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Recently, the problem of classes of vulnerable vertices (represented by colors) in complex networks has been
discussed, where all vertices with the same vulnerability are prone to fail together. Utilizing redundant paths each
avoiding one vulnerability (color), a robust color-avoiding connectivity is possible. However, many infrastructure
networks show the problem of vulnerable classes of edges instead of vertices. Here we formulate color-avoiding
percolation for colored edges as well. Additionally, we allow for random failures of vertices or edges. The
interplay of random failures and possible collective failures implies a rich phenomenology. An interesting form
of critical behavior is found for networks with a power-law degree distribution independent of the number of
colors, but still dependent on the existence of the colors and therefore different from standard percolation. Our
percolation framework fills a gap between different multilayer network percolation scenarios.

DOI: 10.1103/PhysRevE.98.062308

I. INTRODUCTION

Studies of percolation in complex networks have a rich
history [1,2]. Applications allow us to assess the robustness
of complex systems representable as networks. Most complex
networks, as, for example, infrastructure networks, have to
be connected in order to function properly. Varying types of
connectivity can be needed for the proper functioning of a
system. A prime example are interdependent networks, which
are formed from a number of different types of networks, with
interdependency links between the vertices of different types.
Connections are dependent in the sense that if a vertex of type
A is disconnected, then the vertex of type B also fails. This
connectivity concept raises a plethora of surprising critical
phenomena and is invaluable to explain real-world problems
such as electric power shortages [3]. Another example of the
sensitivity to the definition of connectivity is the so called
k-connected percolation [4,5], in which vertices are connected
only if there exist at least k independent paths among them.
Yet another example is color-avoiding percolation [6–8]. In
these papers, every vertex in a network is colored with one
color out of a certain set of colors. A pair of vertices is
connected only if for each color there exists a path in between
those two vertices that avoids that color.

From a theoretical point of view, percolation on networks
[9,10] exhibits a number of features that are rare or ab-
sent in more conventional models of percolation on lattices.
Discontinuous phase transitions [11], phase transitions with
Berezinskii-Kosterlitz-Thouless singularity [12], magnetic-
field effects [8], explosive percolation [13], or inequality of
site and bond percolation [14] represent just some of the
critical phenomena that naturally emerge from percolation in
complex networks.

Recently, some of the authors developed color-avoiding
percolation (CAP) [6–8] as a tool to study the robustness
of networks to simultaneous failures of certain classes of
vertices. Classes are defined by their common vulnerabilities
(for example, the type of critical software they share), and a
common vulnerability of a whole class is represented by its
own color. The goal of CAP is to find a set of vertices that
remain connected no matter which vulnerability is activated,
i.e., they stay connected regardless of which color is deleted
in the network. We define two vertices as color-avoiding-
connected (CAC) if for every color there exists a path between
them that avoids that color (vulnerability). Recent studies on
multiplex networks [3,15–18] share some similarities with
CAP, because layers can be thought of as the colors in CAP. If
we thought of colors as layers, the method could also be called
layer-avoiding percolation. The main difference between CAP
and other multiplex percolation scenarios is the choice of con-
nectivity definition, where for every layer an avoiding path is
needed. This is less strict than asking for connectivity in every
single layer, and more strict than allowing a combination of all
layers for connectivity.

In this paper, we extend CAP to networks with colored
edges. This is important for a number of different network
applications. An illustrative example are networks of public
transportation, where stations are represented as vertices and
direct connections as edges. Connections can be operated by
bus, underground, or other means of transportation. Coloring
the direct connections according to the connection type, a
transportation network with colored edges is constructed.
The different connection types are vulnerable to different
failures—buses are delayed during rush hours, while technical
problems can affect large parts of the underground system at
the same time. In a robust public transportation system, every
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transportation type has to be avoidable, such that connections
can be served by alternative means of transportation.

We add another important aspect to the discussion of
CAP, namely random failures of vertices or edges. In the
example of public transportation, there are often some edge
failures due to reconstruction works, which are independent of
correlated failures. If there are too many reconstruction works
affecting the bus connections, the underground can become
indispensable.

We present numerical and analytical results for random
network ensembles of Erdös-Rényi type and with power-
law degree distribution [19]. Four different scenarios are
considered: (i) edge coloring with bond percolation (random
failures of edges), (ii) edge coloring with site percolation
(random failures of vertices), (iii) vertex coloring with bond
percolation, and (iv) vertex coloring with site percolation.
In Erdös-Rényi networks, all four scenarios show the same
critical behavior, identical to [6,7]. The critical behavior of
CAP in networks with power-law degree distribution is not
yet understood. Here we find a kind of CAP critical behavior
that does not depend on how many colors are avoided, but
still does depend on the existence of colors. Here we also
find that the breaking of a bond-site percolation universality
in networks with null percolation threshold [14] is also valid
for CAP. Regarding different coloring cases, we find that the
number of vertices that are CAC does not depend on whether
colors are treated as an edge or a vertex property.

In Sec. II, we define an algorithm for finding the largest
subset of vertices that are color-avoiding connected. After
explaining the assumptions of our model in Sec. III, we
develop a theory for calculating the relative size of the color-
avoiding giant component and its criticality for networks with
edge coloring together with bond percolation in Sec. IV. After
a short discussion of Erdös-Rényi networks, we calculate the
relative size of the color-avoiding giant component for net-
works with power-law degree distribution. This is done step
by step in an iterative procedure, with largely differing results
for different values of the power-law exponent describing the
degree distribution. Further in Sec. V, we deal with the site
percolation and show the breaking of site-bond percolation
universality for CAP, as well as the case of vertex coloring.
The conclusion follows in Sec. VI.

II. COLOR-AVOIDING CONNECTIVITY

To quantify how the connectivity of a network depends on
the coloring of vertices or edges, we study the color-avoiding
giant component (CAGC), as it was already defined in
[6–8]. We say a pair of vertices is color-avoiding-connected
if for every untrusted color there exists a path in between
that avoids that color. The CAGC is defined as the largest set
of vertices where every pair is color-avoiding-connected. The
number of nodes in the CAGC can scale with the network size,
such that a macroscopic fraction of a large network is color-
avoiding-connected. This motivates the name color-avoiding
giant component.

In the case of vertex coloring, a pair of vertices is color-
avoiding-connected regardless of the colors of this pair of
vertices—only the colors of the vertices on the path in be-
tween the pair of vertices are important [6]. This definition

enables color-avoiding connectivity, even if all colors of ver-
tices are untrusted. An alternative scenario was studied as
well, where all the vertices colored with the color of the
starting and ending vertex are trusted [7].

In networks with colored edges, such a distinction between
different scenarios is not necessary. The CAGC in the pres-
ence of colored edges consists of all vertices that stay color-
avoiding-connected, and because vertices are not colored, they
are always trusted [see Figs. 1(a)–1(e)].

It is important to stress that Fig. 1 also describes the
algorithm that we use to numerically study the problem of

FIG. 1. The color-avoiding component under the bond percola-
tion and the site percolation. Here we present a network with its
edges colored in three different colors: brown, green, and yellow
(black, dark gray, light gray) (a). The giant color-avoiding compo-
nent associated with this network is designated with (red) rounded
vertices in (b). One can find the color-avoiding component as an
intersection of connected components when avoiding each color
individually. The color of the dashed box represents the color that
is avoided for each color in the network in (c)–(e). Vertices that are
not a part of the connected components are colored in gray. Thus the
black vertices in (c), for example, are connected through the paths
that are free of brown (black) edges. Note that vertices with only
one edge, i.e., vertices with numbers 2, 5, or 7, do not belong in the
color-avoiding component since they surely become isolated when
the color of their single edge is avoided. Therefore, a vertex that
belongs in a giant color-avoiding component has to have a degree
equal to or larger than 2. Comparing vertices numbers 6 and 8, one
can notice that a vertex in a color-avoiding component (vertex 6) has
to have at least two edges of different colors. Deleted edges in bond
percolation (f) and deleted vertices (vertices 6 and 3) with their edges
in site percolation (g) are marked as a dashed line.
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CAP. In other words, we (i) delete every color, (ii) find the
largest component surviving without the deleted color, and
(iii) then find an intersection of all the largest components
formed for each of the deleted colors. This algorithm works
perfectly for colored edges, while for colored vertices we have
to extend the algorithm as described in [6].

Before, color-avoiding percolation only accounted for cor-
related failures of all vertices with the same color [7]. Here
we also allow for additional random failures of vertices or
edges regardless of the color distribution. We study how
standard percolation affects the size of the CAGC, and we
present a condition for its existence in a given network. This
allows us to study the critical behavior also on colored scale-
free networks, which is remarkably different from colored
Erdös-Rényi networks [7]. It also expands our possibilities
to dilute networks by choosing either vertices (site perco-
lation) or edges (bond percolation) and to test if there is
any difference between these two kinds of percolation [see
Figs. 1(f) and 1(g)].

III. MODEL

We consider the configuration network model, where the
degree k of vertices is characterized with a degree distribution
pk [1,2,20]. The degree k is the number of first neighbors of
a given vertex. For defining the coloring of the network, we
consider two different scenarios: (i) A network with colored
edges is constructed by assigning to every edge e exactly one
color ce ∈ {1, 2, . . . , C}. The colors are chosen independently
random, every color c with a probability rc. The probabilities
of all colors sum to 1,

∑C
c=1 rc = 1. For large networks, the

share of edges with color c converges to rc. (ii) A network with
colored vertices is constructed by assigning to every vertex v

exactly one color cv ∈ {1, 2, . . . , C} with probability rc.
As we want to account for additional random failures of

edges (or vertices), we use a dilution approach in which a
fraction of edges (or vertices) φ is retained after uniform
dilution of the network. Consequently, 1 − φ is the fraction
of edges (or vertices) that is removed from the network.
This procedure also helps to better quantify the percolation
threshold [1,21] on scale-free networks. Let G be the set of
vertices in the largest component of the diluted network. In
the thermodynamic limit of networks with infinite size, there
is a percolation threshold φcrit that separates a nonpercolating
phase for φ < φcrit from a percolating phase for φ > φcrit [1].
G is finite in the nonpercolating phase, while it includes a
macroscopic fraction of vertices in the percolating phase.

We further treat the additional effect of the edge coloring,
where the first T � C colors are untrusted and thus need
to be avoidable. We define T = {1, 2, . . . , T } as the set of
untrusted (avoidable) colors. Our theory will work even in
the cases in which we choose not to avoid all the colors but
only some subset of them. This is important because in some
applications we could, for example, have a completely safe
category that could be colored with the color that is therefore
never avoided. Also the theory that includes avoidance of
only a subset of colors is more general. Let Gcolor be the set
of vertices belonging to the CAGC. Similar to the case of
colored vertices [6–8], we construct Gcolor but now starting
from the φ-diluted network. For every color c, we destroy

all edges with color t ∈ T and find the set of nodes in the
remaining largest component, denoted as G{t}. In the subscript,
the {t} denotes the avoided color. Every vertex pair in G{t}
is connected by a path without any edge having color t . We
finally find Gcolor = ∩T

t=1G{t}.
If we have a vertex coloring instead of the edge coloring,

we assume that all sending and receiving vertices are trusted,
and only vertices on the path between a pair of nodes are
avoided. Again, we start with the φ-diluted network. For every
color c, we destroy all vertices with color c and find the set
of nodes in the remaining largest component, denoted as G{t}.
By adding all direct neighbors of vertices in G{t}, we obtain a
larger set of vertices G+

{t}. Every vertex pair in G+
{t} is connected

by a path without any vertex in between having color c. We
finally find Gcolor = ∩T

t=1G+
{t}.

A. Color-avoiding critical threshold

The color-avoiding percolation threshold φ̃crit characterizes
the formation of the CAGC. It depends on φcrit, because
every giant color-avoiding component must be a subset of
the regular giant component. As the CAGC is the intersection
of the largest components G{t} (respectively G+

{t} for the case
of colored vertices) for different avoided colors t ∈ T , let us
first discuss the critical onset for G{t} (respectively G+

{t}), which
is identical to the color-avoiding percolation threshold for a
single avoided color. It can be modeled as a thinning stochastic
process [22–24] of an arbitrary initial degree probability pk to
a thinned one p̃k , i.e., a color-avoiding one, when color t ∈ T
is thinned out or avoided,

p̃k =
∞∑
l=k

pl

(
l

k

)
(1 − rt )

krl−k
t . (1)

The generating functions associated with the initial degree
distribution are defined as g0(x) = ∑∞

k=0 pkx
k , and for the

color-avoiding degree distribution we use g̃0(x) = ∑∞
k=0 p̃kx

k

in analogy with p̃k . The thinning of degree distribution in a
sense of avoiding color means that

g̃0(x) = g0((1 − rt )x + rt ). (2)

Since the average degree and other higher moments, denoted
by 〈km〉 = ∑∞

k=0 kmpk, m ∈ N and 〈k̃m〉 associated with p̃k ,
are given as derivations of a generating function [1], it is easy
to show that

˜〈k〉 = 〈k〉(1 − rt ), (3)

〈k̃2〉 − 〈k̃〉 = [〈k2〉 − 〈k〉](1 − rt )
2. (4)

This is specifically needed to compute the percolation thresh-
olds of the Erdös-Rényi and scale-free networks. We remind
the reader that the Erdös-Rényi network has a Poisson de-
gree distribution pk = 〈k〉ke−〈k〉/k!, k � 0 and a percolation
threshold at φcrit = 1/〈k〉 [1]. The scale-free network is de-
fined with power-law degree distribution pk = Ak−γ , k � 1,
and it has a percolation threshold at φcrit = 〈k〉/〈k(k − 1)〉
[1]. Since the avoiding of color repeats for every avoidable
color [for example, see Figs. 1(c)–1(e)], the assumption is that
the smallest of all color-avoiding components G{t} (or G+

{t} in
the case of vertex coloring) will be avoiding the dominant
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color t with the largest rt . Consequently, this component
will have the largest percolation threshold for creation of the
giant connected component. Thus the percolation threshold
for the formation of CAGC is a function of the probability
1 − maxt∈T rt of avoiding the dominant color [7]. Finally,

φ̃crit = φcrit
1

1 − maxt∈T rt

, (5)

with which we confirm the percolation threshold for the
Erdös-Rényi network and expand it to the mean-field regime
of the scale-free network with pure power-law degree distri-
bution.

IV. COLOR-AVOIDING BOND PERCOLATION

Our calculation follows the essence of the regular (bond)
percolation on noncolored networks [25–29]. We adapt these
approaches to the color-avoiding percolation, by including the
possibility that all edges of a particular color fail at once
[7]. Site percolation will be studied in a later section. As
in previously studied percolation models, we use generating
functions for the degree distribution of the initial network
g0(x) = ∑∞

k=0 pkx
k , as well as for the excess degree distribu-

tion [1] g1(x) = (〈k〉)−1 ∑∞
k=1 kpkx

k−1. To calculate the size
of the standard giant component, it is common to solve a
self-consistent relation for the probability u that an edge is
not connecting to it [1]. For color-avoiding percolation, we
need to calculate a set of edge failure probabilities uQ for
a set of untrusted colors Q ⊆ T . The quantity uQ defines
the probability that an edge fails connecting to the largest
component GQ, obtained when all untrusted colors q ∈ Q are
deleted in the same time. We denote the relative size of the
CAGC, avoiding the colors in the set T , as BT

color. It can be
computed in a lengthy calculation using generating functions
together with event negations and the inclusion-exclusion
principle [7]:

BT
color = 1 +

∑
Q⊆T

(−1)|Q|g0(uQ). (6)

We exclude the empty set from T in Eq. (6), since its
solution is trivial (u∅ = 1). In this approach, instead of only
one variable u needed to compute the giant connected compo-
nent of ordinary percolation, 2|T | − 1 variables uQ are needed,
where Q takes on all nonempty subsets of T .

The inherent self-consistent equations for the variables uQ
are

uQ = (1 − φ)+ φ

[∑
q∈Q

rqg1(uQ\{q})+
(

1 − ∑
q∈Q

rq

)
g1(uQ)

]
.

(7)

These equations are valid either for colored edges (with
edge color shares rq) or for colored vertices (with vertex
color shares rq). The brackets {} represent an avoiding set
of specified color designated with a small letter, while large
letters are used for the names of sets of avoidable colors.
The first term simply describes the probability 1 − φ that a
given edge is removed. The prefactor φ of the second term
describes the probability that the edge is not removed. The
first term in brackets [· · · ] is a conditional probability: Given

that the edge still exists, we sum over all the colors q in
the set of avoided colors Q the probability that the edge (or
the reached vertex) is of color q, which therefore cannot be
avoided. Additionally, none of the outgoing edges from the
reached vertex is connecting to any of the components G{c}
avoiding colors c ∈ Q \ {q}. The second term in the brackets
[· · · ] covers another conditional probability: Given that the
edge still exists, we calculate the probability that the edge
(or the reached vertex) has a color different from all avoided
colors in Q and that at the same time none of the outgoing
edges from the reached vertex is connecting to any of the
components G{q} avoiding the colors q ∈ Q. In this way, a con-
dition is fulfilled that the edge connects to none of the com-
ponents G{q} avoiding colors q ∈ Q. Consequently, the self-
consistent equations must be solved iteratively from avoid-
ing single colors to avoiding the whole set T of avoidable
colors.

A. Critical exponents

Near the percolation threshold φ̃crit, we expect a power-law
behavior [6,30] of the form

BT
color ∼ (φ − φ̃crit )

βT
B . (8)

The critical exponent can be found with an expansion
according to small quantities [28]. We see that the critical
behavior implies BT

color → 0 with φ → φ̃crit. Accordingly, we
expect that the single edge failure probability is close to 1 at
the critical point, uQ → 1. Here we will use the dual picture
[7] with probabilities vQ that a link connects to all G{q}.
Using the dual variables vQ allows us to rephrase the problem
entirely based on small quantities:

vQ = 1 +
∑
P⊆Q

(−1)|P|uP , (9)

uQ = 1 +
∑
P⊆Q

(−1)|P|vP ≡ 1 − εQ, (10)

φ = φ̃crit + δ, vP , εQ, δ � 1. (11)

One important special feature of vQ arises if all colors are
avoided: If Q = {1, 2, . . . , C}, then vQ = 0 [7], because a
single edge cannot avoid all colors.

The dual picture with small variables allows us to expand
g0(uQ) in Eq. (6) around g0(1). For Poisson graphs, we use
g0(x) = g1(x) = exp[〈k〉(x − 1)] and find

g0(1 − ε) = exp(−〈k〉ε)

≈ 1 − 〈k〉ε + 〈k〉2

2
ε2. (12)

Plugging into Eq. (6) and using r1 = r2 = · · · = r|T | as well
as v{1} = v{2}, etc., many terms cancel out and we find

BT
color = 〈k〉vT + 〈k〉2

2

|T |−1∑
t=1

(|T |
t

)
v{1,...,t}v{t+1,...,T }

+ · · · , (13)

where |T | is the number of avoided colors (nonempty el-
ements) in set T . Notice that the linear expansion in ε of
g0(1 − ε) is not enough if all colors are avoided, because then
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FIG. 2. Erdös-Rényi edge colored network with equal color fre-
quencies under bond percolation when all colors are avoided. The
relative size of the giant connected component is marked with black
dots, and for the color-avoiding connected component CAGC two
cases are shown: red triangles for C = 2 and green squares for C = 3
avoiding colors. Except for the results from simulations that are
shown as symbols, the results based on our theory are denoted by
lines of the associated color. Numerical averages are done over 150
networks of size N = 106. Analytical results are obtained through
200 iterations of self-consistent equations presented in this paper.
Standard deviations are shown as barely visible error-bars for both
analytical and numerical results. For both cases, edges are colored
with identical shares of the colors (r1 = · · · = rC); all colors are
avoided. Parameter φ is the relative number of edges that stay after
uniform bond dilution, starting from the network with a Poisson
degree distribution with an average degree 〈k〉 = 2.74. Our theory
corresponds with the numerical results, which are strongly color-
dependent for all values of the parameter φ. On the right, results are
repeated with logarithmic scaling. The critical exponent is equal to
the number of avoided colors.

vT = 0. Therefore, we need higher-order terms to describe the
critical behavior, which is typically not necessary for other
percolation types [28].

In the following, we discuss the scaling of vQ with δ

to complete the discussion of critical exponents for Poisson
graphs. For scale-free graphs, higher derivatives of the gen-
erating function diverge, what makes it impossible to use the
Taylor expansion. This problem can be overcome based on an
asymptotic expansion.

B. Poisson graphs

The relative size of the CAGC is completely defined by
solving the set of self-consistent Eqs. (7) and (6). Our an-
alytical results for networks with Poisson degree distribu-
tion are shown in Fig. 2 (shown with the red line for two
avoided colors and the green line for three avoided colors),
accompanied with numerical results (symbols with error bars
of one standard deviation). The algorithm for the numerical

estimation of the relative size of the CAGC is sketched in
Fig. 1: For every avoided color t ∈ T , the largest remaining
component G{t} is identified and finally the intersection over
all these components is used to identify vertices in Gcolor. We
use an average over 150 network configurations of the canon-
ical ensemble (fixed number of vertices N = 106 and degree
distribution pk), with colors on the edges as an annealed
degree of freedom and identical color probabilities r1 = r2 =
· · · = rC . The colors are newly assigned in every configu-
ration (uniformly random distributed), after the vertices are
rewired. Every color is treated as avoidable (T = {1, . . . , C}).
Simulations are done with the Graph-tool library in PYTHON

[31]. We checked that the plateau for small φ in the numerical
results on the right subfigure is a consequence of the finite
size of simulated networks. The color-avoiding component is
more rigid than the standard giant component (shown with
the black line and symbols) and the CAGC is greatly affected
by the number of colors. We emphasize that the CAGC has
exactly the same size if vertices are colored instead of the
edges, because both versions result in the same Eqs. (7) and
(6), just with an altered meaning of the color shares rq . This
result is tested with numerical results, which are not shown
for Poisson graphs, but for scale-free graphs we will discuss
it below in Fig. 7. Differences in the critical behavior for
different numbers of avoided colors are evident on the right
of Fig. 2, where the results are repeated in double-logarithmic
scaling. The critical exponent is βT

B = C. This is identical
with the result reported before [6,7], however here we confirm
this result for colored edges.

For the scaling of vQ, we find with identical color shares of
all colors,

vQ ∼ δ|Q|, (14)

where |Q| is the number of avoided colors (elements) in set Q.
This result is found iteratively by plugging the Taylor expan-
sion of g1(1 − ε) into Eq. (7). Exactly the same procedure is
described in detail in [7]. Plugging into Eq. (13), we are able
to confirm the finding βT

B = C [compare Eq. (8)].

C. Scale-free graphs

Finding results for scale-free graphs is more complicated
than for Poisson graphs. Analytical results (lines) and numer-
ical results (symbols) for networks with power-law degree
distribution with exponent γ = 2.3 are shown in Fig. 3. As for
Poisson graphs, analytical results are computed with Eqs. (7)
and (6), and numerical results are averages over 150 network
configurations of the canonical ensemble (fixed number of
vertices N = 106 and power-law degree distribution pk). Ev-
ery color is treated as avoidable (T = {1, . . . , C}), and all
color shares are equal (r1 = r2 = · · · = rC). We see that the
CAGCs for two avoided colors (red triangles with error bars
of one standard deviation, and red line) and for ten avoided
colors (blue squares and blue line) share the critical value with
standard percolation (black circles and line) φcrit = φ̃crit = 0.
On the right of the figure, results are repeated in logarithmic
scaling. Here we see that the critical exponent βT

B = (γ −
1)/(3 − γ ) is independent of the number of avoided colors.
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FIG. 3. Scale-free edge colored network with equal color fre-
quencies under bond percolation when all colors are avoided has
color-independent critical behavior. Supplementing Fig. 2, here we
present results for a power-law degree distribution with exponent
γ = 2.3, with identical average degree as for the Poisson graph. Red
triangles show numerical results for the relative size of the CAGC
with C = 2 avoided colors, blue squares with C = 10 avoided colors.
Black circles show the relative size of the standard giant component.
The corresponding solid lines show analytical results with good
agreement. On the right we see in logarithmic scaling that the critical
exponent is independent of the number of avoided colors. The dashed
black line is a power law with exponent (γ − 1)/(3 − γ ), which is
the critical exponent of CAGC that we have computed. The dashed
gray line is a power law with exponent 1/(3 − γ ), which is a critical
exponent of standard percolation on scale-free networks.

These surprising results are in sharp contrast to all results with
Poisson graphs [6–8], which were strongly dependent on the
number of avoided colors.

The novelty of CAP that makes the criticality independent
of the number of avoided colors, but still dependent on the
existence of color on the network, also remains in scale-free
networks in regimes of power-law exponents that are not
mean-field in nature. For networks with power-law degree
distribution with exponent 3 < γ < 4, we present a value of
the critical exponent βT

B = 2/(3 − γ ). In Fig. 4 denoted by the
green line, only analytical results for the bond CAP with γ =
3.3 and all C = 3 avoidable colors and equal frequencies are
shown. Since a great deal of precision is needed to obtain crit-
icality in this regime, we would need much bigger networks to
get the probabilities that are small as calculated by analytics.
However, the uniqueness of critical exponents for scale-free
networks in typical regimes of power-law exponents makes
CAP useful for a deeper understanding of scale-free networks
in general.

In the following, we will understand the origin of this result
for the order parameter critical exponent βT

B . To proceed,
we need to define general coefficients ai ∀ i ∈ R, which will
be used later in an extension of the series expansion of our

FIG. 4. Rich critical behavior of color-avoiding percolation on
scale-free edge colored network with equal color frequencies under
bond percolation when all colors are avoided. Here we present only
analytic results for a power-law degree distribution with exponent
γ = 3.3 and C = 3. The characteristics of analytical calculation are
the same as described in the caption of Fig. 2. Full lines show
results for iteratively solved equations, while dashed lines on the
right represent auxiliary lines for the critical exponents of CAGC
that are noted in green (light gray), as well as for probabilities v{1} (in
black) and v{1,2} [in purple (dark gray)]. We see that the probability
of connecting to the giant component that is avoiding two colors at
the same time is smaller than the probability of connecting to the
giant component that avoids only one color, while they are both still
behaving critically. However, the former has the critical exponent
(γ − 2)/(γ − 3), which is larger than for the latter, 1/(γ − 3). We
also find a critical exponent 2/(γ − 3) for CAGC in this regime of
the power-law exponent, but when we do not trust any color.

generating function, as

ai = 1

〈k〉
〈

�(i + 1 − k)

�(−k) �(i + 1)

〉
. (15)

The general definition of the coefficients ai is derived by
using common relations for binomial coefficients [32] and
their connection with the � function [33]. This coefficients
are often used in percolation theory on scale-free networks
[28]. The sign of coefficients for i ∈ N alternates as ai =
(−1)(i+1)〈∏i

j=0(k − j )〉/〈k〉. It is known [1] that the gener-
alization of the statistical moments of power-law distribution
on 〈km〉, m > 0,m ∈ R, diverges when m � γ − 1. Since
this restriction has consequences on the percolation threshold,
we briefly repeat them here concerning the threshold for
the existence of the CAGC. First, the percolation threshold
φ̃crit is well-defined [20,34,35] when at least a first statistical
moment exists, i.e., if and only if γ > 2. Second, a phase
transition at a nonvanishing φcrit exists if γ > 3, i.e., when
the second moment is finite. But it was also shown that the
phase transition still occurs [27,35,36] in a case of the extreme
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dilution (φcrit = 0) of scale-free networks with γ ∈ 〈2, 3]. In
the rest of the paper, we will use a shorter notation for the
critical parameter of scale-free networks: φcrit ≡ 1/a1.

We perform an expansion in small variables vQ and δ

[compare Eq. (9) to Eq. (12)], similar to what we did before
for Poisson graphs. The generating function of a power-law
degree distribution is not analytic around the argument of
1, because there is always a higher derivative that diverges.
Therefore, we use instead of the Taylor expansion an adjusted
version of the asymptotic form for the generating function of
excess degree [28]:

g1(1 − ε) = 1

〈k〉
∞∑

k=0

kpk[1 − ε]k−1

≈ 1 − a1ε − a2ε
2 − · · · − aγ−2ε

γ−2, (16)

g0(1 − ε) ≈ 1 − 〈k〉ε + 〈k〉a1

2
ε2 + 〈k〉a2

3
ε3 + · · ·

+ 〈k〉aγ−2

γ − 1
εγ−1, (17)

where coefficients ai, i > 0, i ∈ R are defined in Eq. (15).
Later we will replace ε with small variables 1 − u{q}, as
well as 1 − u{q,c}, etc. Equation (17) is derived by integrating
〈k〉g1(x) = d

dx
g0(x) from x = 1 to x = 1 − ε and adjusting

g0(1) = 1. Note that the term aγ−2 implies that γ > 2, and
therefore the first moment 〈k〉 is finite.

Since the coefficients ai, i ∈ N are of order ai ∼ 〈ki−1〉,
it follows that it must be i � �γ − 2�, i.e., �γ − 2� is the
highest-order analytic term in the asymptotic expansion of the
generating functions. If γ ∈ 〈2, 3〉, then only the first and the
last terms in Eq. (16) exist [in Eq. (17), the first, second, and
last terms exist]. The first, second, and last terms are expressed
in Eq. (16) if γ ∈ 〈3, 4] [in Eq. (17), the first, second, third,
and last terms are expressed]. The case when γ � 4 fits with
the usual mean field, since the first three terms in Eq. (16) are
sufficient to describe the behavior entirely.

We plug expansion Eq. (17) into Eq. (6). With the small
dual variables v{q}, v{c}, v{q,c}, . . . � 1 as defined in Eq. (9),
we find that many terms cancel out. For arbitrary avoidable
subsets T , we find

BT
color ≈ 〈k〉vT + O(γ ). (18)

If some of the nodes or edges are trusted, the linear term 〈k〉vT
dominates the expansion and therefore determines the critical
exponent. The higher-order terms O(γ ) are only important if
all colors are avoided and therefore vT = 0 holds. We find

O(γ ) ∼
∑
Q⊆T

(−1)|Q|(1 − uQ)min(2,γ−1). (19)

Here, the small variables (1 − uQ) can be replaced with the
small variables vP according to Eq. (9). So far we calculated
the dominating lowest-order terms of BT

color as a function of
vQ. This expansion is valid close to the critical point. For
identifying the critical exponent βT

B [compare Eq. (8)], we
still need to calculate how the small variables vQ scale with
δ = φ − φ̃crit. There are many interesting special cases of
percolation transition for scale-free graphs, and we now list
all of them.

1. One avoided color with rq < 1

The first step is to solve the case for avoiding a single color
q. The fraction of nodes or edges with this color has to be
rq < 1. If all nodes or edges would be avoided, connectivity
would be impossible. Avoiding only one color is identical
with standard percolation [7], but we need to go this first
step before we can go to more avoided colors. The associated
self-consistent equation, derived from Eq. (7) for T = {q}, is

u{q} = (1 − φ) + φ[rq + (1 − rq )g1(u{q})], (20)

which is only a slightly modified self-consistent equation of
regular percolation. After including the asymptotic expansion
Eq. (16) in the self-consistent relation Eq. (20), we get

(φ̃crit + δ)
[
a1 + a2v{q} + · · · + aγ−2v

γ−3
{q}

] = 1

(1 − rq )
. (21)

The higher-order terms in δ are further neglected, because
only a linear term in δ is sufficient to get a behavior near
criticality. The result of this equation for different γ -regimes
follows directly,

v{q} ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
(1 − rq )aγ−2δ

] 1
3−γ , γ ∈ 〈2, 3〉,[

1
φ̃critaγ−2

(
1

1−rq
− a1(φ̃crit + δ)

)] 1
γ−3 , γ ∈ 〈3, 4],

1
φ̃crita2

(
1

1−rq
− a1(φ̃crit + δ)

)
, γ ∈ [4,+∞〉.

(22)

Note that the result for γ ∈ 〈2, 3〉 is determined with φ̃crit = 0.
For other values of γ , the percolation threshold computed by
Eq. (5) is such that (1 − rq )−1 − (φ̃crit + δ)a1 = −a1δ, only if
color q has maximal frequency rq . If that is not the case, v{q}
is critical at φcrit/(1 − rq ) < φ̃crit. The solution of Eq. (22) for
γ = 3.3 is presented in Fig. 4, denoted by a black line.

Returning to B
{q}
color, we use only the linear term of Eq. (18)

with vT = v{q}. With B
{q}
color ∼ δβ

{q}
B we find the critical expo-

nent for a colored scale-free network when only a single color
is avoided (T = {q}) and this one avoided color covers only a
part of all edges or nodes (rq < 1),

β
{q}
B =

{
1

|γ−3| , γ ∈ 〈2, 3〉 ∪ 〈3, 4],

1, γ ∈ [4,+∞〉.
(23)

This is a well-known result already reported for regular perco-
lation [1]. In Fig. 3 we demonstrate this behavior clearly. One
has to note that the giant component does not exist for γ >

3.478 for usual scale-free networks [37], although it exists
if a minimal degree is controlled in the network. We report
mean-field exponents as we do not expect them to change in
this pruned case.

2. Two avoided colors with rq + rc = 1

When a number of colors are avoided, the presented al-
gorithm is repeated, but a significant difference from regular
percolation sets in. Let us start with the simplest case, where
only two colors are present in the network and these two
colors are untrusted (T = {q, c}) and have the same shares
rq = rc. We know that vT = 0 and v{q} = v{c}, therefore we
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find with Eq. (19) for the leading order,

BT
color ∼ −2(v{q})min(2,γ−1) + (2v{q})min(2,γ−1)

∼ (v{q})min(2,γ−1). (24)

Together with Eq. (22), we find the critical exponent for
C = 2 colors that are both avoided and have identical shares
rq = rc:

β
{q,c}
B =

⎧⎪⎨
⎪⎩

γ−1
3−γ

, γ ∈ 〈2, 3〉,
2

γ−3 , γ ∈ 〈3, 4],

2, γ ∈ [4,+∞〉.
(25)

This result is confirmed in Fig. 3 with γ = 2.3 (see the red line
and red triangles on the right of the figure). With the green line
in Fig. 4 we show the result for γ = 3.3.

When there is a difference in the color frequencies (rc >

rq), the higher-order terms of Eq. (19) contain the terms of
mixed order, as in the case of Poisson distribution in Eq. (13).
Terms of the type v{q}v{c} in that case are of lowest order in
δ. In that way, criticality of BT

color is determined by different
thresholds of probabilities v{q} and v{c}, and only for γ > 3
is the threshold larger than zero and the results are affected
by the difference in color frequencies. The leading order for
heterogeneous coloring is thus

β
{q,c}
B =

⎧⎪⎨
⎪⎩

γ−1
3−γ

, γ ∈ 〈2, 3〉,
1

γ−3 , γ ∈ 〈3, 4],

1, γ ∈ [4,+∞〉.
(26)

The behavior of CAC in the case of unequal color distributions
is presented in Fig. 5.

3. Two avoided colors with rq + rc < 1

If the third color, which can be trusted, exists, a next step
of iteration in solving self-consistent Eq. (7) is needed. More
precisely, the self-consistent equation for u{q,c} is derived from
Eq. (7) for T = {q, c},

u{q,c} = (1 − φ) + φ[rcg1(u{q}) + rqg1(u{c})

+ (1 − rq − rc )g1(u{q,c})]. (27)

It depends on the generating functions of excess degree
g1(u{q}) and g1(u{c}), as they were used already in the previous
iteration step for one avoided color. Additionally, a generating
function of excess degree g1(u{q,c}) is included when rq +
rc < 1. The self-consistent equation for g1(u{q}), g1(u{c}) in
Eq. (20) is modified using Eqs. (10) and (11), so a relation

g1(u{q}) = 1 − v{q}
(φ̃crit + δ)(1 − rq )

(28)

is used in the further calculation.
In the same way, the self-consistent equation for avoiding

two colors in Eq. (27), which is relevant for the case rq + rc <

1, is rewritten in terms of variables v as

g1(u{q,c}) = 1 − v{q}
(φ̃crit + δ)(1 − rq )

− v{c}
(φ̃crit + δ)(1 − rc )

+ v{q,c}
(φ̃crit + δ)(1 − rq − rc )

. (29)

FIG. 5. Critical behavior of CAGC in edge colored scale-free
network with trusted color and different color frequencies under
bond percolation. Power-law degree distribution with exponents:
γ = 2.3 (top) and γ = 3.2 (bottom). Other characteristics of sim-
ulations are the same as described previously. In the top subfigure,
green lines represent cases of C = 3 colors when only the colors
with r1, r2 are avoided. Shades of green from darker to lighter show
three possible relations between colors. Orange lines are simulations
of C = 2 avoiding colors of frequencies (r1, r2) = (0.3, 0.7). The
dashed black line is a power law with exponent (γ − 1)/(3 − γ ), and
the dashed gray line with 1/(3 − γ ). In the bottom subfigure, four
different scenarios of trustworthiness and relations between color
frequencies (compare with Table I) are compared with simulations
of networks with C = 3. Purple (thinner) lines are used when the
color with frequency r3 is trusted, while cases when all colors are
untrusted are shown with green (broader) lines. Equal frequencies
of avoidable colors are noted in darker shades. Three different
critical exponents are found: 1/(3 − γ ), denoted again with a dashed
gray line; (γ − 2)/(γ − 3), denoted with a dashed purple line; and
2/(γ − 3), denoted with a dashed green line.

Note that we use the asymptotic form of excess generat-
ing function for ε = u{q,c} = v{c} + v{q} − v{q,c} in Eq. (16).
Combined with Eq. (28), we get the asymptotic form of the
self-consistent equation for v{q,c}, which is in analogy with
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Eq. (21) but now for avoiding two colors,

v{q,c}
(φ̃crit + δ)(1 − rq − rc )

≈ −2a2v{q}v{c} + [a1 + 2a2(v{q} + v{c})]v{q,c} − · · ·
− aγ−2

[
(v{q} + v{c} − v{q,c})γ−2 − v

γ−2
{q} − v

γ−2
{c}

]
.

(30)

To describe the criticality of v{q,c}, once again only linear
order terms of δ are used. In the second step of iteration, new
cross-product terms of v{q}, v{c}, and v{q,c} appear in calcu-
lation and their interrelation is important for understanding
criticality. Using Eq. (22), one notices that condition rc > rq

implies that when v{q} is critical, v{c} is not, because they have
different thresholds. Therefore, v{q,c}, which is the probability
of a site being connected to the giant component when both
colors are simultaneously avoided, is critical when both v{q}
and v{c} are nonzero and at least one of them is critical. For
our case, rc > rq means that the critical threshold for v{q,c}
is equal to that of v{c}. Furthermore, that is the reason why
some of the cross-product terms are not contributing to the
criticality of v{q,c}.

In Eq. (30), only the v{q}v{c} product has an effect on the
criticality of v{q,c} and this happens only in the mean-field
regime γ � 4. Other mixed linear terms are corrections of
higher order in criticality. This is in accordance with our
previously shown results for Poisson graphs. For other γ

exponents, the term with the coefficient aγ−2 is necessary
to describe the criticality of networks with long-tail degree
distributions, just as in regular percolation. For γ ∈ 〈2, 3〉,
only the aγ−2 term remains, just as in the case of one color
avoidance Eq. (21). For γ ∈ 〈3, 4〉, the contribution of the
term with coefficient a1 is included to the aγ−2 term. When
dealing with the aγ−2 term, we use the approximation v{c} −
v{q,c} � v{q} together with rc > rq , such that

(v{q} + v{c} − v{q,c})γ−2

≈ v
γ−2
{q} [1 + (γ − 2)(v{c} − v{q,c}/v{q})]. (31)

This approximation is based on the property that v{q,c} � v{q},
as we show in Fig. 4 with black and purple lines.

After the approximation in Eq. (31), only the v
γ−3
{q} v{c}

product remains as the mixed term with coefficient aγ−2 of the
lowest order in δ. From Eq. (30) it finally follows for rc > rq

that

v{q,c} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[(1 − rq − rc ) aγ−2δ]
1

3−γ , γ ∈ 〈2, 3〉,
−(γ−2)( 1

1−rq
−a1φ̃crit )

1
1−rq −rc

−a1φ̃crit− γ−2
aγ−2

( 1
1−rq

−a1φ̃crit )

[ −a1

φ̃critaγ−2
δ
] 1

γ−3 , γ ∈ 〈3, 4〉,

−2a1[a1δ
2+(2φ̃crita1− 1

1−rq
− 1

1−rc
)δ]

φ̃crita2 ( 1
1−rq −rc

−φ̃crita1 )
, γ ∈ [4,∞〉.

(32)

Note that the crucial mixed term remains for rq = rc in
all γ -regimes. But only for γ ∈ 〈3, 4〉 does that change the
critical exponent for v{q,c}, as shown in Fig. 4 with a purple
line. For that regime of γ , the mixed term is in the form of
v

γ−2
{q} and it follows that

v{q,c} = −(γ − 2)
1

1−2rq
− a1φ̃crit

(
1

φ̃critaγ−2

) 1
γ−3

(−a1δ)
γ−2
γ−3 . (33)

The difference between criticality of probability v{q,c} in
Eqs. (32) and (33) is clearly related to the ratio of avoided
color frequencies. Although this behavior still depends only
on the power-law exponent γ , it is also marked as a conse-
quence of the existence of color on the network.

The result for γ ∈ 〈2, 3〉 is again determined with φ̃crit =
0. In other regimes, the percolation threshold is given with
the condition that the zero-order term vanishes. In the regu-
lar mean-field regime γ � 4, the above-mentioned condition
generates the quadratic equation

a2
1 φ̃

2
crit − a1φ̃crit

(
1

1 − rq

+ 1

1 − rc

)
+ 1

(1 − rq )(1 − rc )
= 0

(34)
with results φ̃crit = ([a1(1 − rc )]−1, [a1(1 − rq )]−1). If we se-
lect the first one (rc > rq), the result from Eq. (32) for γ ∈

[4,∞〉 becomes

v{q,c} =−2a2
1

a2

(1 − rc )2(1 − rq − rc )

rc

×
[
a1δ

2 + rc − rq

(1 − rq )(1 − rc )
δ

]
. (35)

Note that the linear term in δ gives a physical solution when
rc > rq . If rq = rc, then only the quadratic term remains. In
this regime, the critical exponent is equal to the number of
dominant colors as found in previous works for ER networks
[6,7].

In the presence of some trusted colors, the higher-order
terms in Eq. (18) can be neglected and the relative size of the
CAGC scales linearly with v{q,c}. Therefore, we find for two
colors with identical shares rq = rc < 1/2,

β
{q,c}
B =

⎧⎪⎪⎨
⎪⎪⎩

1
3−γ

, γ ∈ 〈2, 3〉,
γ−2
γ−3 , 〈3, 4],

2, γ ∈ [4,+∞〉
(36)

and for different color frequencies rq �= rc, rq, rc < 1/2,

β
{q,c}
B =

{
1

|γ−3| , γ ∈ 〈2, 3〉 ∪ 〈3, 4〉,
2, γ ∈ [4,+∞〉.

(37)
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TABLE I. Critical exponent for the bond color-avoiding perco-
lation on scale-free networks. The size of the giant color-avoiding

component (order parameter) behaves like BT
color ∼ (φ − φ̃crit )

βT
B near

criticality. The frequencies of colors ri and the existence of trusted
colors determine the criticality, but differently for each regime of
the power-law exponent γ . While the criticality is dominated by the
existence of colors for the usual mean-field regime γ ∈ [4,+∞〉,
in other regimes it is driven by hublike network topology. The
avoidance of color makes a distinction even between networks with
hublike topology, which is not the case in regular percolation. With
| · | we note the number of colors in a set of avoiding colors T , or in
a set of avoiding colors with the highest frequency in Q ⊂ T : rq =
maxt∈T rt , ∀ q ∈ Q.

βT
B Trusted Untrusted

Equal color frequencies
γ ∈ 〈2, 3〉 1/(3 − γ ) (γ − 1)/(3 − γ )

γ ∈ 〈3, 4〉 (γ − 2)/(γ − 3) 2/(γ − 3)

γ ∈ [4,+∞〉 C |T | < C

Different color frequencies

γ ∈ 〈2, 3〉 1/(3 − γ ) (γ − 1)/(3 − γ )

γ ∈ 〈3, 4〉 1/(γ − 3) 1/(γ − 3)

γ ∈ [4,+∞〉 |Q| |Q|

Note that if trusted colors exist in a hublike network (power
law with γ ∈ 〈2, 3〉 ∪ 〈3, 4〉), CAGC is in fact dominated by
the giant component of the trusted part of the network. That is
the reason why the critical exponent of CAGC is equal to the
one for the ordinary giant component. The behavior of CAC in
the cases with a trusted color and different color distributions
is presented in Fig. 5.

4. General results

The critical exponent of the order parameter for networks
with two avoided colors T = {q, c} can be generalized. We
induce it for arbitrary color-avoiding sets T , and in the case
of bond percolation all possible situations are summarized in
Table I. These results are confirmed in Fig. 3 with γ = 2.3
and T = |T | = 10 avoided colors, Fig. 4 with γ = 3.3 and
T = 3, and Fig. 5.

As a main result in this paper, we show that the critical
exponent of scale-free colored networks is dependent on the
number of possibly vulnerable colors (avoidable colors) only
in the usual mean-field regime, while in the unusual mean-
field regime it stays dominantly affected as a topological
consequence of the networks long-tail degree distribution.
Interestingly, the critical exponent depends on the presence
of colors for γ ∈ 〈2, 4〉, although it depends only on the
exponent of power-law degree distribution. For γ ∈ 〈2, 3〉,
we find that the CAP critical exponent is not sensitive to
different frequencies of colors (heterogeneous coloring). On
the contrary, it does depend on the existence of a trusted
color. A trusted color decreases the CAP critical exponent on
scale-free networks such that it is equal to that of standard
percolation. For γ ∈ 〈3, 4〉, we see that the CAP critical
exponent grows with the level of degeneracy of the highest

color frequency. The dependence on color frequencies is still
driven by topology, but differently than for mean-field or
other topological regimes. In this regime, the dependence on
trusted color is noticeable only if color frequencies are equal.
Further, the critical exponent is still different for homoge-
neous and heterogeneous coloring even when the trusted color
exists.

Color-dependent and color-independent critical behaviors
in colored networks are clearly demonstrated in a compar-
ison of the right panels in Figs. 2 and 3. Our analytically
calculated critical exponents are in agreement with numer-
ical results. Also note that outside of the critical regime,
networks with 〈2, 3〉 ∪ 〈3, 4〉 are still color-dependent. Note
also that an assumption of the same order of v{q}, v{c}, v{q,c}
is validated with the excellent match between simulations
and theory. The intuition for this behavior is that for inho-
mogeneous coloring they are of the same order, while in the
case of homogeneous coloring (rq = rc) the joint probability
term is ∼δ2.

In the case in which the color distribution varies for differ-
ent colors (heterogeneous coloring), from Eq. (35) it is clear
that the dominant color defines the critical behavior, while
the critical exponent stays equal to the single-color-avoiding
case in Eq. (23). If there are few colors that share their
dominance, the critical exponent is equal to the number of
degeneration of color-vector components. Such behavior was
also observed previously [7]. On the contrary, when coloring
is homogeneous (rq = rc, ∀ q, c ∈ T ), a mixed term of the
type

∏
q∈T v{q} raises the critical exponent to be equal to the

number of colors that are avoidable, but only in the usual
mean-field regime. This is already known behavior [7], but the
result here emphasizes that in this respect the edge coloring
behaves the same as vertex coloring. This is true only in mean
field γ � 4. Heterogeneous coloring will change the critical
exponent for power law γ ∈ 〈3,∞〉, where the threshold is
non-null.

An important advantage of the use of φ as the percolation
parameter, instead of 〈k〉, which was used in previous papers
on color-avoiding percolation, is that it is not dependent on
the choice of the degree distribution. The choice of 〈k〉 for
the percolation seems very natural for the Poisson distribution
since its parameter is exactly the average degree. Instead, in
a power-law distribution, the relation between the average de-
gree and its parameter γ is such that 〈k〉 barely changes when
γ � 4. That is why the parameters in correspondence with the
degree distribution are not sufficient to explain appropriately
the critical behavior. However, the percolation threshold is not
affected by this situation, since for both choices it remains
dependent on the degree distribution. On the other hand,
limitations of our simulations of synthetic networks appear at
γ � 3 for N = 106, where the CAGCs cannot be simulated.
We suggest that the reason is similar to that for the limit
for a giant component [38], but in this case it is even more
constraining.

Except for the averaging with the different network config-
urations where each of them is colored at random, we also
tried another possible averaging. We studied the numerical
results averaged over the same network configuration but with
different color realizations. In the first type of averaging, the
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connectivity disorder is annealed; in the second type, the
connectivity is quenched, while the color stays as an annealed
property of edges in both cases. These results are not shown
here, since there is no difference between those two averages,
but we highlight that our theory covers both cases. However,
we find it interesting that the CAGC considered here is already
in a replica symmetric phase [39]. A better understanding of
this result will be a goal of future work.

V. COLOR-AVOIDING SITE PERCOLATION

We find that the color-avoiding percolation strengths for
bond percolation BT

color and site percolation ST
color in the edge

FIG. 6. Bond and site percolation on an edge colored network.
Results for the sizes of the giant component and CAGC obtained by
simulations are shown as symbols and the one from our theory as
lines. Full symbols and solid lines are for bond percolation (repeated
from Figs. 2 and 3 in the same choice of colors), while empty
symbols and dashed lines present results for site percolation also
with the same associated colors. Erdös-Rényi (up) and scale-free
(down) networks have equal average degree. For CAGC, no matter
how many different colors are in the network, we see that, while
βS = βB stays in the Poisson case, in the power law with γ = 2.3
emerges the breaking of the site-bond percolation universality, since
βS = βB + 1. The breaking of site-bond percolation universality was
already noted but for the giant component [14], here shown in black.

coloring case are related by

ST
color = φBT

color, (38)

which is the same linear proportionality as in a regular per-
colation [14]. For Poisson graphs, φ̃crit > 0, and therefore the
site and bond percolation have exactly the same exponents.
This behavior is clearly presented in the upper part of Fig. 6.

The breaking of the site-bond percolation universality fol-
lows for power-law distributed networks only with γ ∈ 〈2, 3〉,
because φ̃crit = 0. The associated critical exponent βT

S of site
color-avoiding percolation for the edge coloring is

βT
S =

⎧⎪⎨
⎪⎩

γ−1
3−γ

+ 1, γ ∈ 〈2, 3〉,
2

γ−3 , γ ∈ 〈3, 4〉,
| T |, γ ∈ [4,+∞〉.

(39)

Presented are equations for all avoidable colors and equal
frequencies, but the breaking of site and bond universality will
be the case in any instance mentioned in Table I for regime
γ ∈ 〈2, 3〉.

For vertex coloring, denoted by ∗, we find that β∗T
S = βT

S .
In Fig. 7 we demonstrate that the behavior of colored vertices
and edges is exactly the same.

FIG. 7. Size of the color-avoiding connected component is equal
for edge and vertex coloring under both site and bond percolation.
Numerical and analytical results are shown only for the scale-
free network with γ = 2.3 and C = 2 avoiding colors. As in the
supplements of Fig. 6, full triangles and solid line are for bond
percolation, while empty triangles and dashed line present results
for site percolation. While results for edge coloring are shown in
red (light gray), results for the size of CAGC in the vertex coloring
are denoted in gray. Other details are identical to the supplements
of Figs. 3 and 6. We see that critical exponents do not depend
on whether the color is edge or vertex property. One can better
understand that by noting that the same situation happens while
avoiding the color of the edge from a randomly chosen vertex or the
color of its first neighbor.
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VI. CONCLUSION

In conclusion, we have shown that in the regular mean-field
limit networks sense colors in color-avoiding percolation, and
the exponent of the percolation is always equal to the num-
ber of dominant colors. Topological constraints of scale-free
networks are stronger than the color-avoiding property, and
the critical behavior outside of the mean-field regime depends
on the color existence, although computed critical exponents
depend only on the exponent γ of the power-law degree distri-
bution. We have also shown that the site and bond percolation
differ, as was previously found. We believe that the study
of color-avoiding percolation is fundamentally important for
studies of critical behavior in networks as they naturally
interpolate between different interesting critical regimes.
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20, 053001 (2018).

[9] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys.
Rev. E 73, 056101 (2006).

[10] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.
Rev. Lett. 96, 040601 (2006).

[11] F. Iglói and L. Turban, Phys. Rev. E 66, 036140 (2002).
[12] M. Bauer, S. Coulomb, and S. N. Dorogovtsev, Phys. Rev. Lett.

94, 200602 (2005).
[13] D. Achlioptas, R. M. D’souza, and J. Spencer, Science 323,

1453 (2009).
[14] F. Radicchi and C. Castellano, Nat. Commun. 6, 10196

(2015).
[15] D. Cellai, E. López, J. Zhou, J. P. Gleeson, and G. Bianconi,

Phys. Rev. E 88, 052811 (2013).
[16] G. J. Baxter, S. N. Dorogovtsev, J. F. F. Mendes, and D. Cellai,

Phys. Rev. E 89, 042801 (2014).
[17] A. Hackett, D. Cellai, S. Gómez, A. Arenas, and J. P. Gleeson,

Phys. Rev. X 6, 021002 (2016).
[18] G. J. Baxter, G. Bianconi, R. A. da Costa, S. N. Dorogovtsev,

and J. F. F. Mendes, Phys. Rev. E 94, 012303 (2016).

[19] A. Clauset, C. R. Shalizi, and M. E. Newman, SIAM Rev. 51,
661 (2009).

[20] M. Molloy and B. Reed, Random Struct. Alg. 6, 161 (1995).
[21] F. Radicchi, Phys. Rev. E 91, 010801 (2015).
[22] R. Durrett, Probability: Theory and Examples (Cambridge Uni-

versity Press, Cambridge, 2010).
[23] M. P. Stumpf, C. Wiuf, and R. M. May, Proc. Natl. Acad. Sci.

(U.S.A.) 102, 4221 (2005).
[24] R. Arratia, T. Liggett, M. Williamson et al., Electron. Commun.

Probab. 19, 10 (2014).
[25] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E

64, 026118 (2001).
[26] Z. Burda, J. D. Correia, and A. Krzywicki, Phys. Rev. E 64,

046118 (2001).
[27] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 86, 3682 (2001).
[28] R. Cohen, D. ben-Avraham, and S. Havlin, Phys. Rev. E 66,

036113 (2002).
[29] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, Rev. Mod.

Phys. 80, 1275 (2008).
[30] J. Cardy, Scaling and Renormalization in Statistical Physics

(Cambridge University Press, Cambridge, 1996), Vol. 5.
[31] T. P. Peixoto, The graph-tool python library, figshare (2014),

doi: 10.6084/m9.figshare.1164194.
[32] R. L. Graham, Concrete Mathematics: A Foundation for Com-

puter Science (Pearson Education, India, 1994).
[33] R. Garrappa, Int. Math. Forum 2, 725 (2007).
[34] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 85, 4626 (2000).
[35] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.

Watts, Phys. Rev. Lett. 85, 5468 (2000).
[36] R. Albert, H. Jeong, and A.-L. Barabási, Nature (London) 406,

378 (2000).
[37] W. Aiello, F. Chung, and L. Lu, Exp. Math. 10, 53 (2001).
[38] F. Radicchi, Phys. Rev. E 90, 050801 (2014).
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