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Polariton superregular breathers in a resonant erbium-doped fiber
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We study polariton superregular (SR) breathers triggered by the resonant interaction of an optical field with
two-level doping ions in an erbium-doped fiber. We demonstrate explicitly that the optical wave component
always features a bright structure that describes the modulation instability (MI) development from localized small
perturbations, while the SR matter-wave breathers exhibit more complicated dynamical evolution, which are ab-
sent in standard scalar SR breather theory. Despite the complexity, the exact link between these SR breathers and
MI is established strictly by showing that the absolute difference of group velocities of SR breathers coincides
exactly with the linear MI growth rate. In particular, we show how a small dip perturbation of the dark SR breather
in the matter wave component induces an intriguing MI process of completely exponential decay. These results
will enrich our understanding on the MI development in complex coupled light-matter interaction systems.
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I. INTRODUCTION

Modulation instability (MI), i.e., the instability of a con-
stant background with respect to infinitesimal periodic or
irregular noisy perturbations, is a central process in nonlinear
physics that has been observed in many different physical
settings, including hydromechanics, optics, plasma, and Bose-
Einstein condensates [1,2]. This dynamics evolution can be
modeled by the standard scalar nonlinear Schrodinger (NLS)
equation [2–8]. In general, the property of initial linear MI
stage (i.e., the MI criterion and growth rate) can be studied
readily by the linear stability analysis. However, exact de-
scriptions of the complete MI process involving both linear
and nonlinear stages are long-standing challenges and are far
less common [9].

One class of these unusual exact MI descriptions is the
so-called breather [10–16], i.e., nonlinear oscillating struc-
tures on a plane-wave background of the standard NLS equa-
tion (confusion should be avoided between these waves and
“discrete breather state” in lattices [17,18]). It should be
emphasized that not all breathers, however, can describe the
complete MI process—only a few unique ones, including the
well-known Akhmediev breather [11,13], Peregrine breather
[19], their higher-order counterparts [20–22], as well as the
newly proposed superregular (SR) breather [14–16]. Note
that these breathers are exact solutions of discrete spectrums.
Another type of MI descriptions is the continuous spectrum
waves obtained by asymptotic analysis of a class of localized
perturbations [23].
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For the exact MI description of breathers, the Akhmediev
breather describes an elementary MI with one growth-return
cycle evolved from a weak periodic perturbation [11,13]. Its
limiting case with infinite period—the Peregrine breather—is
therefore the simplest rigorous description of a MI process
from localized single-peak weak perturbations, which cor-
responds to a particular MI band, i.e., the baseband (zero-
frequency) MI regime [24]. Correspondingly, their higher-
order modes reveal the nature of higher-order MI [20] and
rogue wave events [25], respectively. However, these two MI
scenarios have their own limitations. Namely, the Akhmediev-
type breathers require an initial periodic perturbation in
the whole infinite space; while the Peregrine-type breathers
merely describe the particular zero-frequency MI. Neverthe-
less, this restriction can be overcome when one considers
a MI scenario of so-called SR breathers [14,15]. The lat-
ter describes MI evolution from a localized small-amplitude
perturbation that can cover the whole MI band. Indeed, the
dynamical observation of SR breathers has be confirmed
in both optics and hydrodynamics based on the standard
scalar NLSE [16]. The MI nature has been shown strictly
by establishing the exact link between MI growth rate and
the absolute difference of group velocities of SR breathers
[26]. Even for a noise-driven initial state, SR breathers can
been excited and describe the edge state of nonlinear stage
[27]. Moreover, the utility of SR breathers in generating
rogue wave events [28] and the integrable extensions of
SR breathers with higher-order effects [26,29,30] have been
revealed.

However, to model more general and complex classes
of physical systems, investigation of MI in vector cou-
pled systems is both relevant and necessary. In contrast to
the scalar NLS case, coupled systems possess some addi-
tional coupling parameters and allow for resonant interaction
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between different components, which potentially yield rich
and significant MI dynamics [31–42]. Indeed, even for
the initial linear stage obtained by the simple linear sta-
bility analysis, the MI properties (criterion and growth
rate) are changed greatly by the weak coupled-NLS in-
teraction [38,39] or the strong three-wave resonant [40].
However, recent studies demonstrate that the analog of
Peregrine breathers in coupled complex systems exhibits
structural diversity beyond the reach of the scalar NLS
model, including the dark and four-petaled structures,
and their coexistence [39,41,42]. Therefore, it is expected
that SR breathers in these cases can exhibit nontrivial
dynamics.

The light-matter interaction between optical fields with
nonlinear resonant media is a central topic of research in
physics. In general, we have complex from electromagnetic
field and resonant medium polarization. These objects are
spoken of as “polaritons” [43,44]. One of the most typical
examples is the resonant interaction of pulses with two-
level atoms or ions governed by the Maxwell-Bloch (MB)
system [45–48]. An otherwise absorbing material in this
system becomes completely transparent for optical pulses
of duration shorter than all the relevant relaxation times
of the medium. This is now known as self-induced trans-
parency (SIT) [49]. The resulting localized mode is the
so-called SIT sech-shaped soliton [50]. The soliton control
can be enhanced by multiple atom doping, if one extends
the MB system into its multicomponent counterpart [51]. It
has recently been demonstrated to admit breather solutions
[33,52–55]. However, SR polariton breathers have not been
studied.

In this paper, we study SR breathers formed by the resonant
interaction of an optical field with two-level doping ions
in an erbium-doped fiber generalizes the above MB case
by including the group-velocity dispersion (GVD) and the
Kerr nonlinearity. We demonstrate explicitly that the opti-
cal wave component always features a bright structure that
describes the MI development from localized small pertur-
bations, while the SR matter-wave breathers exhibit more
complicated dynamical evolution. SR breathers in each com-
ponent involve the half-transition and bound states arising
from the resonant interaction. Despite the complexity, the
exact link between these SR breathers and MI is established
strictly by showing that the absolute difference of group
velocities coincides exactly with the linear MI growth rate.
Further, we show how a small dip perturbation of dark
SR breathers in the matter wave component induces an
intriguing MI process of completely exponential decay of
perturbation.

II. THEORETICAL MODEL

The propagation of optical field in a nonlinear dispersive
medium doped with two-level atoms (or ions) will be de-
scribed by a non-integrable MB or NLS-MB equation. How-
ever, due to optical pulses of duration shorter than the dipole
and population decay times, it provides a solvable model for
the investigation of SIT. Further making the slowly varying-
envelope and rotating-wave approximations, the optical field
propagation in an ion-doped medium is governed by the

following coupled NLS-MB equations [45,46,56,57]:

iUz0 − β2

2
Ut0t0 + γ |U |2U + h̄F�2

0n

2cp21
〈V1V

∗
2 〉 = 0,

V1t0 = i

2
δV1 + 2ip21

h̄F
UV2,

V2t0 = − i

2
δV2 + 2ip∗

21

h̄F
U ∗V1, (1)

where U is the complex envelope with z0 being the propaga-
tion distance and t0 being the retarded time. V1 and V2 are the
wave functions for the lower and upper levels, respectively.
One requirement for the wave functions is that the total
probability of finding a dopant atom in either the upper or
lower levels is equal to unity, namely, |V1|2 + |V2|2 = 1. The
asterisks ∗ denote complex conjugation and brackets 〈〉 is a
local average over two-level systems. Parameters δ, h̄, c, and
n are constants that are responsible for the laser detuning to
resonance, Planck constant divided by 2π , speed of light in
vacuum, and linear refractive index of medium, respectively.
p21 = p12 is the complex dipole matrix element of transition
between upper and lower states. Parameters β2, γ, �0, F are
constants which are account for the GVD, Kerr nonlinearity,
characteristic frequency, and scaling factor, respectively.

Note that β2 > 0 (β2 < 0), corresponds to the cases of
anomalous (normal) dispersion. As in most NLS frameworks,
we confine our discussion to the anomalous dispersion. By
virtue of the following transformations of variables [41],

E = U√
ps

, P = i|p21|
p21

√
σ

V1V
∗

2 ,

2η = |V1|2 − |V2|2, z = z0

zs

, t = t0

ts
, (2)

the coupled Eqs. (1) can be normalized to the dimensionless
form

Ez = i

(
σ

2
Ett + ps

pn

|E|2E
)

+ 2〈P 〉,

Pt = 2iωP + 2

σ
Eη, (3)

ηt = −(EP ∗ + PE∗),

where ts is a typical pulse duration, which defines the unit time
scale, ω = δt0/2 is the scaled laser detuning. z and t represent
the propagation distance and retarded time, respectively. pn =

1
zsγ

is the peak power of the usual NLS soliton, while ps =
h̄2F 2

4σ t2
s |p21|2 denotes the peak power of the SIT soliton when the

NLS component is absent. Other parameters,

zs = 2c

σnts�
2
0

, zd = t2
s

|β2| , σ = zs

zd

, (4)

are the SIT length, the dispersion length, and the scaled
dispersion, respectively. Furthermore, according to the rela-
tionship between the wave functions, P (which is related to
the off-diagonal element) and η (which signifies the local
population difference between the upper and lower levels)
must satisfy the condition of probability conservation [45]. It
can be rewritten as

4η2 + 4σ |P |2 = 1. (5)
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For the sake of simplicity, we assume 〈P 〉 = P when the
Lorentzian line profile (homogeneous broadening) or Gaus-
sian line profile (inhomogeneous broadening) has an infinites-
imal scale parameter. However, the peak power of the SIT
soliton should be equal to that of the NLS soliton for a
given input pulse width [56,58]. It is now evident that as the
condition

pn = ps, i.e., γ = 4|p21|2|β2|
h̄2F 2

, (6)

is met, Eq. (3) can be reduced to the integrable form

Ez = i

(
1

2
Ett + |E|2E

)
+ 2P,

Pt = 2iωP + 2

σ
Eη, (7)

ηt = −(EP ∗ + PE∗).

Here we consider σ = 1 without losing generality. In the
following, we shall first shed light on the properties of the fun-
damental breathers in the coupled NLS-MB systems, since SR
breathers are formed by a particular nonlinear superposition of
fundamental breathers.

III. FUNDAMENTAL BREATHERS AND
THEIR CLASSIFICATION

The fundamental breather solutions are constructed on the
plane-wave backgrounds,

E0 = aeiθ , P0 = ikE0, η0 = ωk − qk/2, (8)

where θ = qt + νz, ν = a2 + 2k − q2/2. Here a and q de-
note the amplitude and frequency of the electric field E0, k is
a real parameter which is related to the background amplitude
of P0 and η0 components. Since P and η are balance in
spatiotemporal amplitude distributions, i.e., 4η2 + 4|P |2 = 1,
we fix k = 1/

√
(q − 2ω)2 + 4a2, without losing physics. This

parameter relation will hold for all analysis in what follows.
The analytical fundamental breather solutions E1, P1, and

η1 on the backgrounds Eq. (8) are obtained by the standard
Darboux transformation [see Appendix A], but the spec-
tral parameter λ parameterized by the Jukowsky transform
[14,15],

λ = − ia

2

(
� + 1

�

)
− q

2
, � = Reiα, (9)

where R � 1, α ∈ (−π/2, π/2) are the radius and angle of
the polar coordinates.

Thus, this solution depends on a, q, α, R, ω, and the
internal phase θ1. To analyze the property of fundamental
breathers, we first let θ1 = 0, which results in that the central
position of breathers is located at (z, t ) = (0, 0). Then the
structure property of breathers can be achieved by the Hessian
matrix [59,60]. In principle, we need do this for all NLS-MB
components. However, since the optical wave component E

always features a bright structure and the matter wave com-
ponents P and η are spatiotemporally balanced in amplitude
distributions, we prefer the matter wave component η, without
loss of generality. The details are as follows.

The center point η1(σ1, σ2) = (0, 0) is the critical point,
and its value is given by

η1(0, 0) = 1

2
k

4aρ� − � (�2 − ρ2)

�2 + ρ2
, (10)

where � = � − q + 2ω, � = q − 2ω. The structure prop-
erty of the breather η1 is determined by the following Hessian
matrix:

Hη =
[

(η1)σ1σ1 (η1)σ1σ2

(η1)σ2σ1 (η1)σ2σ2

]
, (11)

where

(η1)σ1σ2 = (η1)σ2σ1 = 2kρ2

(ρ2 + �2)r2
(�1 − δ� ),

(η1)σ1σ1 = −2kρ

(ρ2 + �2)r2
{2aρδ + ��2 + (R2 − 1)2ρ� },

(η1)σ2σ2 = 2kρ

(ρ2 + �2)r2
{2aρδ − ��2 − 4R2 sin2 αρ� },

where r = 1 + R2 − 2R cos α, �1 = a[(R2 − 1)2 − 4R2

sin2 α], �2 = a[(R2 − 1)2 + 4R2 sin2 α], δ = 2R(R2 − 1)
sin α. Then, the structure criterion based on the Hessian
matrix can be written explicitly as follows. If Hη is a negative
definite matrix, i.e., the eigenvalues are both negative,
η1(0, 0) is the local maximum, thus the breather is the
standard “bright” one with a hump and two valleys [11].
If Hη is a positive definite matrix, i.e., the eigenvalues are
both positive, η1(0, 0) is the local minimum, the breather is
the so-called “dark” one [34]. If Hη is an indefinite matrix,
i.e., the two eigenvalues have different signs, η1(0, 0) is a
saddle point, the breather is the “four-petaled” one [39]. The
amplitude characteristic of fundamental breathers in each
component versus the background frequency q is shown in
Fig. 1.

As is shown clearly in Fig. 1, optical wave component
E always features a bright structure (top row), while the
matter wave components P and η exhibit rich dynamics
(middle and bottom rows). Specifically, the component η

shows a four-petaled structure [see Fig. 1(d)] in the range q ∈
(q1, q2), where q1 = X1 − X2, q2 = X1 + X2, X1 = 2ω +
ρ(x − a)/(2x), X2 = ρ(�2 − 4ax)

1
2 /(2x), and x = ρ − a.

However, as q > q2 (q < q1), it exhibits a bright (dark)
structure [see Figs. 1(e) and 1(c)]. Due to the complementary
relation between P and η, i.e., 4η2 + 4|P |2 = 1, one can
then readily obtain the complementary breather structures for
the component P . It should be pointed out that, although
both P and η are four-petaled structures, the topology is
different. Namely, the η four-petaled breather is formed by
two humps and two valleys, while the P one is composed of
four valleys [see Fig. 1(d)]. This can be proved easily by the
complementary relation.

Note also that the fundamental breather can convert to the
nonbreathing mode when Vgr1 = Vph1 (thus q = qs , where
qs satisfies the equation [ρ2 + (� − � )2](4a2 + � 2)

1
2 = 4).

This matching relation was first reported in the higher-order
NLS model by Akhmediev’s group [61,62], and in the
NLS-MB system by Yang’s group [33]. Figures 1(b)
and 1(f) show the transformed nonbreathing modes in each
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FIG. 1. Amplitude distributions of fundamental breathers (from top to bottom |E1|, |P1|, η1) with q = −0.83, −0.65, 0, 0.78, 0.97 (from
left to right). Figure (a) shows the phase diagrams of fundamental breathers, namely, bright breathers in “BR” (bright regime); dark
structures including dark three-valley and dark one-valley breathers in “D3R” (dark three-valley regime) and “D1R” (dark one-valley regime),
respectively; four-petaled structures including dark four-valley and four-petaled breathers in “D4R” (dark four-valley regime) and “FPR”
(four-petaled regime), respectively. Other parameters are a = 1, ω = 0, R = 1.05, α = π/3, and θ1 = θ2 = 0.

component. These waves are the so-called “quasi-periodic
modes”, which are transformed from the “quasi-Akhmediev
breathers.” It has been demonstrated [63] that these
nonbreathing modes can suffer perturbations although
they are located on a nonzero background.

Based on the analysis above, the structure characteristics
of fundamental breathers in the NLS-MB system are obtained
completely. The whole picture is well depicted in Fig. 1(a).
Note that this classification holds for the nonlinear superposi-
tion case of these fundamental breathers.

IV. SR BREATHER

Nonlinear superposition of fundamental breathers can gen-
erate SR breathers in the NLS-MB system. The simplest case
is the SR one-pair breather with the parameters α1 = −α2 =
α, R1 = R2 = R = 1 + ε, where ε is a small value (ε � 1).
The corresponding exact solution is obtained by the standard
iteration of the Darboux transformation [see Appendix B]. In
this case, the SR breather admits small localized perturbations
on the plane wave at z = 0 when θ1 + θ2 = π , and the pertur-
bation amplitude is proportional to the value of ε.

Figure 2 shows the amplitude profiles of plane-
wave backgrounds (|E0|, |P0|, η0) and the perturbations

FIG. 2. Amplitude profiles of plane-wave backgrounds
(|E0|, |P0|, η0) and the perturbations of SR breathers at z = 0
(�|E|, �|P |,�η) versus q. (a) R = 1.1; (b) R = 1.05. Other
parameters are a = 1, ω = 0, α = π/3, and θ1 = θ2 = π/2.

at z = 0 (i.e., �|E| = |E|max − |E|min, �|P | = |P |max −
|P |min, �η = |ηmax − ηmin|). As can be seen, the perturbation
amplitudes decrease as ε decreases, while the background
amplitudes remain the same. In particular, the amplitudes
|E0| and �|E| remains unchanged as q varies, while the
amplitudes for the matter wave components display different
distributions due to the spatiotemporally balanced condition
between them. Indeed, one can readily obtain the perturbation
expression for the E component, i.e,

�E ≈ −4iaε cosh (iα) cos (2at sin α)sech(2atε cos α).
(12)

This is the same as that obtained in the NLS systems [14].
Namely, the coupling effect arising from the matter wave
components has no influence on the perturbation of the optical
field. Thus, we shall choose a smaller value of ε to make
sure that the perturbation amplitudes can be small. However,
one should note that for the special case q = 2ω, |P0| and
�η reach their maximums, while �|P | and η0 will be small
values. In this case, only the P component admits a small dip
perturbation (see the Sec. VI).

We then show the characteristics of SR breathers in Fig. 3.
Three typical types of SR breathers are obtained via the
analysis of the group and phase velocities.

First, when Vgr1 	= Vgr2 and Vgrj 	= Vphj, the SR breathers
formed by two quasi-Akhmediev breathers with different
group velocities are obtained [Fig. 3(a)]. This is the gener-
alization of the standard SR breathers in the NLS-MB system.
However, note that the matter-wave SR modes can exhibit
different structures. As shown in Fig. 3(a), two four-petaled
SR breathers are observed in the P and η components, re-
spectively.

Second, when Vgrj = Vphj, Vgr3-j 	= Vph3-j, we observe the
interesting half-transition states of SR breathers [Fig. 3(b)].
Namely, a breather is converted to a nonbreathing wave when
Vgrj = Vphj, while the other remains the nature of the breather
when Vgr3-j 	= Vph3-j. In contrast to the standard SR wave, the
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FIG. 3. Amplitude distributions of SR breather structures in the
E, P, η components versus q (q = 0,−0.834, −0.906 from left to
right), (a) the standard SR breathers, (b) half-transition states, (c) SR
bound states. Other parameters are a = 1, ω = 0, R = 1.05, α =
π/3, and θ1 = θ2 = π/2.

small-amplitude perturbation is amplified a little slowly and
subsequently becomes a mix of breathing and nonbreathing
waves.

Third, when Vgr1 = Vgr2, an SR bound state is observed
in Fig. 3(c). In this particular case, the small-amplitude per-
turbation forms a bound state on the plane-wave background
with a long-period oscillation. This oscillation stems from the
nonvanishing difference of phase velocity. The smaller that the
difference of phase velocity is, the longer that the oscillation
period will have (not shown). If the difference of phase
velocity is vanishing, the oscillation is gone, which is the
so-called full-suppression SR state reported before [29,30,55].
We will show below that this bound state corresponds exactly
to the vanishing MI growth rate.

V. EXACT LINK BETWEEN SR BREATHERS AND MI

Establishing an exact link between SR breathers and MI
is one crucial step in both the SR breather theory and the
analytic MI description. It has been demonstrated in the
scalar NLSE hierarchy that the absolute difference of group
velocities of scalar SR breathers coincides exactly with the
linear MI growth rate [26]. Here we will find out whether
this exact link is valid for the complex coupled case. For the
coupled NLS-MB system, SR breathers in each component
share the same group velocity although their structures can be
different. Thus, the absolute difference of group velocities of
SR breathers can be given by the following simple expression:

�Vgr = |Vgr1 − Vgr2|. (13)

The explicit expression of �Vgr for the each component of
the NLS-MB system is written as

�Vgr =
∣∣∣∣� − ρηi

ηr

+ 2k

ηr

[
ρηi + ηr (� + � )

ρ2 + (� + � )2

]

+ 2k

ηr

[
ρηi + ηr (� − � )

ρ2 + (� − � )2

]∣∣∣∣, (14)

where ρ =−a(R + 1/R) cos α, � = a(R − 1/R) sin α, ηr =
a(R − 1/R) cos α, and ηi = a(R + 1/R) sin α. Considering
the condition of SR waves, R = 1 + ε, ε � 1 (which indi-
cates ε2 → 0), we shall omit the terms with respect to ε2.
Thus, Eq. (14) is rewritten as a simpler form:

�Vgr =
∣∣∣∣2a2 sin 2α

ηr

(
1 − 4k

4a2 cos2 α + � 2

)∣∣∣∣. (15)

Obviously, when �Vgr = 0, which indicates 4a2 cos2 α +
� 2 = 4k, the SR bound state is obtained. This bound state
shows a long-period oscillation phenomenon excited from
small-amplitude perturbation, shown in Fig. 3(c).

Let us then turn our attention to the linear MI analy-
sis, in which the MI criterion and growth rate of small-
amplitude perturbations on a plane-wave background can be
studied precisely. Perturbed backgrounds E0p, P0p, and η0p

are obtained via adding small amplitude perturbed Fourier
modes m1, m2, and m3, i.e., E0p = (a + m1)eiθ , P0p =
ik(a + m2)eiθ , and η0p = k(ω − q/2 + m3), where m1 =
u1 cos (Kz − �t ) + iv1 sin (Kz − �t ), m2 = u2 cos(Kz −
�t ) + iv2 sin (Kz − �t ), and m3 = u3 cos (Kz − �t ). Here
u1, u2, u3, v1, and v2 are small numbers describing the am-
plitudes of perturbations, � represents perturbed frequency,
and the wave number K is assumed to be complex. Fol-
lowed by the standard linearization process, a substitution of
E0p, P0p, and η0p into Eq. (7) yields the dispersion relation
between K and �. The imaginary part of K leads to MI. The
latter is described by the MI growth rate, which is defined by
G = |Im{K}|. The corresponding explicit expression is given
by

G = 1

2

∣∣∣∣�√
�2 − 4a2

(
1 − 4k

4a2 − �2 + � 2

)∣∣∣∣, (16)

where |�| < 2a. Obviously, the initial perturbed frequency of
SR breathers � = 2a sin α falls within this MI region |�| <

2a. Substituting � = 2a sin α into Eq. (16), one can readily
obtain the linear MI growth rate for the initial state of SR
breathers as follows:

Gsr =
∣∣∣∣a2 sin 2α

(
1 − 4k

4a2 cos2 α + � 2

)∣∣∣∣. (17)

Remarkably, a simple comparison between Gsr and �Vgr

shows an exact link

Gsr = �Vgrηr/2, (18)

where ηr = a(R − 1/R) cos α. Thus, despite the complexity
caused by resonant interaction, an excellent consistency be-
tween SR breathers and linear MI growth rate is still obtained.
It shows that the absolute difference of group velocities of SR
breathers coincides exactly with the linear MI growth rate.
This link is consistent with that in the NLS models [26].
Clearly, for fixed R and α, one obtains Gsr → 0 as �Vgr → 0.
Eventually, the SR bound state �Vgr = 0 corresponds to the
vanishing MI growth rate Gsr = 0. This exact link reveals
the universal rule of SR waves in many nonlinearly driven
systems.
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FIG. 4. Maximum and minimum amplitudes of SR breather in
the E (a) and P (b) components. Parameters are a = 1, ω = 0, α =
π/3, and θ1 = θ2 = π/2.

VI. MI DESCRIBED BY DARK SR BREATHER

Up to now, MI dynamics described by the SR breathers is
confined to the bright breather structure. However, as shown
above, for the coupled systems, SR breathers can exhibit a
dark structure. This unique property is absent in the scalar
systems. In the following, we will show clearly the MI nature
of the dark SR breather.

Figure 4 shows the amplitude evolution of SR breathers in
each component. The amplitude amplification and attenuation
are tracked by the maximum and minimum as z increases.
For the optical wave component E, the small perturbation
is amplified and attenuated exponentially at the first four
propagation distances. This is the initial MI stage, which
coincides exactly with the results of linear stability analysis
obtained above. After that, the wave maximum and minimum
are oscillating near the thresholds |E|max = 2 and |E|min = 0.
This is referred to as the nonlinear stage of MI, which exhibits
two quasi-Akhmediev breathers propagation along different
directions.

For the matter wave component P , however, an MI evo-
lution is captured. In sharp contrast to the component E, we
find that a small dip perturbation of dark SR breather suffers
a completely exponential decay in the component P . After
the initial exponential attenuation, this nonlinear MI stage
shows two quasi-Akhmediev breathers with dark structures. It
should be pointed out that a small dip perturbation on a plane-
wave background associated with the continuous spectrum
has been used to excite MI in the standard NLS system [64].
However, the process is different from that reported here. This
is because the MI evolution in Ref. [64] is essentially a process
involving both the amplitude amplification and attenuation.
The intriguing attenuation process reported here helps us to
understand the exact descriptions of the complete MI process
in complex coupled systems.

VII. DISCUSSION

To connect the analytical results reported in this work with
more actual physical context, let us discuss briefly the appli-
cability and possible observation of the analytic prediction.

First, we will analyze the applicability of the analytical
results. As shown above, the NLS-MB system possesses both
MI and modulation stability regions in the range of perturbed
frequency. SR breathers in each region can exist but exhibit
different nonlinear evolution. Thus, our results provide flex-
ibility for the excitations of different SR breathers. Owing
to the exact link Eq. (18), one simple way to observe SR

breathers is to identify the MI criterion and growth rate by the
linear stability analysis. Namely, one can estimate the absolute
difference of group velocities of SR breathers by the linear
growth rate.

After the preliminary linear analysis above, the next step
is to prepare the corresponding initial excitations. Of course,
the exact initial conditions can be extracted from the exact
solutions at z = 0. However, there are approximate initial
forms to excite SR breathers more simply. The initial mod-
ulation for the light field is given by Eq. (18). Moreover, as
suggested in Refs. [26,28], a more general form can be used to
excite SR breathers as long as the width of initial state can be
comparable with b ≈ 1/(2aε cos α). Importantly, this initial
condition has been realized in a fiber by the initial intensity
and phase modulations [16]. For the matter wave components,
as shown in Ref. [41], the pure plane waves (viz, P0, η0) can
be chosen as the initial conditions without affecting the linear
stage of MI.

After the applicability analysis above, we then discuss
the possible observation of these SR breather structures.
Our analysis starts from Eq. (1) with the documented ma-
terial parameters suggested in Refs. [57] and [16], where
SIT solitons in an erbium-doped fiber waveguide and SR
breathers in standard NLS fiber system have been observed,
respectively. At the first step, the cooling of the erbium-
doped fiber to the cryogenic temperature of 4.2 K is a pre-
requisite to increase the dipole decay time to nanoseconds.
Then, an effective though truncated plane-wave background
should be prepared by the modern pulse shaping, which may
give rise to SR breather dynamics reported above. Indeed,
this initial background condition can be achieved by the
dispersion engineering and management [65] as well as the
modification of the transition electric dipole moment of dop-
ing ions [50]. For example, we may consider the case that
the operation wavelength of each mode is nearly 1.55 μm
with the dispersion coefficient β2 = 2.76 × 107 ps2/km in
the anomalous regime, and the Kerr nonlinearity parame-
ter γ = 12.8 W−1/km. Parameters δ = 0, h̄ = 6.626/(2π ) ×
10−34 J s, c = 3 × 108 m/s, n = 1.454 are used from the
pioneering experiment [57]. By using the transformations
Eq. (2) with the conditions Eqs. (4) and (6), the corre-
spondence between theory and experiment can be retrieved.
Here we assume that the initial pulse width is chosen as
ts = 500 ps with the peak power pn = ps = 8.6 W. Under
these assumptions, optical SR breathers, predicted in Fig. 4(a)
should be triggered by modulation instability with the peak
power around 11.7 W. However, one should note that the ob-
servation of the matter-wave counterpart remains particularly
challenging, as mentioned in Refs. [41,57].

VIII. CONCLUSION

In summary, we have investigated SR breathers formed
by the resonant interaction in an erbium-doped fiber. We
have demonstrated explicitly that the optical wave compo-
nent always features a bright structure that describes the MI
development from localized small perturbations, while the
SR matter wave breathers exhibit more complicated dynam-
ical evolution. SR breathers in each component involve the
half-transition and bound states arising from the resonant
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interaction. Despite the complexity, we have established the
exact link between SR breathers and MI by showing that the
absolute difference of group velocities coincides exactly with
the linear MI growth rate. Further, we have shown how a
small dip perturbation of dark SR breathers in the matter wave
component induces an intriguing MI process of completely
exponential decay of perturbation. These results will enrich
our understanding on the MI development in complex coupled
light-matter interaction systems.
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APPENDIX A: EXACT SOLUTIONS OF FUNDAMENTAL BREATHERS

The fundamental breather solutions of the coupled NLS-MB Eq. (7) on the plane-wave Eq. (8) are given by

E1 = eiθ

{
a + 2ρϕ12

ϕ11 + ϕ22

}
, (A1)

P1 = ikeiθ

{
−(℘1ϕ11 − ℘2ϕ22)[2iρ(q − 2ω)ϕ12 + a(℘1ϕ11 − ℘2ϕ22)] − 4aρ2ϕ2

12

(ϕ11 + ϕ22)2
(
ρ2 + s2

2

)
}

, (A2)

η1 = −k

{
q − 2ω

2
+ 2[aρ(s2�1 − iρ�2) − 2ϕ11ϕ22ρ

2(q − 2ω)]

(ϕ11 + ϕ22)2
(
ρ2 + s2

2

)
}

, (A3)

where

�j = (ϕ12 ± ϕ21)(ϕ11 ± ϕ22), ℘ = (ρ − is2)ϕ11 − (ρ + is2)ϕ22,

ϕjj = ±ψ1 sinh σ1 + ψ2 cosh σ1 − cos(σ2 ∓ α), σ1 = ηr1(t − Vgr1z) + μ1,

ϕj3−j = cosh(σ1 ∓ iα) ∓ iψ1 sin σ2 − ψ2 cos σ2, σ2 = ηi1(t − Vph1z) − θ1,

Vgr1 = υ1 + υ2
ηi1

ηr1
, Vph1 = υ1 − υ2

ηr1

ηi1
, υ1 = − 2ks1

ρ2 + s2
1

− �

2
+ q, υ2 = − 2kρ

ρ2 + s2
1

+ ρ

2
,

with ℘j = ρ ∓ is2, s1 = � − q + 2ω, s2 = � + q − 2ω, ρ=−a(R + 1/R) cos α, � = a(R − 1/R) sin α, ηr1 = a(R − 1/R)
cos α, ηi1 = a(R + 1/R) sin α, ψ1 = (1/R − R)/2, and j = 1, 2.

APPENDIX B: EXACT SOLUTIONS OF SR BREATHERS

The SR breather solutions of the NLS-MB Eq. (7) on the plane-wave Eq. (8) are presented as follows:

E2 = eiθ

{
a + 2ρ�[(� + iρ)(ϕ11φ12 + ϕ12φ22) + (� − iρ)(ϕ12φ11 + ϕ22φ12)]

[ρ2(ϕ11φ22 − ϕ21φ12 − ϕ12φ21 + ϕ22φ11) + �2(ϕ11 + ϕ22)(φ11 + φ22)]

}
, (B1)

P2 = ikeiθ

{
2�3�1�2 + �1�

2
2 + �2�

2
1

(ρ2ϕ12ϕ21 + δ1δ2)(�1�4 − �2�3)

}
, (B2)

η2 = ik

{
�3(�1�4 + �2�3) + �1�2�4 + �2�1�3

(ρ2ϕ12ϕ21 + δ1δ2)(�1�4 − �2�3)

}
, (B3)

where

�1 = 2ρ(ω − q/2)ϕ21δ1 + a
(
δ2

1 − ρ2ϕ2
21

)
, (B4)

�2 = 2ρ(ω − q/2)ϕ12δ2 + a
(
δ2

2 − ρ2ϕ2
12

)
,

�3 = iρa(ϕ12δ1 + ϕ21δ2) − i(ω − q/2)(δ1δ2 − ρ2ϕ12ϕ21),

δj = (s1 ∓ iρ)ϕ11/2 + (s1 ± iρ)ϕ22/2, �1,4 = (χ1s2 ∓ iχ2ρ)/2,

�2 = −iρ
[
�2φ12(ϕ11 + ϕ12)2 + iρ�(ϕ11 + ϕ12)(ϕ11φ12 − ϕ12φ11 + ϕ12φ22 − ϕ22φ12)

− ρ2
( − ϕ2

12φ21 + ϕ11ϕ12φ22 − ϕ11ϕ22φ12 + ϕ12ϕ22φ11
)]

,

�3 = −iρ
[
�2φ21(ϕ11 + ϕ12)2 − iρ�(ϕ11 + ϕ12)(ϕ11φ21 − ϕ21φ11 + ϕ21φ22 − ϕ22φ21)

− ρ2
( − ϕ2

21φ12 + ϕ11ϕ21φ22 − ϕ11ϕ22φ21 + ϕ21ϕ22φ11
)]

,

χ1 = (ϕ11 + ϕ22)[�2(φ11 + φ22)(ϕ11 + ϕ22) + ρ2(ϕ11φ22 + ϕ22φ11 − ϕ12φ21 − ϕ21φ12)],
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χ2 = 2iρ�(ϕ11 + ϕ22)(ϕ12φ21 − ϕ21φ12) + �2(φ11 − φ22)(ϕ11 + ϕ22)2

− ρ2(ϕ11 − ϕ22)(ϕ11φ22 + ϕ22φ11 − ϕ12φ21 − ϕ21φ12),

where

φjj = ±ψ1 sinh ς1 + ψ2 cosh ς1 − cos(ς2 ± α), φj3−j = cosh(ς1 ± iα) ∓ iψ1 sin ς2 − ψ2 cos ς2,

ς1 = ηr2(t − Vgr2z) + μ2, ς2 = ηi2(t − Vph2z) − θ2, Vgr2 = ν1 + ν2
ηi2

ηr2
, Vph2 = ν1 − ν2

ηr2

ηi2
,

ν1 = 2ks2

ρ2 + s2
2

+ �

2
+ q, ν2 = 2kρ

ρ2 + s2
2

+ ρ

2
,

with ψ2 = (1/R + R)/2, ηr2 = a(R − 1/R) cos α, and ηi2 = −a(R + 1/R) sin α. Other parameters are in Appendix A.
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