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Twisted states with nonzero winding numbers composed of sinusoidally coupled identical oscillators have
been observed in a ring. The phase of each oscillator in these states constantly shifts, following its preceding
neighbor in a clockwise direction, and the summation of such phase shifts around the ring over 2π characterizes
the winding number of each state. In this work, we consider finite-sized d-dimensional hypercubic lattices,
namely, square (d = 2) and cubic (d = 3) lattices with periodic boundary conditions. For identical oscillators,
we observe new states in which the oscillators belonging to each line (plane) for d = 2 (d = 3) are phase
synchronized with nonzero winding numbers along the perpendicular direction. These states can be reduced into
twisted states in a ring with the same winding number if we regard each subset of phase-synchronized oscillators
as one single oscillator. For nonidentical oscillators with heterogeneous natural frequencies, we observe similar
patterns with slightly heterogeneous phases in each line (d = 2) and plane (d = 3). We show that these states
generally appear for random configurations when the global coupling strength is larger than the critical values
for the states.
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I. INTRODUCTION

Synchronization phenomena have been widely observed in
a variety of real systems, such as flashing fireflies, cardiac
pacemaker cells in the heart, firing neurons in the brain,
coupled laser systems, electric power grids, hand clapping in
concert halls, and Josephson junctions, among others [1–12].
The spontaneous emergence of synchronization has attracted
immense interest in not only physics and biology but also
many other related fields, and extensive studies have sought
to understand the underlying mechanism of the phenomenon
[13]. As a result, the collective properties, features, and mech-
anism of synchronization have been unveiled, with diverse
patterns of synchronization and the origins of such patterns
found [14].

One representative dynamical system is the Kuramoto
model, which describes the spontaneous emergence of syn-
chronization in a network of interacting oscillators [15]. In
this system, each oscillator has a natural frequency randomly
assigned from probability distribution g(ω), and the strength
of coupling between each pair of connected oscillators that
induces synchronization is controlled globally via control
parameter K . It is known that order parameter R > 0 for K >

Kc[= 2/[πg(0)]] in an all-to-all coupled network structure
(mean-field limit) of infinite system size [15,16]; however,
Kc → ∞ as system size increases to infinity in d-dimensional
hypercubic lattices with Gaussian distribution g(ω) for d � 4
[17]. These results claim that low-dimensional hypercubic
lattices of d � 4 can be distinct from the mean-field limit.
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In (d = 1)-dimensional hypercubic lattices with periodic
boundary conditions, regarded as ring structures, diverse
multistable states have been reported [18–24]. Among these
states, so-called twisted states composed of identical oscil-
lators were found in Refs. [18,19]. In this paper, we focus
on whether such twisted-state patterns can also be observed
in the low-dimensional hypercubic lattices of d = 2 and 3,
which are distinct from the mean-field limit. In addition, we
explore whether similar states are possible by using Gaussian
distribution g(ω) to include heterogeneity.

The rest of this paper is organized as follows. In Sec. II
we introduce the general system considered in this paper. In
Sec. III we review the twisted states in the ring and observe
states of the same pattern in d-dimensional hypercubic lattices
with periodic boundary conditions for d = 2 and 3. In Sec. IV
we consider nonidentical oscillators with heterogeneous nat-
ural frequencies of Gaussian distribution, where we observe
similar states defined by the winding number of a cycle and
numerically check whether these states generally appear for
random configurations. We summarize the results in Sec. V
and provide details supporting our analysis in the Appendix.

II. MODEL

We study a Kuramoto system composed of N oscillators
whose phases φi ∈ [0, 2π ) (i = 1, . . . , N ) follow the govern-
ing equation

dφi

dt
= ωi + K

N∑
j=1

Aij sin(φj − φi ) (1)

for K > 0, where Aij = 1 if i and j are connected or 0
otherwise, and ωi is the natural frequency of oscillator i.
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For phase ordering, we use the order parameter given by
R = 1

N
| ∑N

j=1 eiφj |.
In this paper, we consider d-dimensional hypercubic lat-

tices for d = 2 and 3 of linear size L = N1/d with periodic
boundary conditions. To specify each node in the lattices, we
use a Cartesian coordinate system as follows. For a given
hypercubic lattice, we choose one corner of the lattice as
the origin and then define d mutually perpendicular axes,
which start from the origin and increase along its d nearest
neighbors. With these axes, the location of each node can be
specified using d coordinates denoted by (x1, . . . , xd ). Here
non-negative integers for x1, . . . , xd satisfy 0 � x1, . . . , xd �
L − 1.

Each node at location (x1, . . . , xd ) is numbered by i =∑d
d ′=1 xd ′Ld ′−1 + 1, which makes it possible to analytically

describe the states that we observe, as discussed later. We note
that each positive integer i (1 � i � N ) specifies a unique
location in a given lattice. In d-dimensional hypercubic lat-
tices with periodic boundary conditions, each node at location
(x1, . . . , xd ) is connected with 2 × d nodes at locations ((x1 ±
1) mod L, . . . , xd ),...,(x1, . . . , (xd ± 1) mod L).

III. IDENTICAL OSCILLATORS

In this section, we consider N identical oscillators with
ωi = ω for ∀i. If we use a rotating reference frame φi →
φi + ωt , Eq. (1) takes the form

dφi

dt
= K

N∑
j=1

Aij sin(φj − φi ). (2)

A. Twisted state on a ring

The twisted state on a ring structure composed of identical
oscillators was originally reported in Ref. [18]. For the ring
structure, Eq. (2) has the form

dφi

dt
= K[sin(φi−1 − φi ) + sin(φi+1 − φi )] (3)

with φN+1 ≡ φ1 and φ0 ≡ φN . In a twisted state of integer
winding number q (q-twisted state), the phases of the oscilla-
tors are φi = (2πqi/N + C) mod 2π for any constant C.

It can be shown that this state is a fully phase-locked state
(φ̇i = 0 for ∀i) by substituting this form into the right-hand
side of Eq. (3). Moreover, it has been proven that this state
is linearly stable for N > 4|q| [18,19]. Here q is called the
winding number because this value refers to the number of full
twists of the phase around the ring. We discuss the definition
of winding number for an arbitrary cycle within the given
network structure in Sec. IV A [20–24].

B. Twisted states in d-dimensional hypercubic lattices for
d = 2 and 3

We observe similar states in d-dimensional hypercubic
lattices for d = 2 and 3. In these states, the oscillators in each
line (plane) for d = 2 (d = 3) are phase synchronized, while
the phase of each line (plane) is constantly shifted by 2πq/L

from that of the preceding line (plane) along the perpendicular
axis.
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FIG. 1. (a, b) Schematic diagram for the (q = 1)-twisted states
in (a) two- and (b) three-dimensional hypercubic lattices for L = 5.
The phase of each oscillator is denoted by the corresponding color
of the palette on the left. The oscillators belonging to each column
have the same phases in (a), and the oscillators belonging to each
plane have the same phases in (b). Arrows are continually shifted
upward by 2π/L starting from the bottom value 0. (c) Schematic
diagram of 2 × d = 4 numbers of different patterns of (q = 1)-
twisted states for a fixed coordinate system (dotted arrows) in a
two-dimensional hypercubic lattice with L = 3. The phase of each
oscillator is denoted by the corresponding color of the palette on the
left. Solid arrows are continually shifted upward by 2π/L starting
from the bottom value 0. (a–c) We note that links between pairs of
nodes on opposite sides are omitted.

By translating and rotating the coordinate axes (renum-
bering the nodes following the rule in the last paragraph of
Sec. II), we can formulate these states as

φ∗
i =

(
2πq

L

⌊
i − 1

Ld−1

⌋
+ C

)
mod 2π (4)

for any constant C with non-negative integer q � 0, where
	x
 denotes the integer part of a given number x. We note
that the xd axis is used for the direction of non-negative
winding number q. We consider 0 � q � 	L/2
 by using
the restriction of the phase difference (2πq/L) ∈ [0, π ]. We
call these states q-twisted states (in d-dimensional hypercubic
lattices) because these states can be reduced to q-twisted
states on a ring of size L if we regard each subset of phase-
synchronized oscillators as one single oscillator with the same
phase. A schematic diagram for these states with q = 1 is
shown in Figs. 1(a) and 1(b). We remark that all 2 × d

numbers of different patterns with the same q > 0 value for
a fixed coordinate system driven by rotational and reflectional
symmetry are regarded as q-twisted states [Fig. 1(c)].
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FIG. 2. Two configurations of numerically obtained (q = 1)-
twisted states for (a) d = 2 and (b) d = 3 of L = 10. Numerically
measured basin stability of the twisted states of (c) q = 0 and
(d) q = 1 for both d = 2 and d = 3 for various N . We use 105

random initial conditions with K = 5.0 for each N . We note that
the result for a single K value is sufficient because K changes the
timescale only in Eq. (2).

We show that the q-twisted state of the form Eq. (4)
is a fully phase-locked state of Eq. (2) in general
d-dimensional hypercubic lattices. This can be proved by
inserting this form directly into the right-hand side of
Eq. (2), which gives Ksin(φ∗

i+Ld−1 − φ∗
i ) + Ksin(φ∗

i−Ld−1 −
φ∗

i ) = Ksin(2πq/L) − Ksin(2πq/L) = 0.
Then we show that this state is linearly stable for L > 4q.

For small deviations from the twisted state, φi = φ∗
i + δφi ,

the rate equation for δφi up to linear order is derived as

δφ̇i =
∑

j

Jij δφj , (5)

where Jacobian matrix Jij ≡ ∂φ̇i

∂φj
|
φ=φ∗

is given as

Jij =
{

−K
∑N

k=1 Aikcos(φ∗
k − φ∗

i ) if j = i,

KAij cos(φ∗
j − φ∗

i ) if j �= i.
(6)

To investigate the linear stability of the twisted state, we
obtain the eigenvalues of the Jacobian matrix. For L > 4q,
we find that all eigenvalues are negative except for one
zero, which is related to perturbation within the manifold.
Therefore, the twisted state is linearly stable for L > 4q. For
L = 4q, multiplicity of the zero eigenvalue is larger than one,
and the other eigenvalues are negative, which means that the
twisted state is neutrally stable. For L < 4q, we find that some
eigenvalues are positive, and thus the twisted state is unstable
[25,26] (see Sec. 1 in the Appendix).

We observe twisted states of q = 1 for d = 2 and 3
by numerical simulations for randomly given initial phases
φi (0) ∈ [0, 2π ) for ∀i, as shown in Figs. 2(a) and 2(b). To
confirm that the emergence of these twisted states is not the
result of particular choices of initial phases, we measure the
fraction of random initial conditions that induces the twisted
states (referred to as the basin stability of the twisted states
[27]); specifically, we begin with a set of random initial

phases φi (0) ∈ [0, 2π ) for ∀i for each configuration. We test a
large number of configurations by changing the initial phases
for different configurations, and then obtain the fraction of
configurations that arrives at the q-twisted states (basin sta-
bility of the q-twisted states) for each q value separately.
The results for q = 0 and q = 1 are shown in Figs. 2(c) and
2(d), respectively. We could not observe the twisted states for
1 < q < L/4 numerically, even though the states are linearly
stable. This might be because the basin stability of the q-
twisted states for 1 < q < L/4 are so small.

It should be noted that, for the emergence of twisted
states, each pair of oscillators on opposite sides should be
synchronized, and therefore the periodic boundary conditions
here are important because they allow for direct coupling
between the oscillators in each pair.

Now, we are curious about the spontaneous synchroniza-
tion of the oscillators in each line (d = 2) or in each plane
(d = 3), which seems unnatural considering the rotational
symmetry of the hypercubic lattice. We find that, in fact,
such patterns originate from the translational symmetry of
the hypercubic lattice [28]. More precisely, we use automor-
phism, which is a permutation of the nodes preserving the
adjacency matrix. In Refs. [29–32] it was reported that each
set of nodes that permute to each other by an automorphism
(mathematical) group can be synchronized. Based on such
results, we show that synchronization of each line (plane)
requires the synchronizations of all the others, such that every
line (plane) is synchronized at the same time (see Sec. 2 in the
Appendix). Therefore, we expect that twisted states would be
observed in other lattices that include translational symmetry,
for example, hypercubic lattices for d > 3.

IV. NONIDENTICAL OSCILLATORS

In this section, we consider the Gaussian distribution func-
tion g(ω) with zero mean and arbitrary variances. We choose
ωi randomly from a certain g(ω). To be specific, we choose a
set {ωi}1�i�N for the given g(ω) and N by using the relation

σ̃ (i) = 1

2
+ N

∫ ωi

−∞
g(ω) dω, (7)

where σ̃ is a random permutation of the set {1, 2, . . . , N}.
This method gives

∑N
i=1 ωi = 0 exactly [33].

A. Winding number of a cycle

To find the winding number of a cycle, we consider
an arbitrary cycle denoted by c of length n in the given
network structure. The sequence of nodes of cycle c is
given by (c0, . . . , cn−1). Then the winding number of c

is given by q(c) = (2π )−1 ∑n−1
i=0 �i+1,i , where �i+1,i =

(φci+1 − φci
) mod 2π ∈ (−π, π ] with cn ≡ c0. For dynamical

systems with Eq. (1), q(c) must be an integer [23].

B. States with nonzero winding numbers along only one axis for
d = 2 and 3

For a d-dimensional hypercubic lattice with periodic
boundary conditions composed of nonidentical oscillators, we
again consider the coordinate system introduced in Sec. II.
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FIG. 3. Data for a two-dimensional hypercubic lattice of L = 10
for a randomly given set {ωi}1�i�N with unit variance, obtained by
numerically integrating Eq. (1) up to t = 103. (a) φi vs i for a numer-
ically obtained state with (q1, q2) = (1, 0). (b) Confirmation that the
state in panel (a) is a fully phase-locked state. (c) Average value of R

over the numerically obtained states for pairs (q1, q2) = (0, 0) (�),
(1, 0) (�), (−1, 0) (�), (0, 1) (�), and (0,−1) (�) for each value of
K . In the range of K to the left of the vertical dotted line, we cannot
obtain any fully phase-locked states. (d–f) Numerically measured
basin stabilities of states for pairs (d) (q1, q2) = (0, 0), (e) (±1, 0)
and (0, ±1), and (f) other states using 104 random initial conditions
for each value of K . The inset in panel (d) is an enlarged plot of R vs
K in the main panel. The symbols in panels (d) and (e) are the same
as in panel (c) to denote (q1, q2).

For d = 2 and 3, we observe fully phased-locked states that
show the same behavior as the (q = 1)-twisted states from
the perspective of winding numbers. However, each φi in
these states is slightly perturbed from Eq. (4) in general by
the heterogeneous natural frequencies. We demonstrate these
states in d = 2 and d = 3 lattices separately.

For d = 2, we fix a two-dimensional coordinate system
and then use notations c(x1,0) and c(0,x2 ) for the cycles with
sequences of nodes (c(x1,0)

x2
)L−1
x2=0 and (c(0,x2 )

x1
)L−1
x1=0. Here both

c(x1,0)
x2

and c(0,x2 )
x1

denote the node at location (x1, x2). There-
fore, each cycle c(x1,0) can be regarded as a sequence of nodes
reachable from (x1, 0) using links along the x2 axis. Similarly,
each cycle c(0,x2 ) can be regarded as a sequence of nodes
reachable from (0, x2) by paths along the x1 axis. We note that
each sequence in c(x1,0) and c(0,x2 ) forms a cycle by a link con-
necting the two ends from the periodic boundary conditions.

FIG. 4. Data for a three-dimensional hypercubic lattice of L =
10 for a randomly given set {ωi}1�i�N with unit variance, ob-
tained by numerically integrating Eq. (1) up to t = 5 × 102. (a) φi

vs i for a numerically obtained state with (q1, q2, q3) = (1, 0, 0).
(b) Confirmation that the state in (a) is a fully phase-locked
state. (c) Average value of R over the numerically obtained
states for (q1, q2, q3) = (0, 0, 0) (�), (1, 0, 0) (�), (−1, 0, 0) (�),
(0, 1, 0) (�), (0, −1, 0) (�), (0, 0, 1) (�), and (0, 0, −1) (�) for
each value of K . In the range of K to the left of the vertical dotted
line, we cannot obtain any fully phase-locked states. Inset: Enlarged
plot of R vs K in the main panel. (d–f) Numerically measured basin
stabilities of states for (d) (q1, q2, q3) = (0, 0, 0), (e) (±1, 0, 0),
(0,±1, 0), and (0, 0, ±1), and (f) other states using 104 random
initial conditions for each value of K . The inset in panel (d) is an
enlarged plot of R vs K in the main panel. The symbols in panels (d)
and (e) are the same as in panel (c) to denote (q1, q2, q3).

We observe fully phase-locked states where q(c(x1,0)) = q1

for ∀x1 and q(c(0,x2 ) ) = q2 for ∀x2 for five different pairs:
(q1, q2) = (0, 0), (±1, 0), and (0,±1). Interestingly, for d =
2, (q1, q2) = (0, 0) is a characteristic of the (q = 0)-twisted
states, while the other four pairs are characteristics of the
(q = 1)-twisted states. We measure the basin stability of the
states in each (q1, q2) pair separately for a randomly given set,
{ωi}1�i�N , as shown in Fig. 3. The numerical results support
that each pair can be observed when K is larger than each
critical value of K . We obtained similar results for 10 different
randomly given sets {ωi}1�i�N .

For d = 3, we fix a three-dimensional coordinate system
and then use notations c(x1,x2,0), c(x1,0,x3 ), and c(0,x2,x3 ) for the
cycles with sequences of nodes (c(x1,x2,0)

x3
)L−1
x3=0, (c(x1,0,x3 )

x2
)L−1
x2=0,

and (c(0,x2,x3 )
x1

)L−1
x1=0, respectively. Here c(x1,x2,0)

x3
, c(x1,0,x3 )

x2
, and
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FIG. 5. φi (•) near φ∗
i (dotted line) of states with (q1, q2) =

(1, 0) in a line in a two-dimensional lattice of L = 10 for (a)
changing sω with fixed K = 5.0 and (b) changing K with fixed
sω = 1.0. The height of each circle denotes φi of corresponding i,
with the same scale for the difference of φ to the corresponding
difference of height used for all pairs of (sω, K ) in panels (a) and
(b). We find that deviation from the straight form increases as sω

increases for fixed K in (a), while it decreases as K increases for
fixed sω in panel (b). Note that the dotted line for sω = 0 in panel (a)
is hidden because φi = φ∗

i exactly. (c, d) Numerically obtained (c)
sδφ vs sω for fixed K = 5.0, and (d) sδφ vs K for fixed sω = 1.0. In
both panels (c) and (d), a two-dimensional lattice of L = 10 is used.
Solid lines are eye guides to show the relation sδφ ∝ sω/K .

c(0,x2,x3 )
x1

denote the node at location (x1, x2, x3). We ob-
serve fully phase-locked states where q(c(x1,x2,0)) = q1 for
∀x1, x2, q(c(x1,0,x3 ) ) = q2 for ∀x1, x3, and q(c(0,x2,x3 ) ) = q3

for ∀x2, x3 for seven different sets: (q1, q2, q3) = (0, 0, 0),
(±1, 0, 0), (0,±1, 0), and (0, 0,±1). Similar to the previous
case, (q1, q2, q3) = (0, 0, 0) is a characteristic of the (q = 0)-
twisted states for d = 3, while the other six sets are charac-
teristics of the (q = 1)-twisted states. We measure the basin
stability of the states in each (q1, q2, q3) set separately for a
randomly given set {ωi}1�i�N , with results shown in Fig. 4.
The numerical results again support that each set can be
observed when K is larger than each critical value of K . We
obtained similar results for 10 different randomly given sets
{ωi}1�i�N .

In contrast to Figs. 2(a) and 2(b), where φi vs i of
each (q = 1)-twisted state shows a clear shape, which looks
like evenly spaced stairs, φi vs i of the states composed
of nonidentical oscillators with (q1, q2) = (1, 0) in Fig. 3(a)
and (q1, q2, q3) = (1, 0, 0) in Fig. 4(a) have roughness. We
ascertain that the slightly heterogeneous phases in each line
[Fig. 3(a)] and plane [Fig. 4(a)] of the two states originate
from the heterogeneity of the natural frequencies.

We now consider small deviations from the q-twisted state
given by δφi = φi − φ∗

i with |δφi |  1 for ∀i . Then δφi in a
fully phase-locked state (i.e., φ̇i = δφ̇i = 0 for ∀i) follows

ωi = −
N∑

j=1

Jij δφj . (8)

This allows us to show that sδφ ∝ sω/K analytically, where
sx is the standard deviation of the set {xi}1�i�N . Here

sδφ =
√∑N

i=1 δφ2
i /N by using the constraint

∑N
i=1 δφi = 0,

because
∑N

i=1 δφi can have any value by the singularity of
the Jacobian matrix (see Sec. 3 in the Appendix). We note
that sω =

√∑N
i=1 ω2

i /N by
∑N

i=1 ωi = 0, which is the result
of Eq. (7). This result supports that roughness arises due to
the heterogeneity of the natural frequencies. We check sδφ ∝
sω/K via numerical simulation as shown in Fig. 5.

The result of the preceding paragraph claims that states
with (q1, q2) = (±1, 0), (0,±1) for d = 2 and (q1, q2, q3) =
(±1, 0, 0), (0,±1, 0), (0, 0,±1) for d = 3 would become
(q = 1)-twisted states as K → ∞ for a fixed sω. Twisted
states of q > 0 have R = 0 exactly; consequently, R of the
states with these pairs of (q1, q2) and sets of (q1, q2, q3)
decrease to zero, as seen in Fig. 3(c) and Fig. 4(c).

V. SUMMARY

In summary, we studied a Kuramoto model [Eq. (1)] in
two- and three-dimensional hypercubic lattices with periodic
boundary conditions. For identical oscillators in two (three)
dimensions, we observed fully phase-locked states where
oscillators in each line (plane) are phase synchronized, and
the phase of each line (plane) is constantly shifted by 2π/L

from that of its preceding line (plane) along the perpendic-
ular axis. For heterogeneous, natural frequencies given by a
Gaussian distribution function, similar patterns with slightly
heterogeneous phases in each line (plane) were observed in
two (three) dimensions. We measured the basin stability of
these states and conclude that such states generally appear
when K is larger than their critical values of K .

In a previous study [17], the same system was studied using
the “annealed or adiabatic” initial condition. Initial phases in
such a condition for each K are not given randomly, but rather
the phases of the steady state of the preceding K value are
used successively. Therefore, the states found in this current
work may not have been observed.
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APPENDIX

1. Spectral properties of the Jacobian matrix to explain that the
q-twisted state is stable only when L > 4q

In this section we derive some spectral properties of the
Jacobian matrix to determine whether the q-twisted state is
linearly stable or not depending on L. We can obtain the Ja-
cobian matrix for the twisted states by applying the definition
Jij ≡ ∂φ̇i

∂φj
|
φ=φ∗ to Eq. (2), as

Jij ≡ ∂φ̇i

∂φj

∣∣∣∣
φ=φ∗

= ∂

∂φj

[
K

N∑
k=1

Aiksin(φk − φi )

]∣∣∣∣
φ=φ∗

= K

N∑
k=1

Aikcos(φk − φi )(δkj − δij )

∣∣∣∣
φ=φ∗
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= KAij cos(φ∗
j − φ∗

i ) − δijK

N∑
k=1

Aikcos(φ∗
k − φ∗

i )

=
{

−K
∑N

k=1 Aikcos(φ∗
k − φ∗

i ) if j = i,

KAij cos(φ∗
j − φ∗

i ) if j �= i.
(A1)

From Eq. (A1), we can confirm that Jij = Jji , or in other
words, J is a real symmetric matrix. Therefore, J is orthogo-
nally diagonalizable. In order to investigate the linear stability
of the q-twisted state, we need to obtain some information on
the eigenvalues of the Jacobian matrix.

a. Nonpositive eigenvalues in the Jacobian matrix for L � 4q

We show that the Jacobian matrix for L � 4q is a
negative semidefinite matrix whose eigenvalues are non-
positive. The incidence matrix M is a Nd × N matrix
whose elements are Mei =

√
KAij cos(φ∗

j − φ∗
i ) and Mej =

−
√

KAij cos(φ∗
j − φ∗

i ) if e connects two nodes i and j but 0
otherwise. From the definition of the incidence matrix, we can
derive

[M�M]ii =
Nd∑
e=1

(Mei )
2 =

N∑
j=1

KAij cos(φ∗
j − φ∗

i ) = −Jii ,

[M�M]ij =
Nd∑
e=1

MeiMej = −KAij cos(φ∗
j − φ∗

i ) = −Jij .

(A2)

From Eq. (A2), J = −M�M. If we use vi and λi for
the ith eigenvector and eigenvalue of J, Jvi = λivi for i =
1, . . . , N . Here vi are real vectors and λi are real values
because J is orthogonally diagonalizable. Then λi = v�

i Jvi =
−v�

i M�Mvi = −|Mvi |2 � 0 for ∀i when L � 4q. We re-
mark that this is not applicable for L < 4q (i.e., L/4 < q �
	L/2
) because some elements of M,

√
Kcos(2πq/L) are

imaginary numbers. Therefore, J for L � 4q is a negative
semidefinite matrix and its eigenvalues are nonpositive.

b. Zero eigenvalue of multiplicity one for L > 4q and multiplicity
L for L = 4q in the Jacobian matrix

In this subsection, we consider negative semidefinite ma-
trix J for L � 4q. J has at least one eigenvalue of 0 related
to stability for the perturbation of constant phase shifts for
all oscillators. Therefore, the twisted state is stable if the
multiplicity of eigenvalue 0 is one, but the twisted state is
neutrally stable if the multiplicity of eigenvalue 0 is larger than
one. We show that the twisted state is stable for L > 4q and
neutrally stable for L = 4q by investigating the multiplicity
in each case.

For the analysis, we decompose the hypercubic lattice into
two subnetworks whose adjacency matrices are denoted by
A(1) and A(2). The first subnetwork consists of 2(d − 1)N
number of links parallel to the xd ′ axis for 1 � d ′ � d − 1,
and the second subnetwork consists of the other 2N number
of links parallel to the xd axis. Then J is decomposed into two
terms as

J = −KL(1) − Kcos

(
2πq

L

)
L(2), (A3)

where L(1) and L(2) are the Laplacian matrices of A(1) and
A(2), respectively.

When L = 4q, the Jacobian matrix is reduced to J =
−KL(1). It is known that the multiplicity of the eigenvalue
0 in a Laplacian matrix is equal to the number of connected
components in the given network. The number of connected
components in A(1) is L, which clarifies that the multiplicity
of eigenvalue 0 is L = 4q. Therefore, the twisted state for
L = 4q is neutrally stable.

On the other hand, when L > 4q we show that the mul-
tiplicity of eigenvalue 0 is one by way of contradiction.
We assume that eigenvalue 0 has two linearly independent
eigenvectors v1 and v2. Then

0 = v�
1 Jv1 = −v�

1

[
KL(1) + K cos

(
2πq

L

)
L(2)

]
v1

= −Kv�
1 L(1)v1 − K cos

(
2πq

L

)
v�

1 L(2)v1

= −K

2

N∑
i,j=1

A
(1)
ij (v1i − v1j )2

− K

2
cos

(
2πq

L

) N∑
i,j=1

A
(2)
ij (v1i − v1j )2 = 0. (A4)

Since each term in the summations is positive, i.e., v1 is a real
vector because J is orthogonally diagonalizable, each term
should be zero. Thus, v1i = v1j for ∀i,j because all the oscilla-
tors belong to one connected component for A = A(1) + A(2).
In the same way, we can obtain v2i = v2j for ∀i,j , which tells
us that v2 is a scalar multiplication of v1. This violates the
assumption that v1 and v2 are linearly independent, thereby
proving that multiplicity of eigenvalue 0 is one for L > 4q.
Therefore, the twisted state for L > 4q is stable.

c. Positive eigenvalues in the Jacobian matrix for L < 4q

In this subsection, we show that at least (L − 1) eigenval-
ues of J for L < 4q are positive. We consider N × 1 column
vectors v(	) (	 = 0, . . . , L − 1) where v

(	)
i = 1/

√
Ld−1 if

	(i − 1)/Ld−1
 = 	 and 0 otherwise. v(	) is parallel to the di-
rection of the constant phase shifts of the nodes in the 	th syn-
chronized subset. Then Jv(	) = −Kcos(2πq/L)L(2)v(	) =
Kcos(2πq/L)(v(	+1) − 2v(	) + v(	−1)) with v(L) ≡ v(0) and
v(−1) ≡ v(L−1).

An L × L matrix J̃(2) given by

J̃ (2)
mn =

⎧⎪⎨
⎪⎩

−2Kcos
( 2πq

L

)
if n = m,

Kcos
( 2πq

L

)
if n = 1 + (m ± 1)modL

0 otherwise

(A5)

is orthogonally diagonalizable for an orthogonal matrix
U, such as U�J̃(2)U = � where Λmn = λnδmn. Without a
loss of generality, we set the first eigenvalue to λ1 =
0 by fixing the first column of U as Um1 = 1√

L
. Here

J̃(2) = −Kcos(2πq/L)L̃(2) for the Laplacian matrix of a
ring of length L denoted by L̃(2). By the property of
the Laplacian matrix, L̃(2) has one zero eigenvalue, and
all the other eigenvalues are positive. Therefore, λn > 0
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(1 < n � L) for L < 4q. Finally, J(
∑L

m=1 Umnv(m−1)) =
λn(

∑L
m=1 Umnv(m−1)), which means that

∑L
m=1 Umnv(m−1) is

an eigenvector of J with the eigenvalue λn. Therefore, at least
(L − 1) positive eigenvalues (i.e., λn for 1 < n � L) of J
exist.

2. Symmetry-inducing synchronization of subsets in
the twisted states

In this section, we analyze the relation between the auto-
morphism and synchronization of the subset of oscillators in
the twisted states for both two and three dimensions in more
detail.

For d = 2, we consider a permutation of nodes σ given by

σ (i) =
{

i − L + 1 if i mod L = 0,

i + 1 otherwise.
(A6)

Under this permutation, the adjacency matrix is preserved
(i.e., Aij = Aσ (i)σ (j )), which means that σ is an automorphism
for d = 2. Then we can construct the group G = 〈σ 〉 gener-
ated by σ . The orbit of i operated by G, denoted by ϕ(G, i),
is defined as ϕ(G, i) = {σ̃ (i)|σ̃ ∈ G}. By the property of the
group, it is guaranteed that ϕ(G, i) = ϕ(G, j ) for all j ∈
ϕ(G, i). Here ϕ(G, i) is the subset of oscillators belonging
to the same line with i, and all oscillators in the lattice are
partitioned into a unique set of orbits {ϕ(G, 1), ϕ(G,L +
1), . . . , ϕ(G,L(L − 1) + 1)} = {ϕ1, . . . , ϕ	, . . . , ϕL} by G.
Here reduced notation ϕ	 denotes the subset of oscillators in
the 	th orbit, which is the same as the subset of oscillators in
the 	th line.

For d = 3, we consider two automorphisms σ1 and σ2

given by

σ1(i) =
{

i − L + 1 if imodL = 0,

i + 1 otherwise

and

σ2(i) =
{

i − (L − 1)L if {1 + (i − imodL)/L}modL = 0,

i + L otherwise.

For the group G = 〈σ1, σ2〉 generated by σ1 and σ2, all
oscillators in the lattice are partitioned into a unique set of
orbits {ϕ(G, 1), ϕ(G,L2 + 1), . . . , ϕ(G,L2(L − 1) + 1)} =
{ϕ1, . . . , ϕ	, . . . , ϕL} by G, where ϕ	 is the same as the subset
of the oscillators in the 	-th plane. In both dimensional cases,
we consider general states where φi = s	 for ∀i ∈ ϕ	 (	 =
1, . . . , L). Then an arbitrary i ∈ ϕ	 follows the equation

ṡ	 = Ksin(s	+1 − s	) + Ksin(s	−1 − s	). (A7)

This means that each subset of oscillators can be synchronized
when all the other subsets are synchronized. In this way,
symmetry can explain the simultaneous synchronizations of
all subsets.

3. Derivation of sδφ ∝ sω/K

In this section, we derive sδφ ∝ sω/K starting from ω =
−Jδφ [Eq. (8)], where Eq. (8) is represented by using the
vectors ω = (ω1, . . . , ωN )� and δφ = (δφ1, . . . , δφN )�. We

consider J for L > 4q. J is orthogonally diagonalizable for
an orthogonal matrix U, such as U�JU = �, where Λij =
λiδij and λi is the ith eigenvalue of J. We showed that only
one zero eigenvalue exists for J with L > 4q in Sec. 1 b
of the Appendix. Without a loss of generality, we set the
first eigenvalue to λ1 = 0 and λi �= 0 for i > 1. Under these
conditions, the first column of U is fixed as Ui1 = 1√

N
.

From ω = −Jδφ, we can derive U�ω = −�U�δφ by
U� = U−1, which comes from the orthogonality of U. This
equation can be written componentwise as

[U�ω]i = −λi[U�δφ]i . (A8)

For i = 1, Eq. (A8) can be written as
∑

j ωj = −λ1
∑

j δφj .
Therefore,

∑
j δφj can have any value because

∑
j ωj = 0

and λ1 = 0. This property might be given by the singularity
of J. We use constraint

∑
j δφj = 0 for later use. In fact, we

checked whether ω = −Jδφ is solvable by using the pseudo-
inverse property of J, with the result giving a comparable
solution with the numerical data under this constraint.

For i > 1 with λi �= 0, Eq. (A8) can be transformed
into −[U�ω]i/λi = [U�δφ]i . By using δφ�δφ =
(U�δφ)�(U�δφ), we can derive the relation between sδφ

and ω as

sδφ =
√√√√ 1

N

N∑
i=1

δφ2
i

=
√√√√ 1

N

N∑
i=1

[U�δφ]2
i

= 1√
N

√√√√ N∑
i=2

1

λ2
i

[U�ω]2
i + 1

N

(
N∑

i=1

δφi

)2

= 1√
N

√√√√ N∑
i=2

1

λ2
i

[U�ω]2
i . (A9)

For the last step, we use the constraint
∑N

i=1 δφi = 0.
For an arbitrary random permutation σ̃ in Sec. IV, we

change sω for a fixed σ̃ . Then, ω is a function of σ̃ and sω

given by ω(σ̃ , sω ) = sωω(σ̃ , 1). If we average Eq. (A9) over
all permutations σ̃ , the righthand side is represented as

sδφ = 1√
N

〈√√√√ N∑
j=2

1

λ2
j

[U�ω(σ̃ , sω )]2
j

〉
σ̃

= 1√
N

〈√√√√ N∑
j=2

1

λ2
j

[U�sωω(σ̃ , 1)]2
j

〉
σ̃

= sω√
N

〈√√√√ N∑
j=2

1

λ2
j

[U�ω(σ̃ , 1)]2
j

〉
σ̃

∝ sω

K
(A10)

for fixed N . Ultimately, we use λi = Kλi for ∀i where λi is
the ith eigenvalue of J for K = 1. Accordingly, we derived the
relation sδφ ∝ sω/K , which we numerically checked as shown
in Fig. 5.
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