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A pivotal idea in network science, marketing research, and innovation diffusion theories is that a small
group of nodes—called influencers—have the largest impact on social contagion and epidemic processes in
networks. Despite the long-standing interest in the influencers identification problem in socioeconomic and
biological networks, there is not yet agreement on which is the best identification strategy. State-of-the-art
strategies are typically based either on heuristic centrality measures or on analytic arguments that only hold
for specific network topologies or peculiar dynamical regimes. Here, we leverage the recently introduced
random-walk effective distance—a topological metric that estimates almost perfectly the arrival time of diffusive
spreading processes on networks—to introduce a centrality metric which quantifies how close a node is to
the other nodes. We show that the new centrality metric significantly outperforms state-of-the-art metrics
in detecting the influencers for global contagion processes. Our findings reveal the essential role of the
network effective distance for the influencers identification and lead us closer to the optimal solution of the

problem.
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I. INTRODUCTION

Networks constitute the substrate for the spreading of
agents as diverse as opinions [1,2], rumors [3], computer
viruses [4], and deadly pathogens [5]. Differently from clas-
sical epidemiological [6] and collective behavior models [7],
which typically assume homogeneously mixed populations,
the network approach assumes that agents can only spread
through the links of an underlying network of contacts [5].
Network-mediated spreading processes are ubiquitous: for
example, online users transmit news and information to their
contacts in online social platforms [8—10]; individuals form
their opinion and make decisions influenced by their contacts
in social networks [1,2,11]; infected individuals can transmit
infectious diseases to their sexual partners [12].

A long-standing idea in network science, marketing re-
search, and innovation diffusion theories is that in a given
network, a tiny set of nodes—called influencers—have the
largest impact on social contagion and epidemic spreading
processes. Many studies have aimed to accurately identify
[13-17], target [18,19], and assess the impact of [20,21]
the influencers for marketing purposes. Proper identification
and targeting are vital for organizations to design effective
marketing campaigns in order to maximize their chances
of success [13,22,23], for policy makers to design effective
immunization strategies against infectious diseases [24], and
for social media companies to maximize the outreach of a
given piece of information, such as news or a meme [25].
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The influencers identification problem is typically studied
by using epidemic spreading and social contagion models
to simulate multiple independent realizations of spreading
processes on real networks. Different processes are initiated
by different “seed” nodes; the typical size of the outbreak gen-
erated by a given node quantifies its “ground-truth” spread-
ing ability [15,27-30]. One can thus compare different node
ranking algorithms with respect to their ability to identify the
nodes with the largest ground-truth spreading ability [15,27].
The seminal work by Kitsak ef al. [27] showed that the nodes
with the largest number of contacts (“hubs” in the network
science literature [31]) are not necessarily the most influential
spreaders, and nodes with fewer connections but located in
strategic network positions can initiate larger spreading pro-
cesses (see also discussion in [32]). Following Kitsak et al.
[27], several network centrality measures [15,33], originally
aimed at quantifying individuals influence and prestige in
social networks [34], have been compared with respect to their
ability to identify the influential spreaders [25,28-30,35—40].
The results of this massive effort have been often contradic-
tory, and there is not yet agreement on which is the best metric
for the influencers identification.

The current lack of agreement on which metric best quan-
tifies the spreading ability of the nodes can be ascribed to
two main limitations of existing studies. First, most of the
proposed centrality measures do not consider the properties
of the spreading dynamics under examination [27,35,38,41],
or they are based on analytic arguments that are valid only for
specific types of networks and spreading parameters [30]. As
a result, the performance of these metrics strongly depends on
network topology and on the parameters that rule the target
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epidemic process. Second, existing works often restrict the
comparison of the metrics performance to a limited number
of parameter values [15,30], which leaves it unclear how
the relative performance of the metrics depends on model
parameters.

In this paper, we overcome both limitations. We introduce
a centrality metric, which we call ViralRank, directly built
on the random-walk effective distance for reaction-diffusion
spreading processes [26]. In particular, the ViralRank score
of a node is defined as its average random-walk effective
distance to and from all the other nodes in the network. The
rationale behind this definition is that an influential spreader
should be able to reach and to be reached quickly from the
other nodes. As the random-walk effective distance quantifies
almost perfectly the infection arrival time for any source and
target node in reaction-diffusion processes [26], we expect the
average effective distance to accurately quantify how well a
node can reach and be reached by the other nodes.

Our results show that ViralRank is the most effective metric
in identifying the influential spreaders for global contagion
processes, both contact-network processes in the supercritical
regime and reaction-diffusion spreading processes. In contact
networks, if the transmission probability is sufficiently large,
ViralRank is systematically the best metric to quantify the
spreading ability of a node. We provide evidence that, dif-
ferently from what was previously stated [27,30], values of
the transmission probability well above the critical point are
relevant values to real spreading processes. In the metapop-
ulation model, ViralRank is the best-performing metric for
almost all the analyzed parameter values. In addition, we show
analytically that ViralRank can be written in terms of the
classical Friedkin-Johnsen social influence model, introduced
in [2] and recently used to predict individuals final opinions in
controlled experiments [11,42]. We also show that the Google
PageRank [43] score can be reinterpreted as the average of
a specific partition function built on the network effective
distance.

Our findings demonstrate that the effective distance be-
tween pairs of nodes can be used to quantify the nodes spread-
ing ability significantly better than with existing metrics,
bringing us closer to the optimal solution to the problem of
identifying the influential spreaders for both contact-network
and reaction-diffusion processes.

II. RESULTS

We start by defining the new metric (ViralRank) and then
validate it as a metric for the influential spreaders identifi-
cation for contact-network and reaction-diffusion processes.
Contact-network models of spreading assume that individuals
directly “infect” the individuals they are in contact with.
Crucially, the topology of the underlying network of contacts
plays a critical role in determining the size of the infected
population [46,47]. On the other hand, to describe global
contagion processes, reaction-diffusion models assume that
individuals can infect the individuals that belong to the same
population (reaction process) and in addition, infected indi-
viduals can move across adjacent locations (diffusion pro-
cess).

A. ViralRank

Previous works [26,48] have pointed out that in order to
predict the hitting time of a spreading process in geograph-
ically embedded systems, network topology and the corre-
sponding weight flows play a more fundamental role than
the geographical distance. The main idea behind ViralRank
is to rank the nodes based on the random-walk effective dis-
tance DF].W()\) between pairs of nodes which quantifies almost
perfectly the hitting time of a reaction-diffusion process on
networks [26]. Importantly, the calculation of DEW()L) only
requires the network adjacency matrix A;; as input, whereas
A is a parameter that depends on the spreading dynamics (see
below).

We define the ViralRank score of a node i as the average
random-walk effective distance from all sources and to all
target nodes in the network [49]

1
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where the effective distance is defined by [26]
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for i # j, whereas DYV (1) = 0. The argument of the log-
arithm is a function that counts all the random walks that
start in i and end when arriving in j; we refer to it as
partition function (see Appendix A). Here, PY) and IV) are
the (N — 1) x (N — 1) submatrices of the Markov matrix
[50] (P)i; = Aij/ Zk Aji and of the identity matrix (I);; =
d;j, respectively, obtained by excluding the jth row and jth
column; p"/) is the jth column of P with the jth component
removed. The nodes are therefore ranked in order of increas-
ing ViralRank score: a node is central if it has, on average,
small effective distance from and to the other nodes in the
network [51]. As the nodes ranked high by ViralRank tend to
have small effective distance from the other nodes, we expect
them to generate larger epidemic outbreaks than peripheral
nodes when they are chosen as the seed nodes of a spreading
process (see Fig. 1). Testing the validity of this hypothesis is
one of the main goals of this paper.

For reaction-diffusion processes, the interpretation of
D}}W(A) as a proxy for the hitting time of the spreading agent
makes the parameter A unambiguously determined by the
transmission and recovery rates of the process (see [26]). For
contact-network processes, a clear-cut criterion to choose A is
lacking. Our analytic results (see Appendix A) show that, in
the limit A — 0 the ViralRank score of a given node i reduces
to the average mean first-passage time (MFPT) needed for
a random walk starting in node i to reach the other nodes,
plus the MFPT [52] needed for a random walk starting in the
nodes other than i to reach node i. In the following, for contact
networks, we therefore consider the quantity v; = v;(A — 0)
as node i ViralRank score. With this choice, a node i is central
if a random walk starting at node i is able to quickly reach for
the first time the other nodes and, at the same time, it is well
reachable from all other nodes.

In Appendices B and C, we show that (1) there
is a mathematical relation between ViralRank and the
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FIG. 1. Illustration of the ViralRank centrality in terms of the random-walk effective distance D,

RW

i [26] for different source nodes {i}

(central dots in the clouds). The clouds of nodes around each seed node i represent the other nodes {;j} in the network. Their radial distance
from the center of the cloud is proportional to their total random-walk effective distance (D}}W + Dflw) with respect to the source node i; their
color ranges from dark-blue (low distance) to white (high distance). The average effective distance yields the ViralRank score v; (horizontal
axis). The cases depicted here evolve from a central node (small v;, left side of the panel) which tends to be close to many other nodes, to a
peripheral seed node (large v;, right side of the panel) which tends to be far from the other nodes.

Friedkin-Johnsen (FJ) opinion formation model [2]; (2)
Google PageRank can be also expressed, as ViralRank, in
terms of a specific partition function. Our analytic compu-
tations reveal the two main differences between ViralRank
and PageRank: (1) differently from the ViralRank score, the
PageRank score does not depend logarithmically on its par-
tition function, but linearly. This means that if a seed node
i is far from a node j in the network, this will result in
a small positive contribution to node i PageRank score; by
contrast, it will result in a large contribution (penalization)
to its ViralRank score, proportional to D}}W. (2) The specific
partition function used by PageRank also includes the walks
that hit several times the arrival nodes, which results in a poor
estimate of the diffusion hitting time.

These two factors impair PageRank ability to identify
central nodes in networks. We show this by analyzing a toy
Watts-Strogatz [45] network with a clear distinction between
central and peripheral nodes (see Fig. 2). The PageRank
centrality [44] gives a comparable score to peripheral nodes,
located at the end of a branch, and central nodes, whereas
ViralRank is able to clearly identify central nodes. In [53],
we show that PageRank is always outperformed by the degree
centrality in the influential spreaders identification; for this
reason, we do not show its performance here.

B. Influential spreaders identification:
Results for contact networks

After having defined ViralRank and discussed its relation
with PageRank and the FJ opinion formation model, we val-
idate it as a metric for the influential spreaders identification.
The metrics considered here for comparison are the follow-
ing: degree centrality k, k-core centrality k. [27], random-
walk accessibility (RWA) [28], LocalRank (LR) [35], and the
nonbacktracking centrality (NBC) [54]. All these metrics are
defined in Appendix D.

Spreading dynamics. In this section, we consider contact-
network processes where the spreading agent is directly
transmitted from an infected node to its susceptible neigh-
bors. More specifically, we consider a susceptible-infected-
removed (SIR) model, which is one of the most studied
mathematical models for epidemic spreading [5]. At each
time step, each individual (node) can be in one of three

states: susceptible, infected, or removed. Each infected node
can infect each of its susceptible neighbors with probability
B, and then infected nodes are removed from the dynamics
with probability . The process terminates when there is no
infected node in the network and the disease cannot propagate
anymore. To assess the metrics performance we compare the
scores they produce with the scores of the nodes by their
spreading ability [15,27]. The spreading ability ¢; of node i is
defined as the average number of nodes in the removed state
after the infection process has ended, given that the process
was initiated by node i, i.e., node i was the only infected
node at time ¢t = 0. For each node i, this average is based on

ViralRank

FIG. 2. Comparison between ViralRank and PageRank with
dumping parameter 0.85 [44] for a toy small-world network with
N =25 nodes. In line with [45], the network is built by starting
from a ring topology where each node has five neighbors and by
rewiring each edge with probability p = 0.5. The size of each node
is proportional to the value of the corresponding score normalized
by the maximum score in the network, with color scale changing
accordingly.
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FIG. 3. Correlation between nodes centrality score and nodes spreading ability ¢ in synthetic networks composed of 100 nodes. (a) Pearson
correlation coefficient between node centrality and g as a function of the link rewiring probability p, at fixed 8/8. = 4. The extreme points
p =0 and p =1 correspond to a scale-free and to a Poissonian topology, respectively. (b) Pearson correlation coefficient between nodes
centrality and g as a function of 8/8,, at fixed p = 0 (scale-free topology).

10° independent realizations of the stochastic SIR dynamics
described above.

For the SIR model, there exists a critical value (referred
to as epidemic threshold [55]) 8 = B, such that the spreading
process, once initiated, quickly dies out for 8 < B., whereas
it infects a significant portion of the network, i.e., nonvanish-
ing in the thermodynamic limit, for 8 > B.. We expect the
distance of B from S, to significantly affect the relative met-
rics performance, an aspect that is typically not extensively
investigated in existing works on the influential spreaders
identification. Below, we study how the metrics performance
depends on 8/8..

Results. We first analyze synthetic networks composed
of N =100 nodes and L = 189 links. To uncover how
network topology affects the metrics performance, we start
from a network generated using the configuration model [56]
with degree distribution following a power law P (k) ~ k77,
with exponent y = 2, and we replace a fraction p of its links
with links that connect pairs of randomly selected nodes. In
this way, we move continuously from a scale-free network
(p = 0) to arandom (Poissonian) topology (p = 1).

Figure 3(a) shows the Pearson correlation coefficient
r(-, g) between nodes spreading ability ¢ and node score as a
function of the shuffling probability p, for a fixed value of the
ratio /B, = 4 and for all the considered centralities. We find
that all metrics besides ViralRank decrease their correlation
with the spreading ability as the network topology becomes
more homogeneous (i.e., as p increases). This reflects the fact
that for a random but homogeneous topology (p = 1), the
spreading ability spans a narrower range of values and, as a
consequence, it becomes increasingly harder for the metrics to
accurately estimate g. ViralRank is the best-performing metric
for all the p values; nevertheless, we shall see in the following
that the metrics relative performance critically depends on .

Figure 3(b) shows the correlation 7 (-, g) as a function of
B/B. for the scale-free network (p = 0). First, we note that
around the critical point 8 = 8., LR, NBC, and RWA all
display a peak of maximum correlation with the spreading
ability. This is in qualitative agreement with the fact that
the NBC is expected to accurately estimate the size of the
percolation giant component at the critical point [30], for
locally treelike graphs; at the same time, it remains interesting

that LR and RWA display a similar behavior. This figure
also shows that above the critical point 8., there exists an
upper-critical value 8, > B, such that ViralRank is always the
best performing metric for 8 > B,. Real-data analysis shows
that such point g, exists for all the analyzed empirical datasets
(see below).

We note that there is a sensible decrease in the overall
performance of all metrics as B increases. This reflects the
fact that as we approach the saturation value 8 =1, the
distribution of nodes spreading ability g becomes narrower,
making it harder for the metrics to quantify g. Nevertheless,
we emphasize that for values of B as large as f =78, in
this synthetic network, we are still able to observe significant
differences among the metrics performance. This indicates
that the influential spreaders identification in the supercritical
regime is still a nontrivial problem, an aspect that will also
emerge in real data.

To summarize, the results on synthetic networks show that
in general the metrics relative performance critically depends
on the heterogeneity of the underlying network topology and
on the spreading parameters. The previous results also sug-
gest that ViralRank significantly benefits from the spreading
process being supercritical.

We proceed by analyzing six empirical networks (see
Table I for a summary of their properties) in which we

TABLE I. Structural properties of the analyzed empirical net-
works: the different quantities represent the number of nodes (N)
and links (L), the diameter (D), the clustering coefficient (C), the
first ((k)) moment of the degree distribution, and the upper-critical
threshold (B,) above which ViralRank outperforms all the other
metrics, as a multiple of the SIR epidemic threshold g..

Network N L D c (k) Bu/Be
Terrorists 62 152 5 049 4.90 2.50
Email 167 3250 5 059 3892 6.50
Jazz 198 2742 6 062 2770 4.25
NetSci 379 914 17 074 1.15 2.00
Protein 1458 1948 19  0.07 2.08 225
Facebook 4039 88234 8 061 43.69 4.75
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FIG. 4. Correlation between nodes centrality score and nodes spreading ability ¢ in real networks. Pearson correlation coefficient between
nodes centrality and ¢ as a function of 8/, for the six datasets of Table 1.

simulate the SIR spreading process: (a) 9/11 terrorists,
(b) email, (c) jazz collaborations, (d) network scientists coau-
thorships, (e) protein interactions, and (f) Facebook friend-
ships. The meaning of the nodes and the links in the datasets
and the dataset properties are explained in Appendix E. The
results for six additional empirical datasets are shown in
[53] and are in qualitative agreement with the results shown
here.

As in the case of synthetic networks, we find that for all the
analyzed datasets, there exists a dataset-dependent value B,
such that ViralRank is the best-performing metric for 8 > g,
(see Fig. 4). The value B, is always larger than S., which
confirms that ViralRank is the most effective metric for the
identification of influential spreaders for spreading processes
in the supercritical regime. The largest (8, = 6.58,) and
smallest (8, = 28.) values of g, are observed for email and
network scientists coauthorships, respectively. By contrast,
other metrics perform better in the vicinity of the critical
point; which metric performs best in this parameter region
critically depends on the considered dataset. At the critical
point B., the best-performing metrics are, for almost all
datasets, the NBC and LR. Interestingly, for all the analyzed
datasets, k. is the second-best-performing metric (after Viral-
Rank) in the supercritical regime.

These results demonstrate that among the existing met-
rics, there is no universally best-performing metric; the only
consistent conclusion is that ViralRank outperforms all the
other metrics for processes sufficiently far from criticality.
Therefore, the optimal choice of a metric for identifying
the influential spreaders critically depends not only on the
considered dataset but also on the parameters of the particular
spreading process that is chosen as ground truth. Remark-
ably, in most of the analyzed datasets, not only does Viral-
Rank outperform other metrics in the 8 > B, range, it also

approaches the perfect correlation with the spreading ability,
r(—v,q) =~ 1, for specific ranges of B values within the
supercritical region. In the following we provide evidence
that the favorable regime for ViralRank (8 > §,) is also the
relevant one for real epidemic processes.

While ViralRank consistently outperforms the other met-
rics for 8 > B,, we expect its performance to dwindle as §
approaches 1. Indeed, for 8 = 1, all the network nodes are
eventually in the recovered state for any initiator of the process
and, as a result, the nodes all have spreading ability equal to
1. To quantify the extent of the parameter region over which
we are able to quantify the nodes spreading ability, we study
the complete parameter space (B, u) of transmission and
recovery probability. We find (Fig. 5 and [53]) that ViralRank
is able to quantify the spreading ability, for a much larger
parameter region than existing metrics. Remarkably, for the
emails network (Fig. 5), the correlation between ViralRank
and the spreading ability ¢ is still larger than 0.95 for values
of B as large as B =0.9 and still larger than 0.90 even
for 8 =0.99. By contrast, for such large values of g, all
the other metrics are essentially uncorrelated with g. Only at
the saturation value 8 = 1 ViralRank loses its correlation with
the spreading ability.

Are real spreading processes above or below the critical
point? The optimal performance of ViralRank for g > B,
motivates the following question: How far are real spread-
ing processes from criticality? To address this question, we
use publicly available ranges [R(‘)“i", Ry™] of observed basic
reproductive numbers (see below), given in Table 10.2 of
Ref. [31] for a set of real diseases, and publicly available
values of observed transmission rates for a set of computer
viruses given in Table 2 of Ref. [57]. We find that, by assum-
ing the SIR dynamics on the analyzed datasets, not only real
cases fall into the supercritical regime, but a number of them
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FIG. 5. Contact-network spreading model: a comparison between node centrality and node spreading ability ¢ in the whole parameter
space, for the email network (8., = 0.0158u); results for the other analyzed datasets are reported in [53]. The heatmap shows the Pearson
correlation coefficient r(-, ¢) between the nodes centrality score and spreading ability in the (8, 1) parameter space; the colors range from

black (r = 0.5) to yellow (r = 1).

are in the region B > B, where ViralRank outperforms the
other metrics in identifying influential spreaders.

For a given disease, the basic reproductive number Ry is
defined as the number of secondary infections caused by a
typical infected node in an entirely susceptible population
[58]. For the SIR model the heterogeneous mean-field ap-
proximation gives [59] Ry ~ ((k*) / (k) — 1)B/u, where (k)
and (k?) are the mean and variance of the degree distribution
of the network of contacts. We can use this formula and the
observed ranges [R(r)“i“, Ry™] to estimate, for each disease and
each network of interest, the expected lower and upper bounds
(denoted as Bnin and Bmax, respectively) for realistic values of
B. We use this procedure to estimate the interval [Bunin, Bmax]
for the ten diseases of Table 10.2 of Ref. [31] in two datasets,
email and Facebook. The underlying assumption is that to
some extent, these two networks can be considered as proxies
for the social contacts that allow diseases to spread among
individuals. We find that for both datasets, real diseases fall
in the supercritical regime, and often in the region 8 > B,
where ViralRank outperforms the other metrics in identifying
the influential spreaders (see Fig. 6). For example, for the
Facebook dataset, the minimum basic reproductive number
(influenza, SARS, HIV/AIDS, R = 2) leads to Bmin = 2,
which lies still below g8, = 4.758.. On the other hand, the
maximum value of 8 for SARS and HIV/AIDS lies above
By (Bmax = 5B.). The B ranges for the diseases with the
largest R (measles, pertussis, RT™™ = 12) lie well above S,
(Bmin = 128, and B = 178, for such diseases).

Values of the transmission probability for some computer
viruses [4,60,61] can be found in Table 2 from [57]. All
the nonzero values reported in that table lie well above the
critical point S, for the email dataset. The Word Macro virus
(B = 0.7) falls in the region where ViralRank significantly

outperforms the other metrics; the Excel Macro virus (8 =
0.1) falls below but close to the point 8, = 0.103, whereas
the Generic.exe virus falls in the region where the k-core
centrality is the best-performing metric.

These examples indicate that by assuming a SIR dynamics,
we expect the propagation of real diseases and computer
viruses to be a supercritical diffusion process. We acknowl-
edge that our argument above is simplified, as it assumes a free

Email Facebook
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Rubella
Polio
Smallpox
Diptheria
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Measles
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FIG. 6. Transmission probability 8 corresponding to real dis-
eases for email and Facebook networks. The g ranges (red horizontal
bars) match the ranges [R(‘)“i“, Ry™] observed for real diseases, taken
from Table 10.2 of Ref. [31]. By assuming u = 1, the R, values are
converted into 8 values according to [59] B = Ry (k) /({k?) — (k)).
The continuous and dashed vertical lines represent the epidemic
threshold B, and the point g, such that ViralRank is the best-
performing metric for 8 > B,, respectively; gray and white colors
fill the subcritical and the supercritical interval, respectively.
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propagation of the disease (i.e., no external intervention aimed
at limiting the impact of the disease) on an isolated population,
which is unlikely to happen in the propagation of real diseases.
Nevertheless, our assumptions are the same as those of all
previous studies [15,27,30,38] that compared the performance
of metrics for the influential spreaders identification using the
SIR model. Our argument therefore shows that, in the usual
setting for benchmarking metrics for the influential spreaders
identification borrowed from the epidemiology and network
science literature [15,27], the propagation of real diseases
and computer viruses falls in the supercritical regime, and
ViralRank is often the best-performing metric in identifying
the influential spreaders. In addition, the supercritical region
is also the most relevant from a marketing point of view: if the
dynamics parameters force most of the spreading processes to
die out quickly, it becomes virtually impossible for an influ-
encer to initiate large-scale adoption cascades [20]. A study of
the problem in a more realistic setting goes beyond the scope
of this work as it would require a more complex model of
propagation, an accurate calibration of model parameters, and
the possibility of external intervention (such as vaccination
and travel restriction in the case of transportation networks).

To summarize, we have found that ViralRank systemati-
cally outperforms state-of-the-art centrality measures in the
supercritical regime for contact-network spreading processes.
In parallel, the poor performance at and below the critical
point shows the limitation of ViralRank. The decrease in
performance can be easily explained in terms of the definition
of network effective distances, upon which ViralRank is built.
A basic assumption to define effective distances from a kinetic
description of reaction-diffusion in interconnected subpopula-
tions is that information can reach all nodes from any other
node in a possibly long but finite time [26]. By extending this
assumption to ViralRank, we average effective distances over
all nodes, including those that are less likely to be infected for
a subcritical process that terminates after a few time steps. In
fact, for subcritical spreading processes the vast majority of
nodes have practically zero probability to be reached by the
infection, and in this case the average over all nodes in the
definition of ViralRank is certainly not optimal.

C. Influential spreaders identification: Results for
metapopulation networks

Reaction-diffusion  dynamics. While contact-network
spreading processes can model the spreading of an infection
within a network of individuals, in order to properly model
global contagion processes, we need to take into account
that multiple individuals, of different epidemiological
compartments, can only interact with individuals that are
located in the same geographical location. This realization
has motivated the study of metapopulation models [62,63],
where each node represents a geographical location that is
occupied by a subpopulation composed of a subset of the
metapopulation individuals. At each time step individuals can
(1) interact with individuals located at the same node
(reaction) and (2) travel across locations (diffusion).
Reaction-diffusion models of spreading are increasingly
used to forecast the properties of epidemic outbreaks [64—66],

and to design and understand the systemic impact of disease
containment strategies [65,67].

In the following, in line with previous studies [26,48], we
assume that the reaction dynamics is ruled by the fully mixed
SIR model; the generalization to arbitrary compartment mod-
els is obviously possible, but the SIR model often provides
the sufficient level of complexity necessary to describe real
epidemic processes [68].

To simulate an epidemic, we use the weighted and undi-
rected network of the 500 most active commercial airports
in the United States [62]. A pair of airports is connected
if at least one flight was scheduled between them in 2002;
each link is weighted by the total number of passengers who
flew between those two airports. We assign to each node j
(airport) a subpopulation; airports are then connected to each
other via the weighted adjacency matrix W;; that represents
the undirected (averaged in both directions) flux of passengers
between airports i and j.

The reaction-diffusion dynamics can be conveniently writ-
ten for each compartment density p;, where the place-holder
variable X can represent each of the three possible compart-
ments: X € {S, I, R}. The quantity p/ (¢) then can be viewed
as the probability that node i is infected at time ¢. The time
evolution of the occupation densities consists of the sum of
a diffusion term Q({pix }), known as the transport operator
[69], and a reaction term K*(B, i, {p;}) given by the fully
mixed SIR model, which depends on the transmission and
recovery rates 8 and w. The ratio Ry = B/ defines the basic
reproductive number that serves as the control parameter of
the system. Hence, we have a set of differential equations of
the form 8,0 = Q({p¥}) + KX (B. 1. {pi]).

To write the diffusion in terms of the compartmental den-
sities only, i.e., without requiring the information about the
subpopulation sizes, we make the following assumption. We
assume the node strengths s; = ), Wj and the subpopulation
sizes N; as proportional via a constant diffusion rate a =
s;/N;, which we set in our simulations to the fixed value
@ = 0.003 d~', in units of days. The latter is also known
in the literature as global mobility rate since it gives the
fraction of moving agents per time step in the metapopulation
[26,48]. With the above assumption the transport operator can
be written without the explicit dependence on the subpopu-
lation size as Q({piX}) =a)y, P;k(p,f( — pl.X), where P;; =
Wi/ > ; Wij is the transition probability matrix. The strength
vector is then the equilibrium distribution of the Markov chain
with states defined by the nodes.

The full metapopulation SIR dynamics then reads

aod = ({p}) — Bolol.
dp! = Q{n/}) + o} n] — ol )

Identification of influential subpopulations. Despite
the growing interest in reaction-diffusion processes
[48,64,68,70], also spurred by their application to disease
forecasting [66], the identification of influential spreaders for
such dynamics has attracted less attention compared to the
analogous problem for contact networks. Here, we fill this
gap by comparing different centrality measures with respect
to their ability to identify those airports that are able to infect
a large portion of the network in a relatively short time. To
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simulate the epidemic, we numerically integrate the set of
nonlinear differential equations (3).

Importantly, nontrivial dynamics in this model is obtained
only above the epidemic threshold Ry = B8/ = 1, where all
nodes will eventually contain at least one infected individual
after a sufficiently long time. This, however, makes it im-
possible to quantify the nodes ground-truth spreading ability
by measuring the asymptotic number of nodes with at least
one infected individual. To avoid this, we halt the simulations
at a given threshold time #y,,x(Rp). The threshold time f,x
is set to half of the characteristic time for travel, which is
estimated by the inverse of the diffusion rate o and, since
higher transmission rates correspond to lower infection hitting
times, normalized by the basic reproductive number of the
infection; i.e., fmax(Ro) = (2Roa)~!. The results presented
here are little sensitive to the exact choice of 7y, as long
as fmax is sufficiently large [53]. The ground-truth spreading
ability is the fraction of subpopulations w; (fmax ) that contain at
least one infected individual at time f,,x, given that i initiated
the process. The performance of a metric is then quantified
by the correlation between the scores it produces and the
epidemic prevalence w; (fmax)-

Results. The definition of ViralRank for contact networks
takes into account a formal limit of vanishing A. In this limit,
the ViralRank score of a node is equal to the average mean
first-passage time from and to the other nodes. By contrast, for
metapopulations with the SIR reaction scheme, the parameter
A has a direct relation with the dynamics parameters [26]

(Ro — 1)#(3%,]

A(Ro, p, @) = ln[
o

“4)

where y, is the Euler-Mascheroni constant. This value guar-
antees that the effective distance DXV (1) is highly correlated
with the hitting time of the SIR reaction-diffusion process; as
a consequence, for A = A(Ry, i, o), ViralRank is an accurate
proxy for the average hitting time in the metapopulation.

Inverting Eq. (4) yields Ry = 1 + «/ue**7. Thus, in order
to have a positive A, a condition necessary for the random-
walk effective distance to be well defined, we additionally
require that the basic reproductive number in our simulations
always satisfies Ry > 1 4 o/pe’s. However, this additional
constraint only excludes a tiny interval of values from our
analysis; for example, when pu = 0.2 d~! the threshold is
given by Ry > 1.027.

We compare the performance of all the previously consid-
ered centrality measures, by replacing the degree centrality
with the strength s; = ) ; W;;. We find that the ViralRank
centrality v;(A), with A given by Eq. (4), outperforms all
the other metrics for almost all the values of Ry by a great
margin. The correlation between the scores by the centrality
measures and the prevalence w(#ax) as a function of the basic
reproductive number Ry (with fixed u = 0.2 d™', in unit of
days) is shown in Fig. 7(a). ViralRank is by far the best-
performing metric for all the analyzed R, values. The scatter
plots between the centrality scores and epidemic prevalence
w(tmax) normalized by the respective maximum scores are
reported for Ry = 2 in Fig. 8, with ViralRank approaching
the correlation r(—v(A), @(tmax)) = 0.95. The second-best-
performing metric is RWA, followed by k..

The observed performance advantage of ViralRank can be
ascribed to the fact that differently from the other metrics,
ViralRank built directly on an accurate estimate of the hitting
time for reaction-diffusion processes on networks [26]. By ex-
tending the analysis to the whole nontrivial region 8 > u, the
correlation between ViralRank and the epidemic prevalence
stays larger than r = 0.8 for a large portion of the accessible
space [Fig. 7(b)], and ViralRank is by far the best-performing
metric in the whole probed space [Fig. 7(c)], apart from a
confined region close to the diagonal 8 = u. Importantly, as
all real diseases reported in Table 10.2 of Ref. [31] have Ry >
2, they all fall into the parameter region where ViralRank
significantly outperforms all the other metrics—the region
above the dashed line Ry = 2 in Figs. 7(b) and 7(c).

III. DISCUSSION

In this work, we have introduced a network centrality,
called ViralRank, which quantifies the spreading ability of
single nodes significantly better than existing state-of-the-
art metrics for both contact-networks and reaction-diffusion
spreading in the supercritical regime. Our work builds a
centrality measure on analytic estimates of random-walk hit-
ting times [26] and, at the same time, extensively validates
the resulting centrality as a method to identify influential
spreaders. See [71] for the code to compute ViralRank. In
addition, we have connected ViralRank to the well-known
Friedkin-Johnsen opinion formation model [2], and pointed
out its difference with respect to the popular PageRank
algorithm [44].

Differently from most existing studies, our analysis in-
volved the study of the whole parameter space of the target
spreading dynamics. Our work emphasizes that differently
from common belief, the problem of identifying the influential
spreaders in the supercritical regime is important for two main
reasons. First, differently from what was previously thought
[27,30], there are large differences between the metrics perfor-
mance in this regime that are revealed by our analysis. Second,
and most importantly, if we assume the SIR dynamics, the
propagation of real diseases and computer viruses falls always
in the supercritical parameter region. This points out that
while studying the spreading at the critical point remains an
important theoretical challenge [30], supercritical spreading
processes are in fact likely to be of practical relevance for
applications to real spreading processes.

We conclude by outlining future research directions
opened by our methodology and results. It remains open to
extending the effective distance [26] and ViralRank to tem-
poral networks. This might be of extreme practical relevance
inasmuch as real networks exhibit strong non-Markovian
effects which in turn heavily impact the properties of net-
work diffusion processes [72—74]. In addition, the SIR model
provides a realistic yet simplified model of real diseases
spreading. Extending our results to more realistic spreading
models is an important direction for future research; to this
end, it will be critical to calibrate the spreading simulations
with the parameters observed in real epidemics. While our
work focused on a widely used epidemic spreading model,
an extensive validation of the metrics for social contagion
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FIG. 7. Metapopulation spreading model: A comparison between nodes centrality and prevalence w(fy,y) for the U.S. domestic flights.
(a) Pearson linear correlation between nodes centrality and w(f,.x) as a function of the basic reproductive number, at fixed recovery rate
n=0.2 d7', in unit of days. The inset shows the known R, values for some real diseases (from Table 10.2 in [31]). (b) Pearson linear
correlation r(—v(A), w(fmax)) between ViralRank score and epidemic prevalence in the nontrivial section of the parameter space {8 > u}.
(c) Ratio 7 between the correlations with prevalence of the score produced by ViralRank and the score obtained by the best-performing metric
(RWA), ViralRank excluded. The dashed lines in panels (b) and (c) mark the lines of constant basic reproductive number.
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FIG. 8. Scatter plot of the nodes centrality scores as a function
of the prevalence w(tna:) at time # = (2aRy)™! for Ry = 2.0 and
a = 0.003 d7'. For each axis, the values are normalized by the
corresponding maximum value.

processes [3,25] remains an elusive, yet important direction
for future research.

Our paper focused on the identification of individual in-
fluential spreaders, in the sense that the simulated outbreaks
always started from a single seed node. Identifying a set of
multiple influential spreaders might require different methods
with respect to those used to identify individual influential
spreaders [15,75]. Extending our results to spreading pro-
cesses simultaneously initiated by more than one node is a
nontrivial problem for future studies, yet relevant for real-
world applications (such as targeted advertising and disease
immunization) where it is typically more convenient to target
a large number of potential influencers [8].

Finally, ViralRank leads us closer to the optimal solution
of the influential spreaders identification in the supercritical
regime. While our results suggest that this regime is relevant
for real spreading processes, it remains open to design, if at all
possible, a universally best-performing metric that provides
an optimal identification performance both in the supercritical
and in the critical regime. For the SIR model, our findings
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confirm that the nonbacktracking centrality [30] and Local-
Rank [15] are highly competitive around the critical point,
yet their performance declines quickly in the supercritical
regime. By contrast, the k-core centrality provides a better
performance, yet suboptimal with respect to ViralRank, in
the supercritical regime. Understanding whether the effective
distance can be used to build a centrality metric that is also
competitive around the critical point is an intriguing challenge
for future studies.
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APPENDIX A: VIRALRANK: INTERPRETATION AND
SMALL A EXPANSION

Let us write the random-walk effective distance (2) as

DY (1) = —InZ; (1), (A1)
where
o0
Zij0) =Y mtmeTin = (eTmy [ (A2)
n=1
for i # j and Z;(A) = 1. In the last equation, H;;(n) is

the hitting-time probability of a random walk with transition
probability matrix P;; = A;;/ Zk Ajr, obtained by normal-
izing the adjacency matrix A;;, and n;; is the random-walk
hitting time [76]. The probability H;;(n) can be defined recur-
sively as [76] H;j(n) = Zk# P;i Hij(n). The average (- - -) in
(A2) is taken over all the random-walk realizations of length
n weighted by the probability H;;(n) that selects only those
walks that terminate once j is reached.

From Eq. (A1) an interesting analogy with thermodynam-
ics emerges. The constant A can indeed be interpreted as the
inverse temperature. Correspondingly, Z;; (1) is the partition
function, and the effective distance corresponds to a reduced
free energy per temperature. Each walk length 7 in the par-
tition function (A2) is in one-to-one correspondence with a
single internal energy level of the system; H;;(n) = ' #i(
quantifies the relative weight of the configurations of energy
n, i.e., the walks of length n that terminate in j. Addition-
ally, since H;; is a probability, the (microcanonical) entropy
Sl.’;?ic(n) = In H;;(n) of the energy level n can be interpreted
as the self-information [77] associated to the outcome of a
random-walker hitting node j for the first time after n steps
starting from i. The total internal energy is then given by the
average of the hitting time dampened by a decreasing expo-
nential U;; = (n;je *"i) / (e*"i), with the partition function
at the denominator. The canonical entropy is obtained as
Sij = Mij — A Fij, where AF;; = DY (1) = —In (e7*") is
the reduced free energy per temperature Using the expression

of the effective distance in terms of the cumulants (n; /> of the
hitting time [26]

D}}WA)-Z( pyen 2l ”> (A3)

the small-)A expansion of node i ViralRank score reads (up to
a normalization constant)

Z( nij)

Here (n;;) is the MFPT from i to j defined recursively as
(nij) =1+ Zk# Pii (ny;) if i # j, zero otherwise [78].

In light of the analogy with thermodynamics outlined in
the previous paragraph, as A can be interpreted as an inverse
temperature, the ViralRank expression (A4) can be interpreted
as a high-temperature expansion [79]. In this limit, the internal
energy reduces to the MFPT, whereas the higher-order terms
in the expansion (A3) give a vanishing contribution. The
small-A expansion shows that in the limit A — 0, apart from a
uniform factor A, node i ViralRank score tends to the average
MFPT from and to the rest of the network

v N Z( ”1] n]z (AS)

+(ni)) + O(?). (A4)

APPENDIX B: THE RELATION BETWEEN THE FJ
OPINION FORMATION MODEL AND ViralRank

In the FJ linear model of opinion formation in networks
[80], each node i starts with an opinion f;, with ), fi = 1,
and recursively updates it according to the linear iterative
equation

y( +1)=cUy@)+ (1 — o), B

where ¢ is a model parameter, and U denotes a row-stochastic
interpersonal influence matrix. The final opinion y; of a node
i is linearly determined by the initial opinions f; of all
the other nodes {j} through the linear relation y(c|f) =
where V(¢) = (1 — ¢)(I — ¢U)~!. The matrix V can there-
fore be interpreted as the total interpersonal effects matrix
[80].

In the following, we set U =P, ie., we assume that
the interpersonal influence is completely determined by the
network transition matrix P;; = A;;/ Zk A, where A;; is the
adjacency matrix. Families of centrality measures can be con-
structed from the matrix V. An important one, referred to as
total effects centrality by Friedkin [80], defines node j score
as; = N~'Y", V;;. As V;; represents the total interpersonal
influence of j on i, 7; represents the average effect of node
j on the other nodes. Interestingly, as pointed out by Friedkin
and Johnsen [81], in the case of interest here (U = P), this
metric is exactly equivalent to Google PageRank [43].

Component by component, the FJ model (B1) reads

vt +1) = kii;A,»myma) +(-of. (B2

The previous equation has a simple interpretation: each node
starts with an opinion f;, and recursively updates it by aver-

aging its neighbors opinions. To connect the FJ model with
ViralRank, it is instrumental to considera (N — 1) x (N — 1)
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reduced matrix PY) obtained from P by removing the jth
row and column. The FJ opinion formation process associated
with the reduced matrix P) reads

YU +1) =Py + (1 —of?,  (B3)

where yU) and £ are (N — 1)-dimensional vectors, obtained
by removing entry j. By writing the previous equation com-
ponent by component, we obtain

W+ D=2 3 Ao+ —of?.
L mt

The last equation has a similar interpretation as Eq. (B2):
each node (excluding node j) starts with an opinion fi(’ ), and
recursively updates it by considering its neighbors opinions.
Differently from equation (B2), node j opinion does not
contribute to the other nodes opinions. The stationary opinions
yP (c|fP)) satisfy the equation

y(j)(clf(j)) — CP(j)y(j)(c|f(j)) +0=0¢) £ (B5)

If ) =pWPc/(1 —c) and ¢ = e, where p¥) and A are
defined by the effective distance equation (2), the solution to
the previous equation is

YO (e HED) = AV — e +PD)~TerpU).

(B4)

(B6)

Since the right-hand side of the equation is exactly equal to
the partition function of effective distance (A2), in terms of
the FJ social influence model the ViralRank centrality (1) can
be compactly written as

1 : Dy e
v = = 3 [y )y eI, (B7)
i

where ) = pWe= /(1 — ¢™) is the initial opinion of the
FJ model with opinion j removed; yi(j ) is the final opinion
of i neglecting the contribution of node j, and analogously
for y;i).

The FJ opinion-formation process that leads to y,.(j ) can be
interpreted as follows: each node i starts with an “opinion”

proportional to pi(’ ) =P, j (with i # j) which represents the
probability of jumping from i to j in one time step. Each node
iteratively updates its score by summing the probabilities P;,,
of its neighbors, j excluded, based on the FJ dynamics; the
stationary state of this iterative process is yi(’ ) which can be
therefore interpreted as a (network-determined) effective tran-
sition probability P;;. The ViralRank score v; of a given node
i therefore depends on all its effective transition probabilities
v and y}[).

APPENDIX C: THE RELATION BETWEEN GOOGLE

PageRank AND NETWORK EFFECTIVE DISTANCE

The PageRank score of a node is essentially a measure of
how easy it is to reach a node with a random walk. It is thus
tempting to try to recover the PageRank vector of scores by
modifying the effective distance in order to make it a measure
of the reachability of a node for a diffusion process started
from another node.

The PageRank vector is defined as the stationary density of
arandom walk in discrete time on a graph and is described by

the master equation [44]

m(t+ D =c)y 7P+ (1 -0,

J

(ChH

where ¢ € (0, 1) is the damping parameter, g is the preference
vector normalized to unity (3, g; = 1), and P is the row-
stochastic transition probability matrix. The constant (1 — ¢)
that multiplies the preference vector g gives the probability
to jump to any random state, while the entry g; gives the
conditional probability to teleport precisely to state i. The
stationary solution of Eq. (C1) reads

7=>0-cPT) ' -o)g. (C2)

In the most commonly used version of PageRank g; = 1/N,
Vi, is the uniform distribution vector and ¢ = 0.85. Variants of
this choice that consider a node-dependent preference vector
have been considered in [82].

To show the connection with effective distance, let us
consider again the partition function (A2), which explicitly
reads

Zi(P.2) =Y AV — POl p) . (C3)

k#j
Here P and IV are the (N — 1) x (N — 1) submatrices of
(P)ij = A;;/ Y, Aix and of the identity (I);; = §;;, respec-
tively, obtained by excluding the jth row and jth column;
p/ is the jth column of P after removing the jth row. Let us
now modify the previous equation and consider the alternative
partition function

ZijP. ) =Y (A—e'P)le™ Py
k]

Contrary to the partition function (C3), where only walks
that terminate in j are considered, in Eq. (C4) also those
walks that cross multiple times the target j are considered.
By rearranging the sum for A > 0 we obtain

o0
Zi®PT )= Z Z(e**PT),."ke*A Pl

k#j n=0

=2 i > e Pu(e Py, e Py

m#j n=0 k#j

oo
=D D> (P, e P

m#j n=0

=Z;(P, 1)

(C4)

(C5)

Then, by averaging the partition function (C4) over the
source nodes {i} we obtain the vector 7; = N~!' Y. Z;;(P) =
N7y Z,-,v(PT). Finally, if no self-loops are present we can
include all terms in the sum (C4) so that 77; satisfies precisely
the PageRank equation (C2) with dumping parameter ¢ = e~*
and nonuniform preference vector [83]

1 —A

e
o= —— Piy. C6
8k N(l—e*’\)lz k (Co)
By contrast, ViralRank is built on the effective distance that

depends logarithmically on a partition function that selects the
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walks that terminate once they hit the arrival node. We argue
that these differences lead to the better ViralRank performance
for the toy network of Fig. 2 and for the analyzed empirical
networks for which we find that PageRank is even outper-
formed by degree in identifying influential spreaders [53].

APPENDIX D: EXISTING CENTRALITY MEASURES

Degree centrality, k, and strength centrality, s. The degree
centrality k is arguably the simplest centrality measure, which
is defined as the number of connections attached to each
node. Given the adjacency matrix A — A;; =1 if there is a
connection between nodes i and j, zero otherwise; the degree
centrality is the sum k; = > ; Aij. For weighted networks
with weighted adjacency matrix W — W;; > 0 is the weight
assigned to the connection between nodes i and j; the previ-
ous definition is naturally extended by the strength centrality
si =) ; Wij [69].

k-core centrality, k.. The k-core centrality [27] is obtained
from the k-shell decomposition as the maximal connected
subgraph composed of nodes that have at least k neighbors
within the set itself. Each node is endowed with an integer
k-core index k. which equals the largest k value of k cores
to which the node belongs. This measure has been shown
to outperform the degree centrality in the seminal work by
Kitsak et al. [27].

LocalRank, LR. LocalRank is a centrality that considers
both the nearest and the next-nearest neighbors to fourth order
[35]. It is defined as

[LR]; = ZAikZAkm ZAmn (1 + ZAnr>‘ (D1)
k m n r

This metric has been shown to be competitive in the influential
spreaders identification by Lii et al. [15].

Nonbacktracking centrality, N BC. The nonbacktracking
centrality [54] is introduced to overcome the limitation of
the eigenvector centrality by considering the Hashimoto or
nonbacktracking matrix [84,85]. Given an abstract undirected
network with E edges, we construct a directed version of it
with 2E edges, where each original edge has been replaced
by two directed ones pointing in opposite directions. The
nonbacktracking matrix B is the 2F x 2 E matrix, where each
element corresponds to a pair of directed edges, defined as

Bisjk—s1 = 8 (1 —8u). (D2)

Thus, the only nonzero elements of B are those defining
nonbacktracking paths of lengths two, from i to / via j, with
j=kandl #i.

The nonbacktracking centrality is defined as

[NBCl; = ) Aijvis
J

(D3)

where v;_,; is the eigenvector corresponding to the largest
eigenvalue of the nonbacktracking matrix (D2). For the

Perron-Frobenius theorem the largest eigenvalue of B is al-
ways real and positive and so are the components of the
corresponding eigenvector. A much faster calculation of the
nonbacktracking centrality can be carried out via the Ihara-
Bass determinant as the first N elements of the leading left
eigenvector of the 2N x 2N matrix [85]

/ 0 K-I
v= (5 5
where K;; = §;;k; is the diagonal matrix with the degrees k;
as entries and (I);; = §;; is the identity matrix.

Radicchi and Castellano showed that the nonbacktracking
centrality is the most competitive metric to identify the influ-
ential spreaders for spreading processes at criticality [30].

Random-walk accessibility, RWA. The (generalized)
random-walk accessibility [28,86] is a measure that quantifies
the diversity of access of individual nodes via random walks.
The accessibility is defined by the exponential of the Shannon
entropy

(D4)

[RWAJ; = exp [ — Y Mj;In Mj; |, (D5)
J

where M = exp(P) takes into account walks of growing
length on the network. Thus, by construction the accessibility
penalizes longer walks.

The metric has been shown to be competitive for the in-
fluential spreaders identification in geographically embedded
networks [28].

APPENDIX E: DETAILS ON THE EMPIRICAL DATASETS

The empirical datasets used for the contact-network dy-
namics are (1) [Terrorists] The terrorist network [87] which
includes the terrorists (nodes) who belonged to the terroristic
cell components centered around the 19 dead hijackers in-
volved in the attacks at the World Trade Center on September
11th, 2001. Each link identifies a social or economic inter-
action between two terrorists. (2) [Email] The email contact
network [88] where the nodes represent employees of a mid-
sized manufacturing company. Two employees are connected
by a link if they exchanged at least one email in the year 2010.
(3) [Jazz] In the jazz collaboration network [89] the nodes
represent jazz musicians and the links represent their recorded
collaborations between 1912 and 1940. (4) [NetSci] This is the
largest connected component of the network scientists coau-
thorship network [90] where the nodes are scientists working
on network theory and experiments. Two scientists are linked
if they coauthored at least one paper in the years prior to 2007.
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