the following constraint is
fulfilled:

L(A) ≡
∏

i

δ[Ai,�(i)], (1)

where �(i) returns the size of the connected component
containing vertex i in the dismantled graph, and δ(x, y) is the
Kronecker delta function such that δ(x, y) = 1 if x = y, and
δ(x, y) = 0 if x �= y.

In this spin-glass model, if we consider the removal cost
ωi � 0 of each vertex i, the CD problem should be pursued
for the minimum total removal cost instead of the minimum
D. Therefore, the energy of A is defined as the total removal
cost of all vertices with Ai = 0:

E(A) =
∑

i

ωiδ(Ai, 0). (2)

We assume the spin-glass system follows the Boltzmann
distribution and the probability of observing a legitimate
state A is

p(A) = exp[−βE(A)]

Z(β )
, (3)

where β is the inverse temperature in the canonical ensemble
and Z(β ) is the partition function

Z(β ) =
∑
A

exp[−βE(A)]L(A). (4)

Now we consider the marginal probability of a vertex i

taking the state Ai , denoted as q
Ai

i . The value of q
Ai

i is
strongly influenced by the marginal probabilities of i’s nearest
neighbors j ∈ ∂i, where ∂i gives the set of nearest-neighbor
vertices of i in graph G. After we build a cavity graph G\i
by removing vertex i from G, we can use the Bethe-Peierls
approximation to neglect all possible correlations among the
marginal probabilities of vertices j ∈ ∂i [33,34], denoted as
q

Aj

j→i . Then we can have the value of q
Ai

i by the following
equations:

q0
i = e−βωi

zi

, (5a)

q
Ai

i = 1

zi

∑
A∂i

δ

⎛
⎝∑

j∈∂i

Aj + 1, Ai

⎞
⎠ ∏

j∈∂i

q
Aj

j→i (Ai �= 0), (5b)

where A∂i ≡ {Aj }j∈∂i is the local configuration of vertex i and
the normalization factor zi is

zi ≡ e−βωi +
∑
A∂i

H

⎛
⎝C −

∑
j∈∂i

Aj − 1

⎞
⎠ ∏

j∈∂i

q
Aj

j→i , (6)

where H (x) is the Heaviside step function such that H (x) = 1
if x � 0, and H (x) = 0 if x < 0.

Equation (5) considers constraints where only when the
total size of all neighbor components is smaller than C − 1
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can we accept the vertex i ∈ S , which will merge all neighbor
components into a bigger one with the size

∑
j∈∂i Aj + 1.

If
∑

j∈∂i Aj � C, the vertex i must be in set D to prevent

forming a connected component whose size exceeds C. q
Ai

i→j

has the same meaning with q
Ai

i except that it is defined on
the cavity graph G\i . The self-consistency BP equations of
q

Ai

i→j are

q0
i→j = e−βωi

zi→j

, (7a)

q
Ai

i→j = 1

zi→j

∑
A∂i\j

δ

⎛
⎝ ∑

k∈∂i\j
Ak + 1, Ai

⎞
⎠ ∏

k∈∂i\j
q

Ak

k→i

(Ai �= 0), (7b)

where ∂i \ j means the vertex set obtained by deleting vertex
j from ∂i, and the normalization factor zi→j is

zi→j ≡ e−βωi +
∑
A∂i\j

∏
k∈∂i\j

q
Ak

k→iH

⎛
⎝C −

∑
k∈∂i\j

Ak − 1

⎞
⎠.

(8)
For a certain graph instance G, the BP equations can be

solved by iterating the equations on edges at a fixed β. After
the BP equations are solved, we can obtain thermal dynamical
quantities of this spin-glass system under the Bethe-Peierls
approximation. We start from the free energy F = ∑

i fi −∑
(i,j )∈G fij , where the fi and fij are the free energy contri-

bution from vertex i and edge (i, j ):

fi = − 1

β
ln zi, (9)

fij = − 1

β
ln

∑
Ai,Aj

H (C − Ai − Aj )qAi

i→j q
Aj

j→i . (10)

As free energy is an extensive quantity, we are more interested
in the free energy density obtained by f = F/N . The energy
density e of the spin-glass model equals

e = < E >

N
= 1

N

∑
i

q0
i ωi . (11)

If all vertices have uniform removal cost and ωi = 1, the
energy density is the relative size of the set D. Finally, we
can obtain the entropy density with

s = β(e − f ). (12)

III. RESULTS

We now apply the CD spin-glass model on the regular
random graphs (RR), Erdős-Rényi (ER) random graphs, scale-
free (SF) graphs, and some real-world networks. In the present
paper, we generate the SF networks with a static method
explained in Ref. [35]. Because we do not have the knowledge
of the removal cost, we assume the removal cost ωi = 1
for all vertices. Actually, the BP equations still hold even if
the removal cost is not uniform. Without being specific, the
results of artificial random graphs in the following discussion

are obtained by averaging over 16 different instances with
N = 217.

A. Statistical properties of the CD problem on random graphs

Equation (4) tells us that the partition function will be
dominated by low-energy configurations when β is large.
What is more, in most spin-glass systems including this one,
the number of configurations will decrease with decreasing
energy, and the entropy density s will also decrease with
growing β. As the entropy of a real system must be non-
negative, the mean-field result predicts the relative size of
the minimum D, denoted by ρc, at the inverse temperature
β = β∗ where s(β∗) = 0. For the RR graph, each vertex has
the same degree, so we can have the numerical solution of
the BP equations (7). For the ER graph, we use population
dynamics to investigate ρc with various average degree and C

[36–39].
From Figs. 1(a) and 1(b), we can see ρc decreases gradually

with C until it converges to ρ∞ as C → ∞. Finite-size scaling
analysis in Figs. 1(c) and 1(d) exhibits (ρc − ρ∞) ∝ C−ζ . The
exponent ζ ≈ 1 is almost irrelevant with the degree distribu-
tion of random networks. Because of the locally treelike char-
acter of random graphs, ζ ≈ 1 agrees with the exponent of
the tree network [2]. The value of ρ∞ can also be obtained by
extrapolating the result of ρc in the large C limit. As discussed
above, the dismantling problem can be regarded as the CD
problem with infinite C. Therefore, ρ∞ gives the fraction of
the minimum removed vertices in the dismantling problem.
The value of ρ∞ for the RR and ER networks with various
degree is presented in Fig. 2: ρ∞ increases monotonically with
growing mean vertex degree in the RR and ER random graph
ensembles. We also notice that the difference between the ρ∞
and the relative size of the minimum FVS predicted in Ref. [5]
is inconspicuous, which will be explained in the following
discussion.

The mean value of the qA
i over all vertices, denoted as

qA = 1
N

∑
i q

A
i , is the probability of a randomly selected

vertex in a connected component with size A. We compute
the value of qA for the RR and ER graphs and present the
results in Fig. 3. In the case of small A, qA will decay
with growing A quickly. But as A approaches C, all curves
in Fig. 3 increase with A/C exponentially. In the large C

limit, the exponents of these curves mainly depend on the
type and the mean vertex degree of the graph. Moreover,
qA reaches its minimum at the point Amin = arg min qA and
limC→∞ Amin/C = 0. Therefore, in the case of C → ∞, there
are two types of connected components in a dismantled graph:
small connected components with a few vertices and large
connected components with the size close to C.

B. The computation complexity of the BP equations

In this subsection, we will discuss the computation com-
plexity of Eqs. (5) and (7). The reader may argue that we must
consider all local microscopic configurations A∂i to compute
the message q

Ai

i→j in Eq. (5), so the computation complexity
of the BP iterations must be larger than (C + 1)|∂i|. How-
ever, only the configurations with

∑
j∈∂i Aj + 1 < C work in
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FIG. 1. (a) Fraction of vertices removed as a function of C on RR graph with degree K = 6 given by the RS mean-field method (pluses),
the CD-BPD (circles), the SCD-BPD (squares) algorithms, the CI (triangles), and the NEP (crosses). (b) The same as panel (a) but on ER
graphs with average degree c = 6. (c) Scaling plot of the (ρc − ρ∞) versus C for RR graphs with K = 3 (squares) where ρ∞ = 0.24236,
K = 6 (circles) where ρ∞ = 0.42278, and K = 9 (triangles) where ρ∞ = 0.519633. (d) The same as (c) but on ER graphs with degree c = 5
(squares) where ρ∞ = 0.2785 and c = 10 (circles) where ρ∞ = 0.4835.

the equations, which take a very small fraction of all local
configurations. The real computation complexity of the BP
equations will also be much smaller than (C + 1)|∂i|.

We start by neglecting all nearest neighbors of vertex i

except m and n. If m and n are in connected components
with the size Am and An, respectively, in cavity graph G\i

FIG. 2. The relative size ρ of set D for (a) the RR graph on degree K , (b) the ER graph on mean degree c, and (c) the SF graph on
mean degree c with power-law exponent γ = 3.0 given with the collective influence algorithm with ball radius 
 = 2 (CI) (squares) [7],
node explosive percolation algorithm with the second score definition in Ref. [8] (NEP) (empty circles), CD-BPD (triangles), and SCD-BPD
(crosses) algorithms. ρ∞ is the value of ρc at C → ∞ predicted by the RS mean-field method (solid circles). The dashed lines are the lower
bounds of the minimum FVS predicted with the RS mean-field method [5].
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FIG. 3. The mean value of the probability qA
i over all vertices in

(a) RR graphs with degree K = 5 and C = 27 (thick solid line), C =
28 (thick dashed line), and C = 29 (thick dotted line) and with degree
K = 10 and C = 27 (thin solid line), C = 28 (thin dashed line), and
C = 29 (thin dotted line); (b) ER graphs with average degree c = 5
and C = 27 (thick solid line), C = 28 (thick dashed line), and C = 29

(thick dotted line) and with degree c = 10 and C = 27 (thin solid
line), C = 28 (thin dashed line), and C = 29 (thin dotted line). To
compare the probability distributions with different C easily, these
distributions are multiplied by C respectively. q0 is not presented in
these figures because it is far beyond the others.

and i ∈ S , two connected components will combine together
into a new one with the size Am + An + 1. The probability
of Am + An can be described by a new introduced probability
distribution q̃A in which A ∈ {0, . . . , C} and

q̃A =
∑

Am+An<C

q
Am

m→iq
An

n→iδ(Am + An,A) (A < C), (13a)

q̃C =
∑

Am+An�C

q
Am

m→iq
An

n→i . (13b)

Because the size of the connected component cannot be
larger than C, we are concerned only about the situations
of Am + An < C and A = Am + An in this case. For A =
C, we sum all probabilities of Am + An � C together. In
our later discussion, Eq. (13) is abbreviated as q̃A = q

Am

m→i

⊗ q
An

n→i .
Now we consider all nearest neighbors of vertex i. In

the same way, we can use a product of ⊗ to compute
the probability of q̃

Ai

i , which means the probability distri-
bution of Ai = ∑

j∈∂i Aj when Ai < C and Ai = C when∑
j∈∂i Aj � C:

q̃
Ai

i =
⊗∏

k∈∂i

q
Ak

k→i . (14)

In the following, we can obtain the value of q
Ai

i easily
from q̃

Ai

i :

q0
i = e−βωi /zi, (15a)

q
Ai

i = q̃
Ai−1
i /zi (Ai �= 0), (15b)

where

zi ≡ e−βωi +
C−1∑
A=0

q̃A
i . (16)

Similarity, we can also compute the cavity message q
Ai

i→j

from q̃
Ai

i→j :

q0
i→j = e−βωi /zi→j , (17a)

q
Ai

i→j = q̃
Ai−1
i→j /zi→j (Ai→j �= 0), (17b)

where

q̃
Ai

i→j =
⊗∏

k∈∂i\j
q

Ak

k→i , (18)

zi→j ≡ e−βωi +
C−1∑
A=0

q̃A
i→j . (19)

The complexity of the operation ⊗ is on the order of
(C + 1)2. For a vertex i with |∂i| = k, we will use the oper-
ator ⊗ 3k − 2 times to update all messages {qAi

i→j }j∈∂i (see
Appendix A for more details). Therefore, the computation
time of updating all messages on graph G will be on the order
of NKC2 or MC2, where K is the average degree of each
vertex. In Fig. 4 we present the computation time of updating
all messages on various random graphs with different C. The
computation time is proportional to the N , to the mean degree
c in ER graph, or to the degree K in RR graph and to C2.
What is more, the computation time is irrelevant to the type
of random graph ensembles as long as they have the same
average degree.

C. The dismantling problem in the large N limit

In this subsection, we will discuss the dismantling problem
in the large N limit, where either C → ∞ and we keep the

062309-5



SHAO-MENG QIN PHYSICAL REVIEW E 98, 062309 (2018)

FIG. 4. The real computation time of updating all messages on
a random graph. All messages are updated synchronously and in
parallel on a desktop computer (AMD-2700X, dual channel memory
at 2666 MHz). When N = 214 and K = 10 in RR graphs (pluses)
or c = 10 in ER graphs (crosses), we run C = 25, 26, 27, 28. When
N = 214 and C = 24, we run K = 20, 40, 80, 160, 320 in RR graphs
(stars) and c = 20, 40, 80, 160, 320 in ER graphs (squares). When
K = 10 in RR graphs (circles) or c = 10 in ER graphs (triangles)
and C = 24, we run N = 215, 216, 217, 218, 219.

following limitation:

lim
N→∞

C

N
= 0.01. (20)

In that case, the computation time of BP iterations will be
proportional to N3, and both computation time and memory
usage will become unaffordable. Therefore, we hope Eq. (7)
can be simplified further.

From Fig. 3 we know that qi increases exponentially
with growing A/C as long as A/C > 0. Therefore, a vertex
belonging to a connected component with very large size but
smaller than C/2 is almost impossible and can be neglected.
Under this assumption, we can introduce another discrete
probability distribution with only three states: 0, I and X,
which mean a vertex i in set D, in a connected component
with finite size and in a connected component with infinite
size larger than C/2. q̂0

i , q̂I
i , and q̂X

i are marginal probabilities
of vertex i in states 0, I, and X, respectively. Then, in the
same way, we can define messages q̂0

i→j , q̂I
i→j , and q̂X

i→j in the
cavity graph G\i . If all neighbor vertices j ∈ ∂i in state I or 0,
we can add vertex i to set S , and the vertex i will be in state I.
If there is only one nearest-neighbor vertex in state X, and all
other neighbor vertices are in state I or 0, adding vertex i to
set S will generate a new connected component with infinite
size but still satisfying the limitation 20. However, if there are
more than one neighbor vertices in state X, the size of the new
generated component will be larger than 0.01N , which means
the vertex i must be in set D. Now, we can have the following
self-consistent equations of these probability distributions:

q̂0
i→j = e−βωi

ẑi→j

, (21a)

q̂I
i→j = 1

ẑi→j

∏
k∈∂i\j

(
q̂0

k→i + q̂I
k→i

)
, (21b)

q̂X
i→j = 1

ẑi→j

∑
k∈∂i\j

q̂X
k→i

∏
m∈∂i\j,k

(
q̂0

m→i + q̂I
m→i

)
, (21c)

where

ẑi→j ≡ e−βωi +
∏

k∈∂i\j

(
q̂0

k→i + q̂I
k→i

)

+
∑

k∈∂i\j

q̂X
k→i

q̂0
k→i + q̂I

k→i

∏
k∈∂i\j

(
q̂0

k→i + q̂I
k→i

)
. (22)

And the marginal probability of each vertex q̂i can also be
computed by

q̂0
i = e−βωi

ẑi

, (23a)

q̂I
i = 1

ẑi

∏
j∈∂i

(
q̂0

j→i + q̂I
j→i

)
, (23b)

q̂X
i = 1

ẑi→j

∑
j∈∂i

q̂X
j→i

∏
k∈∂i\j

(
q̂0

k→i + q̂I
k→i

)
, (23c)

where

ẑi ≡ e−βωi +
⎛
⎝1 +

∑
j∈∂i

q̂X
j→i

q̂0
j→i + q̂I

j→i

⎞
⎠ ∏

j∈∂i

(
q̂0

j→i + q̂I
j→i

)
.

(24)
Comparing the equations above with the BP iterations in

the FVS spin-glass model discussed in Refs. [4,5,27], we
find there is only one very small difference between them:
Eqs. (21c) and (23c) use q̂X

j→i instead of q̂X
j→i + q̂I

j→i . Actu-

ally, both q̂I
i→j in Eq. (21) and qi

i→j in Eq. (20) of Ref. [5] are
very small in their respective iteration equations. This result
confirms the connection between the dismantling problem and
the FVS problem under the thermodynamic limit and explains
why the lower bounds of the FVS problem and ρ∞ are close
to each other and why decycling algorithms work so well in
dismantling problems.

D. The CD-BPD algorithm and SCD-BPD algorithm

In this subsection, we develop two belief-propagation-
guide decimation (BPD) algorithms based on Eqs. (7) (de-
noted as CD-BPD) and (21) (denoted as SCD-BPD), respec-
tively, to solve the CD problem on a certain graph. The
details and pseudocode of the two BPD algorithms are given
in Appendix B. We compare the performance of the two
BPD algorithms with two other heuristic methods [collective
influence algorithm with ball radius 
 = 2 (CI) [7] and node
explosive percolation algorithm with the second score defini-
tion in Ref. [8] (NEP)] on ER, RR, and SF graphs with various
average degree and present all results in Figs. 1 and 2. In Fig. 1
we find the CD-BPD gives near optimal D very close to the
result predicted by the RS mean-field method, and it is far
better than other algorithms. Because the approximation of
Eq. (21) holds only in the large C limit, it is not surprising
that the results of the SCD-BPD approach that of CD-BPD
gradually with growing C and even outperform CD-BPD a
little in the RR graph with C = 512. Actually, if m, n ∈ ∂i

and they are in the same loop with the length shorter than
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FIG. 5. The relative size ρ of set D for some real-world networks as a function of C given by CI (pluses), NEP (crosses), CD-BPD
(triangles), and SCD-BPD (squares) algorithms. The numbers in the brackets are the clustering coefficients of the corresponding graph.
(a) RoadEU (0.0671) [40], (b) PPI (0.1301) [41], (c) Grid (0.0801) [28], (d) IntNet1 (0.2522) [42], (e) Authors (0.6334) [43], (f) Citation
(0.2848) [42], (g) P2P (0.0055) [42], (h) Friend(0.2367) [42], (i) Email (0.0671) [43].

C, it is possible that they are also in the same connected
component and Am = An. In that case, the Bethe-Peierls
approximation is invalid, and extra vertices will be added to
D. The random graphs used in our computation have a finite
number of vertices, so the length of typical cycles is also
limited (on the order of ln N ) [44–46]. Therefore, in the case
of C larger than the length of typical cycles, the SCD-BPD
may surpass CD-BPD not only in computation efficiency but
also in computation results.

Figure 2 concerns the performance of these algorithms in
all kinds of artificial random graphs. We can see that the
CD-BPD still gives the best results for the CD problem with
C = 64. Actually, as ρc approaches ρ∞ in the order of C−1,
the results given by the CD-BPD with C = 64 is already very

close to the ρ∞ and also close to the result given by the
SCD-BPD in the dismantling problem.

Finally, we apply these algorithms in some real-world
networks, which contain many communities, local loops,
and hierarchical levels. The value of ρ with various C are
presented in Fig. 5. Except for the Authors, Citations, and
Friends networks, where the CI obtains better results when
C > 8, the CD-BPD gives the minimum D in all tested
algorithms. We find the clustering coefficients of Authors,
Citations, and Friends networks are relatively large, which
means there exists a mass of short loops in them. We believe
that is the main reason why the CD-BPD does not work well in
these instances. Another network with conspicuous clustering
coefficient is the IntNet1, where the CI performs as well as
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the CD-BPD when C � 32. The results of the SCD-BPD
also approach that of the CD-BPD with growing C in these
networks.

IV. CONCLUSION AND DISCUSSION

In this paper, we propose a spin-glass model for the CD
problem and study its properties by the RS mean-field method.
We also develop two BPD algorithms to solve the CD problem
in a certain network. The CD-BPD gives the best result in all
state-of-art algorithms for the CD problem with small C, and
the SCD-BPD consumes less computation resource when C is
large. Both of them work well for the large C as long as the
clustering coefficients of the network is small.

Although the loops in a random graph may lead to a
negative effect for the CD spin-glass mode, the values of ρc

and ρ∞ are not overestimated because the number of loops
with finite length in a random graph is also finite even in the
thermodynamic limit [44–46]. On the other hand, the length of
typical loops in a random graph will be larger than C as N →
∞, and the RS mean-field method neglects these possible
long-range correlations. Considering both aspects together,
we say the CD spin-glass model provides lower bounds ρc

and ρ∞ of the CD and the dismantling problem in the random
graphs.

Additionally, our CD spin-glass model connects the ver-
tex cover problem with C = 1 and the FVS problem with
C → ∞. We also notice that the FVS problem shares many
features with the vertex cover problem, such as how the
critical temperatures change with the mean vertex degree in
a nonmonotonic way [27,47]. So we speculate that the first-
step replica-symmetry-breaking phase transition of the CD
problem will belong to the same universal class with the FVS
and the vertex cover problem [37,38,48]. We will confirm this
speculation in a separate paper.

The SCD-BPD algorithm solves the CD and dismantling
problems in a more straightforward way than the FVS-BPD
algorithm discussed in Ref. [4], although they have similar
message-passing equations. There are three stages in decy-
cling algorithms [3,4]: finding the minimum FVS, breaking
the remaining tree, and introducing some possible cycles. The
SCD-BPD algorithm can give the dismantling set directly
without the latter two stages.

Our numerical computations on real-world networks reveal
that the CD-BPD and SCD-BPD do not work well in networks
with numerous short loops. This drawback can be made up
for by considering the effects of local short loops. We can
start this work from the simplest triangle structure and then
extend it to more complex local structures. We believe that
better results for these real-world networks can be obtained in
our future work.
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APPENDIX A: PSEUDOCODE OF UPDATE OF ALL
MESSAGES ON GRAPH G WITH EQS. (13) AND (17)

Here we explain how to update all messages on graph G
with Eqs. (13) and (17). For each vertex, if we update all
messages {qAi

i→j }j∈∂i together, we need to use the ⊗ operation
only 3k − 2 times, where k = |∂i|. Then the computation can
be simplified further.

Algorithm 1: Update all messages on graph G with Eqs. (13)
and (17).

Generate a random order of all vertices V: {t1, t2, . . . , tN };
for r = 1, . . ., N do

Select the vertex i in the order of {t1, t2, . . . , tN }, then i = tr ;
Define a sequence {j1, j2, . . . , jk} for the nearest neighbors ∂i;
Set message q ′

j1
= {1, 0, . . . , 0} and q ′′

jk
= {1, 0, . . . , 0};

for s = 2, . . ., k do
Compute q ′

js
= q ′

js−1
⊗ qjs−1→i ;

end for
for s = k − 1, . . ., 1 do

Compute q ′′
js

= q ′′
js+1

⊗ qjs+1→i ;
end for
for s=1, . . ., k do

Compute q̃i→js
= q ′

js
⊗ q ′′

js
;

Update qi→js
from q̃i→js

by Eq. (17);
end for

end for

APPENDIX B: CD-BPD ALGORITHM AND
SCD-BPD ALGORITHM

For a given graph G, the BP equations cannot only estimate
the size of the minimum set D, but also give a near-optimal
solution of the CD problem with the BPD algorithm. In this
paper, we introduce BP equations to study the properties of
CD problem with finite C and then simplify it in the large
C limit. Therefore, we develop two different BPD algorithms
based on the original BP equations and the simplified BP
equations, which are denoted as CD-BPD and SCD-BPD,
respectively.

At the beginning of each BPD algorithm, we set β > β∗
and randomly initial all messages {qi→j } or {q̂i→j } on graph
G. Then we empty the set S = ∅ and D = ∅. In each round of
the BPD algorithms, the BP equation (7) or (21) are performed
enough times so that every message can spread its information
to the entire connected component. The BP equations may not
reach its fixed point in the BPD algorithm, but it does not
prevent us from computing the marginal probability of each
vertex q0

i or q̂0
i by Eq. (5) or (23). Then a small fraction of ver-

tices with the largest q0
i , q̂0

i are added into set D. At the same
time, we will also remove these vertices and their adjacent
edges from the graph. During this process, it is possible that
the remaining graph breaks to many connected components,
some of which will be equal to or smaller than C. Because
these small connected components satisfy the constraint of the
CD problem, we can remove the entire connected component
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away from the remaining graph to avoid unnecessary vertex
attacking. The vertices in these small connected components
are added to the set S . After that, we can iterate BP equations
for the next round until all vertices are removed from the graph
and D

⋃
S = V . Here we present the pseudocode of two BPD

algorithms in the following algorithm.

Algorithm 2. The CD-BPD and SCD-BPD algorithm based on
the original BP equations and the simplified BP equations.

For a graph G(V, E ) with N = |V| vertices, inverse temperature β, a
small fraction f , and iteration number T , initial all messages {qi→j }
or {q̂i→j } on the graph G randomly;
Empty the set D and S: D = ∅, S = ∅;
while D

⋃
S �= V do

fort = 1, . . ., T do
Try to find out the solution of BP equations by updating
messages {qi→j } or {q̂i→j };

end for
fori = 1, . . ., N do
Compute the value of q0

i or q̂0
i by their corresponding RS

cavity equations;
end for
for s=1, . . ., f N do

Find the vertex i with the largest q0
i or q̂0

i in the remaining
graph;
Add vertex i into set D;
Delete vertex i with its adjacent edges from the remaining
graph;
if There are connected components with the size not larger than
C in the remaining graph then

Add all vertices in these connected components into set S;
Remove the entire connected components from the
remaining graph;

end if
end for

end while
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