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Interplay of network structure and dynamics in functional organization of the visual cortex
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The functional patterns of the visual cortex observed in some mammals such as cats, primates, and humans has
allowed us to understand basic principles of organization in the structure of the cortex. However, the observation
of different kinds of functional arrangement in other animals such as mice, rats, rabbits, and squirrels, called salt
and pepper patterns, raise questions about which of these principles can be transferred to the understanding of
visual processing in general. In order to gain insight into these basic principles, in this work we propose a simple
model for the formation of spatiotemporal patterns in the visual cortex. The model is based on coupled phase
oscillators that interact through an evolving complex network that is embedded in a two-dimensional Euclidean
space. In this way we are able to explore the relation between network structure and functional organization.
We find that the model allows for the emergence of clustered synchronized states that are spatially segregated as
some orientation maps, and also synchronized states that are spatially interspersed, resembling salt and pepper
organizational maps.

DOI: 10.1103/PhysRevE.98.062307

I. INTRODUCTION

Many functional phenomena in the cortex can be under-
stood in terms of the global activity of a large number of
elements that interact in a nonlinear way. Examples include,
among others, activity maps, which are spatially ordered rep-
resentations of functional response properties [1], orientation
preference maps (OPM), that arise from groups of neurons
that synchronize their activity in presence of stimuli of an
specific orientation, and also ocular dominance maps corre-
sponding to groups of neurons that synchronize their activity
in presence of stimuli coming from the same eye.

Recently, we proposed a simple model [2,3] that can
retrieve patterns of activity (OPM) observed in the visual
cortex in different mammals species [4–9]. The model is based
on coupled phase oscillators that interact through a complex
network that is embedded in a two-dimensional Euclidean
space by the method proposed by Rozenfeld et al. [10,11].
This allows us to consider physical distances between nodes
and then, the implementation of a geographical distance-
dependent form of interaction [12–16].

In this work, we extend the ideas presented in Refs. [2,3] in
order to explore further the relation between network structure
and functional organization. In particular, we incorporate an
important biological characteristic of the cortex networks:
their plasticity [17]. The term plasticity refers to changes
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in the connections due to synaptic modifications mediated
by changes in the number of neuroreceptors, the number of
neurotransmitters or, in the way how the synapses responds.
This characteristic can be implemented in the model including
synaptic modifications for the connections in the network.
If the synaptic modification is formulated in a way that
evolves jointly with the dynamics, the structural properties
of the network can be related with their dynamical properties
[18–21]. This can be achieved by means of rules that introduce
adaptation in the synapses of the network. This rules have to
reflect the way in which the synaptic efficiency between two
neurons is affected by the concomitance of their activity [22].

As expected, we find that functional clusters can be related
to spatially located groups of synchronized oscillators when
local networks are considered. Surprisingly, we also found
that functional clusters can be found when random networks
with no spatial organization are taken into account. This sit-
uation resembles a particular kind of functional organization
observed in mammals in some species of mice and squirrels,
the so-called salt and pepper patterns [23–25], where the
maps of neural activity show little order and the orientation
selectivity appears interspersed [26].

II. MODEL

In a cortical tissue, the morphology, physiology and the
circuits between neurons vary with the position in the cortex.
This arrangement of the circuitry between neurons and the
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relation of the interaction with the spatial localization of the
neurons, makes necessary to consider a way to take into
account the physical distance between neurons. This can be
accomplished by embedding a complex network in a two-
dimensional Euclidean space. This allows for the introduction
of an interaction function that varies with distance. Recently,
we proposed a simple model that includes this characteristic,
and allows for the emergence of patterns like the ones ob-
served in the visual cortex [2,3]. In particular, we analyzed the
behavior of a Kuramoto model of coupled phase oscillators
[27–29] with competing interactions in a complex network
embedded in two-dimensional Euclidean space [3].

Our results show that even with this simple approximation
the model is still able to capture the main ingredients of the
cortical organization. In fact, with only a few parameters,
the model allows for the emergence of clustered or striped
patterns that quantitatively resemble experimental patterns
observed in infant macaques, monkeys, and ferrets [3].

We extend this model by introducing the time changing
nature of the neural circuits in the cortex. Now the neurons
interact in a way that enable that the weights in the network
connections vary and in this way can module the form in
which the stimuli are perceived [30]. In order to introduce this
characteristic, we focus on the ideas presented by Assenza
et al. [31] where a general adaptive network can be obtained
by means of the interplay of two hypothesis: the plasticity
of the network, and a mechanism that seeks to establish an
equilibrium in the system. The plasticity can be interpreted
as a learning process where the network reinforces the
connections that have similar dynamic states. However, this
mechanism has to be balanced by a conservation of the total
wiring, and thus depends on the total availability of resources.
In the present case, the degree of local synchronization
achieved during a period of time T , called the memory of
the system, is measured. In each moment the synchronization
pT

ij (t ) of a couple of oscillators i, and j , is compared with
the mean synchronization of the population of the neighbors
of node i. If this synchronization is higher than the average
of the population, the actual connection enhances its strength.
On the contrary, if the synchronization is lower, then the
connection is not strong enough to overcome the influence of
the others neighbors and weakens.

The changing weights can be included in a Kuramoto
model for coupled oscillators in order to obtain a changing-
in-time system as in Eq. (1):

θ̇i (t ) =
⎡
⎣ωi −

Vi∑
j=1

Fij (θi, θj )

⎤
⎦. (1)

Where Fij (θi, θj ) is an interaction kernel given by:

Fij (θi, θj ) = λ

Vi

Wij (t ) sin [θj (t ) − θi (t )]. (2)

Wij is the weight of the connections between oscillators i and
j , and the sum is limited to the neighborhood (Vi oscillators)
of the ith node. The variable λ is the global coupling parame-
ter. In the absence of adaptation this coupling parameter rules
alone the synchronization between the oscillators.

The kernel in Eq. (2) can be useful for adding a new
ingredient to the interaction, such as the dependence with

the physical distance. As a first step in this direction we
considered a simple nonlinear term, which allows the strength
of the interaction to decrease with distance. In particular we
choose a functional form that decays as a power law, with the
inverse of the Euclidean distance between two nodes. This can
be achieved by modulating a single parameter γ . In this case,
the functional form of the kernel in Eq. (2) takes the form:

Fij (θi, θj ) = λ

Vi

1

d
γ

ij

Wij (t )sin[θj (t ) − θi (t )], (3)

where dij is the Euclidean distance:

dij =
√

(xj − xi )2 + (yj − yi )2. (4)

In the following section we will analyze this model by con-
sidering three different underlying structure of connections,
given by a local, a random, and a scale-free network. Our
goal is to characterize the dynamical state of the system and
to establish a relation with the underlying network structure.

III. RESULTS

The Kuramoto formula Eq. (1) together with the plasticity
of the weights the constitute a system of equations for the
coevolution of the states of the nodes and the network, given
initial conditions of phase, frequencies, synaptic strengths and
connectivities. We used fourth-order Runge-Kutta technique
to integrate the equations, given a uniform initial distribution
of phases (θ ) in the [0, π ] interval and also a uniform distribu-
tion for the natural frequencies (ω) in the [−0.5, 0.5] interval.

A. Local topology

The first connectivity scheme to be considered for the
oscillators is a local network, where the nodes have a mean
number of 12 neighbors. In order to study the global syn-
chronization of the system we consider the Kuramoto order
parameter [27,29], given by:

r(t )ei�(t ) = 1

N

N∑
j=1

eiφj (t ). (5)

In order to examine quantitatively how the order of the
system is modified by the adaptation dynamics we allow
the system to evolve until the order parameter r reaches a
stationary state. In Fig. 1 we plot the order parameter r as
a function of time t , for different values of the function of
memory T and the global coupling λ. All cases correspond to
γ = 1.5, and a maximum of t = 25000 integration steps.

Three different regimes can be observed: an incoherent
state, with a low mean value of the order parameter (bottom
row); an intermediate regime with partial synchronization,
characterized by large fluctuations of the order parameter
(middle row); and an ordered regime characterized by a
large value of the order parameter that oscillates around a
well-defined mean value (top row). When the value of γ is
increased (decreased) the order parameter reaches the ordered
regime for higher (lower) values of λ.

In order to explore the relation between the different
dynamical states of the system and the underlying network
structure, we analyze first the community structure, then the
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FIG. 1. Order parameter r as a function of time t for an
initial local network, varying the memory T (from left to right
T = 100, 200, 300) and the coupling λ (from bottom to top λ =
1, 1.2, 1.4).

local synchronization, and finally establish a relation between
the synchronization regimes and the spatial localization of the
nodes.

The network communities were determined using the Lou-
vain method [32]. In Fig. 2 we use different colors to identify
the communities, and plot the nodes in their spatial location
due to the embedding. All the figures correspond to simu-
lations using the same initial configuration. In the bottom

FIG. 2. Communities of interconnected nodes for an initial
local network of connections varying the memory T (from left to
right T = 100, 200, 300) and the coupling λ (from bottom to top
λ = 1, 1.2, 1.4).

FIG. 3. Average frequency � as a function of the initial fre-
quency ω for an initial local network of connections, varying the
memory T (from left to right T = 100, 200, 300) and the coupling λ

(from bottom to top λ = 1.0, 1.2, 1.4).

row we find that the system is divided in a number of small
communities. As λ is increased the size of some communities
grow, and thus the total number of communities decreases.
When the value of γ is increased (decreased), and thus the
interaction decays faster (slower) with distance, a similar
qualitative behavior is observed. However, in order to obtain
the same number of communities it is necessary to increase
the value of the coupling λ.

The order parameter gives information on the global syn-
chronization of the system. Since the system is clearly divided
in clusters, we will also analyze the local synchronization of
the system. In order to do this we plot in Fig. 3 the average
frequency � as a function of the initial frequency ω. For all the
cases considered above we find the presence of synchronized
clusters. They appear as horizontal lines, which reveal the
presence of groups of oscillators that have changed their
natural frequency to the same average frequency. When λ =
1.0 a large number of synchronized clusters can be observed.
The larger clusters are centered around zero, and decrease
their size as � approaches 1 and −1. As λ is increased the
number of clusters is reduced and their size becomes larger.
Eventually, for sufficiently large values of λ a single giant
cluster centered around zero emerges.

In order to establish a direct relation between the local
synchronization (Fig. 3) and the network structure (Fig. 2),
we plot in Fig. 4 the nodes in their corresponding spatial
location, and use colors to denote their average frequency
�. By comparing Fig. 2 and Fig. 4 it can be seen that
when λ = 1.0 (bottom row) there is an almost direct relation
between the community structure and the corresponding av-
erage frequency. The spatial localization plays a prominent
role in the synchronization regime, and each community has
a different �. As λ is increased the number of synchro-
nized clusters decreases, and different communities share the
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FIG. 4. Spatial location of nodes with average frequency � for
an initial local network of connections, varying the memory T (from
left to right T = 100, 200, 300) and the coupling λ (from bottom to
top λ = 1, 1.2, 1.4).

same � (middle row). Eventually, for sufficiently large λ all
the communities share the same � (top row).

Finally, we examine the phases of the oscillators, and see
how their synchronization is influenced by the underlying
network structure. In Fig. 5 we plot a snapshot of the phases
in their corresponding spatial localization. In all cases, the
presence of spatially located clusters that share the same phase
can be observed. When λ = 1.0 (bottom row) the system
is in an incoherent state, as was already seen in the time

FIG. 5. Snapshot of the phases for an initial local network
of connections varying the memory T (from left to right T =
100, 200, 300) and the coupling λ (from bottom to top λ =
1, 1.2, 1.4).

FIG. 6. Order parameter r as a function of time t for an initial
random distribution of connections varying the memory T (from left
to right T = 150, 180, 250) and the coupling λ (from bottom to top
λ = 1.0, 3.0, 5.0).

evolution of the global order parameter r (Fig. 1). We can see
now that this is due to the presence of many small clusters,
that are locally synchronized, and whose competition clearly
hinders global synchronization. As λ is raised, these clusters
synchronize, leading to an increase in global synchronization
(Fig. 1). Note however, that the phase differences between
clusters can be large, thus leading to large fluctuations in r .
Eventually, as λ is raised further, the differences between the
clusters diminish, leading to a growth, and also to a reduction
of the fluctuations in the global order parameter r .

B. Random topology

Now, we consider a different connectivity scheme, where
the neighborhood of each node is randomly selected over all
the network. As in the previous section we let the system
evolve until the order parameter r reaches a stationary state. In
Fig. 6 we plot the time evolution of the global order parameter
r as as a function of memory T and global coupling λ. All
cases correspond to γ = 1.5, and a maximum of t = 25000
integration steps.

Again, we observe three different regimes: an incoherent
state, with a low mean value of the order parameter (bottom
row); an intermediate regime with partial synchronization,
characterized by large fluctuations of the order parameter
(middle row); and an ordered regime characterized by a large
value of the order parameter with an oscillating periodic
behavior (top row). When the value of γ is increased (de-
creased), and thus the interaction decays faster (slower) with
distance, a similar qualitative behavior is observed. However,
in order to obtain the same behavior it is necessary to increase
the value of the coupling λ.

Next, we analyze the community structure using the Lou-
vain method [32]. In Fig. 7 we plot the nodes in their corre-
sponding spatial location due to the embedding. All the figures
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FIG. 7. Communities of interconnected nodes for an initial ran-
dom distribution of connections varying the memory T (from left
to right T = 150, 180, 250) and the coupling λ (from bottom to top
λ = 1.0, 3.0, 5.0).

correspond to simulations using the same initial configuration.
When λ = 1.0 (bottom row) and for small T a number of
small spatially segregated communities can be observed. As T

is increased the number of communities increases, but there is
no clear spatial organization. The same effect is observed for
intermediate values of λ (middle row). For sufficiently large
λ (top row) the system is characterized by the presence of
a large cluster, and a number of smaller spatially distributed
communities.

When we compare the communities that are formed start-
ing from a random network with the clusters obtained with a
local network, a clear effect of disaggregation of the clusters
in space can be seen. This is an effect due to the fact that
nodes that are connected at random can be located far away
from each other. This is expected to have an impact in the
local synchronization structure. In order to tackle this issue
we analyze the mean frequencies � as a function of the natural
frequencies ω to see if there are synchronized clusters.

In Fig. 8 we plot � vs. ω for different values of λ and T .
When λ = 1.0 there is only a small dispersion of the natural
frequencies. When λ is increased these small synchronized
clusters coalesce into larger ones. The middle row in Fig. 8
shows that for λ = 3.0 the system is divided into only a few
large clusters (middle row). As λ is increased further the
clusters coalesce into a giant cluster with mean frequency
close to zero.

In order to establish a direct relation between the local
synchronization and the network structure, in Fig. 9, we plot
the nodes in their corresponding spatial location, and use
colors to denote their average frequency �. As expected,
in the bottom row there is almost no synchronization. For
λ = 3.0, in the middle row, there is no spatial localization of
the synchronized nodes. In some cases there are small local

FIG. 8. Average frequency � as a function of the initial frequen-
cies ω for an initial random distribution of connections varying the
memory T (from left to right T = 150, 180, 250) and the coupling λ

(from bottom to top λ = 1.0, 3.0, 5.0).

clusters, but clearly nodes sharing the same average frequency
are dispersed around the whole system. For sufficiently large
λ a giant cluster emerges, however, as the top row in Fig. 9
shows the smaller clusters are still spatially dispersed.

Finally, we examine the phases of the oscillators, and see
how their synchronization is influenced by the underlying
network structure. In Fig. 10 we plot a snapshot of the phases
in their corresponding spatial localization. In contrast to what
was observed for the initial local network (Fig. 5), there are
no clusters, and the phases seem to be distributed in space for

FIG. 9. Average frequency � for an initial random distribution
of connections and varying the memory T (from left to right
T = 150, 180, 250) and the coupling λ (from bottom to top λ =
1.0, 3.0, 5.0).
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FIG. 10. Phases for an initial random distribution of connections
varying the memory T (from left to right T = 150, 180, 250) and the
coupling λ (from bottom to top λ = 1, 3, 5).

all the values of λ. It is interesting to contrast these figures
with the behavior of the global order parameter r , that evolves
to a synchronized state as λ is increased (Fig. 6), and also
with the frequency synchronized clusters observed in Fig. 9.
Clearly there is a synchronization of the system that is not
being reflected in the spatial localization of the oscillators.

C. Scale-free topology

In the previous sections, we considered local and a ran-
dom networks, and showed how the underlying topology
plays a fundamental role in community formation and also
in phase and frequency synchronization. Realistic networks,
however, present a complex network structure, characterized
by a heterogeneous degree distribution, where a few nodes
with a large number of connections play the role of hubs.
This is usually approximated by using a scale-free power-law
degree distribution. In fact, recently we showed that using a
scale-free network and also distance-dependent competing in-
teractions we were able to obtain clustered or striped patterns
that quantitatively resemble experimental patterns observed in
infant macaques, monkeys, and ferrets [3]. In this section we
will take this into account and, as in Ref. [3] we consider a
more realistic scale-free topology. and a mexican hat for the
interaction function, which has two parameters, the intensity
C and the extent of the interaction σ .

In the Fig. 11 we plot the order parameter r as a function of
time t varying the memory T and the mexican hat parameter
C. All cases shown correspond to an embedded network con-
structed from a power-law degree distribution with exponent
α = 2.1. The initial conditions for the phases are chosen at
random from a uniform distribution in the [0, π ) interval
and the natural frequencies ωi are randomly chosen from a
uniform distribution in the [−0, 5, 0, 5] interval.

In all cases we observe that r reaches a stationary state. For
small values of C the order parameter fluctuates around a low

FIG. 11. Order parameter r as a function of time t for an initial
scale-free network, varying the memory T (from bottom to top
T = 100, 300) and the mexican hat parameter C (from left to right
C = 1, 3).

mean value. As C is increased these fluctuation decrease and
the stationary value of r increases.

Next, we analyze the community structure. In Fig. 12 we
plot the nodes in their corresponding spatial location due to
the embedding, where different colors are used to identify
the communities. All the figures correspond to simulations
using the same initial configuration. In all cases well-defined
communities can be observed, resembling the results pre-
sented in Fig. 2 for the local topology. Note, however, that in
some cases there are a few nodes with different colors inside

FIG. 12. Communities of interconnected nodes for an initial
scale-free network of connections varying the mexican hat parameter
C (from left to right C = 1, 3) and the memory T (from bottom to
top T = 100, 300).
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FIG. 13. Average frequency � as a function of the initial fre-
quency ω for an initial scale-free network of connections, varying
the mexican hat parameter C (from left to right C = 1, 3) and the
memory T (from bottom to top T = 100, 300).

the communities. This effect is more clear for C = 1 and
T = 300, where a mixture of spatially segregated and an in-
terspersed structure is evident. This is an expected effect from
embedding a scale-free network, which leads to the presence
of many nodes with local connections, and a few nodes with
long-range connections between nodes that are far apart.

Next, we plot in Fig. 13 the average frequency � as a
function of the initial frequency ω. We find in all cases the
presence of a giant synchronized cluster. For C = 1 there
are also nodes with average values outside this cluster, that
become synchronized in smaller clusters as T is increased.

FIG. 14. Spatial location of nodes with average frequency � for
an initial scale-free network of connections, varying the mexican hat
parameter C (from left to right C = 1, 3) and the memory T (from
bottom to top T = 100, 300).

FIG. 15. Snapshot of the phases for an initial scale-free
network of connections varying the mexican hat parameter C (from
left to right C = 1, 3) and the memory T (from bottom to top
T = 100, 300).

In order to establish a direct relation between the local
synchronization and the network structure, in Fig. 14, we
plot the nodes in their corresponding spatial location, and use
colors to denote their average frequency �. As expected, all
the figures show a spatially homogeneous synchronization,
interspersed in some cases by nodes with different average
frequencies, in correspondence with the community structure
observed in Fig. 12.

Finally, we examine the phases of the oscillators, and see
how their synchronization is influenced by the underlying
network structure. In Fig. 15 we plot a snapshot of the phases
in their corresponding spatial localization. We find that as in
Ref. [3] striped patterns emerge.

IV. CONCLUSION

It is still a matter of study and debate for what reason
and in what way salt and pepper maps, observed in some
mammals such as mice and squirrels, are an evolutionary
strategy that responds to the same environmental problems as
the orientation preference maps observed in other mammals
such as cats, ferrets, and monkeys. Many animals that mani-
fest the same cortical functional organization inhabit different
ecological niches and have different behaviors. For example,
galagos are nocturnal, frugivorous, and arboreal primates,
while tree shrews are diurnal, insectivorous, and semiarboreal.
On the other hand, other animals that share an ecological niche
differ in their functional cortical organization, for example the
gray squirrel shares many characteristics with the shrew, but
does not manifest orientation maps [26]. These differences in
functional organization probably are originated in the circuit
level of the cortical neurons. Studies in primates that exhibit
orientation preference maps (OPM) and rodents that have the
salt and pepper organization, reveals that their whole brain
networks exhibits different topology arrangements and have
different mechanisms for interaction [33,34].
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In this work we presented a simple model based on the
spatial patterns observed in the visual cortex. The model
incorporates adaptive rules that allow for an interplay be-
tween the dynamic of the nodes and an evolving network
structure. In this way we can intuitively relate the synchro-
nization properties of phase oscillators, physically located in
the spatial positions of the nodes and the underlying network.
This can be achieved by embedding the complex network
in a two-dimensional Euclidean lattice. The network evolves
with rules that modify the weights of the connections. These
rules implement plasticity in the weights by means of two
conditions: homophily that reinforces dynamically similar
states and homeostasis that maintains constant the total weight
income from the connections of each node.

We analyze two different underlying network structures: a
local and also a random network. In both cases, the system
shows the presence of three dynamical regimes: incoherent,
periodic, and coherent order. Also, a local analysis of fre-
quency synchronization reveals the presence of synchronized
clusters, which can be related to the different regimes. For
the incoherent regime there are many small clusters that
clearly hinder global synchronization. When the coupling
between the oscillators is increased these clusters coalesce,
and the system is divided into few clusters with different mean
frequencies, whose interaction leads to a period oscillation
of the global order parameter. Eventually, as the coupling is
increased further these clusters coalesce into a giant clusters,
leading to a coherent order.

When we contrast the dynamical behavior of the system
with the underlying network we find that spatially located

modular structures emerge only for the local network. In
the case of the random topology, the rules lead to modules
of nodes that are spatially distributed, which reminds the
interspersed structures of salt and pepper [26,35].

The results reflect how ordered synchronized states are not
necessarily correlated with spatial order. Both for local and
random network topologies the system evolves to synchro-
nized states reflected in large values of the global order param-
eter. Also, a local analysis of the synchronized regimes, using
the average frequencies, reveals the presence of synchronized
clusters for both topologies. However, this synchronization is
not necessarily correlated with a spatially ordered structure.
This results suggest that the heterogeneity of the connections
plays a fundamental role in the formation of clustered, and
also interspersed states, which can emerge from a simple
mechanism given by the plasticity of the network.

Finally, we also considered a more realistic system with
a scale-free network and competing interactions. Again we
find the heterogeneity of the connections plays a fundamental
role in the formation of synchronized structures. Even more,
we find that the competitive character of the interaction al-
lows for the formation of striped structures as observed in
Ref. [3].
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