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Selection and control of pathways by using externally adjustable noise
on a stochastic cubic autocatalytic chemical system
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We investigate the effect of noisy feed rates on the behavior of a cubic autocatalytic chemical reaction model.
By combining the renormalization group and stoichiometric network analysis, we demonstrate how externally
adjustable random perturbations (extrinsic noise) can be used to select reaction pathways and therefore control
reaction yields. This method is general and provides the means to explore the impact that changing statistical
parameters in a noisy external environment (such as noisy feed rates and fluctuating reaction rates induced by
noisy light) has on chemical fluxes and pathways, thus demonstrating how external noise may be used to control,
promote, direct, and optimize chemical progress through a given reaction pathway.
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I. INTRODUCTION

It is well known that fluctuations and noise can affect the
behavior of various systems, from running coupling constants
in high-energy particle physics (e.g., [1]) to phase transitions
in condensed matter physics (e.g., [2]) and noise-induced
transitions in complex systems (e.g., [3,4]). In particular,
noise can affect the dynamics of chemical reactions. For
example, it has been shown that external mechanical noise
(shaking vs stirring) changes the output of chemical replicator
reactions [5] and that coherence resonance can be induced in
the Belousov-Zhabotinsky (BZ) reaction by external colored
noise [6,7].

Systems undergoing chemical reactions offer a promising
and fertile field where selection effects due to external noise
can be tested, observed, and refined for specific purposes
in mind. The realm of complex chemical phenomena that
could be manipulated and controlled in this way with external
noise includes sustained chemical oscillations [6–9], pattern
formation [10,11], excitable dynamics and front propagation
[12–15], or any nonlinear chemical systems where the number
of constituents is sufficiently large so as to allow smooth
concentrations to be defined [16].

The purpose of this paper is to demonstrate how external
experimentally adjustable noise can be used to control and
select chemical pathways [17]. By adjustable noise we mean
any external condition on a chemical system (feed rate, il-
lumination, etc.) that can be varied in a stochastic manner,
and for which the statistical properties (amplitude, spectral
exponent, etc.) can be varied experimentally. Applying light
to the photosensitive dioxide-iodine-malonic acid reaction in
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order to induce the disappearance of Turing structures is only
one example of the above [18]. These stochastic variations in
external conditions induce fluctuations in the chemical con-
centrations, which manifest as noise-dependent modifications
of the chemical kinetics. We illustrate our method using a
cubic autocatalytic reaction subjected to a noisy feed rate
with Gaussian power-law statistics, but the method developed
here is general and can be applied to other chemical systems
subjected to other types of noise.

To demonstrate how chemical pathways can be selected
using noise, we combine stoichiometric network analysis
(SNA) with the dynamic renormalization group (RG). SNA is
a powerful algebraic method used to study both the dynamics
and stationarity properties of chemical reactions [19–21]. The
pathway architecture and topology of any chemical reaction
network can be elucidated using SNA. The method is based on
convex analysis [22], and determines a unique set of extreme
currents or extreme flux modes (EFMs) which correspond to
the edges of a convex polyhedral flux cone in a Euclidean
reaction-rate space. Following this algebraic technique, all
possible stationary fluxes are then represented by positive
linear combinations of these cone edge vectors. SNA fur-
nishes an efficient method for determining the stability of
nonequilibrium steady states by focusing on the behavior
of steady-state reaction rates, their associated matter fluxes,
chemical pathways, and the extreme currents involving the
major subnetworks of the overall chemical mechanism.

The renormalization group allows us to compute and ex-
press the effect of fluctuations operating at shorter or longer
scales on a system as a nontrivial rescaling of the parameters
of the system. For chemical reactions, those parameters are
typically the decay rates (r) and reaction rates (λ). In the
context of SNA, the important parameters characterizing the
dynamics of the reaction (i.e., which chemical pathway is
predominant) are the inverse stationary concentrations (h) and
the convex parameters (j ). These latter parameters represent
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the strength of the matter fluxes traversing a specific chemical
pathway. Noise affects both (h, j ), and the renormalization
group allows us to compute their scaling (or “running”) as a
function of the properties of the noise [23–27]. Thus the use
of the RG, taken as input for SNA, enables us to establish
a direct link between noise properties and the predominant
chemical pathways traversed by the noise-perturbed network
of reactions. In other words, if one or more of the model pa-
rameters (r, λ) run with scale (where the running is controlled
by the noise parameters), this will affect the strengths of the
chemical fluxes (j ) traversing the pathways, and we then have
evidence of noise-controlled fluxes.

II. THEORETICAL METHOD

A. Deterministic CAR model

To illustrate our method, we consider a simple well-known
spatially homogeneous cubic autocatalytic reaction (CAR)
model (e.g., [28,29]). The model has an interesting and rich
phenomenology when spatially heterogeneous states (rather
than only well-stirred, homogeneous states) are considered.
Indeed, simulations of the deterministic [30] and stochastic
[10] versions of this reaction-diffusion model reveal the ap-
pearance of a variety of patterns such as stripes, spirals, and
self-replicating domains. Due to its autocatalytic nature and
the appearance of self-replicating structures, this model is of-
ten taken as an extremely primitive form of proto-metabolism.

The CAR model involves the following reactions [29]:

U + 2V
λ→ 3V, (1)

V
rv→ P, (2)

U
ru→ Q, (3)

f→ U. (4)

A substrate U, viewed as the “nutrient” in the living system
interpretation of this model, is fed into the system at a constant
rate f . The species V, viewed as the “organism,” consumes the
substrate U and converts it into a copy of V via a second-order
autocatalytic reaction with rate constant λ. This autocatalytic
reaction embodies a crude form of proto-metabolism. In nu-
merical simulations in spatially extended systems, the species
V forms cell-like domains over the substrate U in a certain
parameter range [10,30–32]. Both species V and U decay into
inert products P and Q with decay rates rv and ru, respectively.
In a well-stirred system, the deterministic evolution equations
corresponding to reactions (1)–(4) are

dV (t )

dt
= −rvV (t ) + λU (t )V 2(t ), (5)

dU (t )

dt
= −ruU (t ) − λU (t )V 2(t ) + f, (6)

where V (t ) and U (t ) represent the time-dependent concentra-
tions of species V and U.

B. Stoichiometric network analysis of the CAR model

The stoichiometric network analysis of the CAR model
results as follows (see Appendix A for a concise introduction

TABLE I. Elementary flux modes (EFMs) for the well-mixed
CAR model [see Eqs. (1)–(4)] and their corresponding reaction
pathways and internal species. The magnitude of the matter flux
along each pathway is given by the corresponding convex parameter:
j1 > 0, j2 > 0; see Eq. (9).

EFM Reactions Pathway Internal species Net reaction

E1 (4) f → U U f → Q

(3) U → Q

E2 (4) f → U V,U f → P

(1) U + 2V → 3V

(2) V → P

to SNA). The stoichiometric matrix and extreme flux modes
corresponding to the four reactions (1)–(4) are given by

S =
[−1 0 −1 1

1 −1 0 0

]
, (7)

E1 = (0, 0, 1, 1), E2 = (1, 1, 0, 1). (8)

These EFMs satisfy S · E1,2 = 0, and belong to the intersec-
tion of the right null space of S with the positive orthant R4

+.
These extreme fluxes involve the two elementary chemical
pathways of reactions (1)–(4). These are made explicit in Ta-
ble I and schematically shown in Fig. 1. A general stationary
reaction rate vector v, for the four reactions, is represented as a
point in R4

+, and is expressed as a positive linear combination
of these EFMs:

v = j1 E1 + j2 E2 = (j2, j2, j1, j1 + j2). (9)

The expansion coefficients ji > 0 are the convex parameters,
and correspond to the magnitudes of the matter fluxes along the
specific reaction pathway represented by Ei . As we demon-
strate below, these fluxes can undergo renormalization due
to external noise. From Eqs. (1)–(4) we write the individ-
ual stationary-state (ss) reaction rates as a four-component
vector:

v = (
λ[U ]ss[V ]2

ss , rv[V ]ss , ru[U ]ss , f
)
. (10)

FIG. 1. The two reaction pathways of the CAR model (see also
Table I). The bounding box encloses a well-mixed system with input
and output flows maintaining the reactions out of equilibrium. The
lower pathway (blue) involves reactions (4) and (3), while the upper
pathway (orange) involves the reactions (4), (1), and (2); see Table I
for details. An observer external to the enclosure detects only the net
transformations f → Q and f → P .
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Equating the above two stationary-state vectors (9) and (10)
and introducing the stationary inverse concentrations h1, h2

(where h1 = hu = 1/[U ]ss and h2 = hv = 1/[V ]ss) implies

λ = j2huh
2
v, rv = j2hv, ru = j1hu, f = j1 + j2. (11)

Below we use the above identities to deduce the scale-
dependent running of the SNA parameters (j1, j2, h1, h2)
in terms of the running of the CAR model parameters
(ru, rv, λ, f ).

C. Renormalization of the stochastic CAR model

To study the effect of external noise on chemical pathways,
we add noise terms ηv (t ), ηu(t ) to the deterministic equations
(5) and (6). For illustrative purposes, we choose a noise
that is widespread in nature, namely power-law noise [33,34]
obeying the following statistics (in Fourier space):

〈ηv (ω)ηv (ω′)〉 = 2Av|ω/ωv|−θv (2π )δ(ω + ω′), (12)

〈ηu(ω)ηu(ω′)〉 = 2Au|ω/ωu|−θu (2π )δ(ω + ω′), (13)

with all other moments zero. The amplitudes Av , Au, expo-
nents θv , θu, and inverse timescales ωv , ωu are free parameters
of the noise that can be adjusted experimentally. Note that
other types of experimentally adjustable noise could also be
envisaged.

The addition of fluctuations to the CAR model translates
into a nontrivial scaling (or “running”) of its parameters. The
renormalization group allows us to compute this nontrivial
scaling (see for example Refs. [35,36] for the application of
RG to stochastic processes). Note that the exponents θv , θu are
fixed by external experimental conditions, leading to loop in-
tegrals with various divergence structures. Thus caution must
be exercised when applying dimensional regularization to
loop integrals involving power-law noise terms with arbitrary
power-law exponents. Here we follow the program developed
in Refs. [25–27] to compute the running of the stochastic CAR
model’s parameters with scale.

For the purpose of illustration, we focus on the regime
where −3/2 < θu,v � −1. In this regime, and at one-loop
order, only ru and rv develop a logarithmic divergence and
run with scale. Details of the computation are shown in
Appendices B–D. The result for ru(T ) is [a similar but
more complicated expression for rv (T ) can be found in Ap-
pendix D]

ru(T ) =
[
ru(T ∗) + 4λAvK1

|δ|ω−θv
v

](
T

T ∗

)|δ|
− 4λAvK1

|δ|ω−θv
v

, (14)

where K1 = 1/[(4π )(θv+2)/2�((θv + 2)/2)], δ is the distance
from the logarithmic pole, and ru(T ∗) is a known value of the
decay rate at some reference temporal scale T ∗.

The RG analysis allows us to make the following points.
The deterministic CAR model (5) and (6) exhibits various be-
haviors (stable solutions, oscillatory solutions, etc. [29,37,38])
depending on the values of its parameters (ru, rv, λ, f ).
Adding noise alters the behavior of the deterministic CAR
model, and the renormalization group allows us to assess
quantitatively the extent of this change (provided perturbation
theory is valid, and that no “new chemistry” is encountered as

the temporal scale T is varied [39]). In practice, adding noise
to the CAR model makes its reaction rate and decay constants
dependent on the noise parameters (Au,Av, θu, θv, ωu, ωv )
and the temporal scale T . In other words, noise con-
verts the deterministic CAR model into an effective de-
terministic CAR model, with noise and scale dependent
parameters [40].

Note that the RG here is run from a large temporal
scale T ∗ to smaller temporal scales T � T ∗. The running
of model parameters can be controlled experimentally with
the noise in the following way. We first set the noise param-
eters (Av,Au, θv, θu) to certain values, and choose a large
frequency scale ω∗

v = 2π/T ∗. The values of the model pa-
rameters (ru, rv, λ, f ) for these values of the noise parameters
are the starting point of the running in Fig. 2(a). By experi-
mentally changing the noise parameter ω∗

v to a different value
ωv > ω∗

v , the number of frequency modes contributing to the
second-order moment in Eq. (12) changes. This effectively
implements the running in Fig. 2(a), going toward smaller
values of T = 2π/ωv .

III. RESULTS AND DISCUSSION

Typically model parameters (ru, rv, λ, f ) are not directly
observable. To make contact with experiments (which is the
primary goal of this paper), we apply SNA to this effec-
tive deterministic model, in order to see how noise affects
observable chemical pathways and the fluxes that traverse
them. To do that, we invert Eq. (11) in order to express the
SNA parameters (j1, j2, h1, h2) in terms of the CAR model
parameters (ru, rv, λ, f ):

j1 =
f −

√
f 2 − 4rur2

v

λ

2
, j2 =

f +
√

f 2 − 4rur2
v

λ

2
, (15)

h1 = 2ru

f −
√

f 2 − 4rur2
v

λ

, h2 = 2rv

f +
√

f 2 − 4rur2
v

λ

. (16)

The sign choice follows from a stability analysis of the steady-
state configurations in the CAR model, which imposes the
condition j1 < j2 (see Appendix E for details).

To obtain the running of the convex parameters (j1, j2) and
the inverse stationary concentrations (h1, h2) as a function of
ωv , we substitute Eqs. (14) into Eqs. (15) and (16) (note that
at one-loop order and for −3/2 < θv � −1, the reaction rate
λ and the feed rate f do not run; see Appendix C). Some
representative plots are shown in Fig. 2.

The decay rates (rv, ru) for V and U run as a function of
ωv , as shown in Fig. 2(a). As the noise frequency scale ωv

is increased, rv increases whereas ru decreases with respect
to their values ru(ω∗

v ) and rv (ω∗
v ) measured at some reference

frequency scale. Thus, from the point of view of an effective
deterministic CAR model, the “nutrient” species U tends to
survive longer but the replicating species V tends to decay
now more rapidly. Thus the behavior of the chemical system
(dictated by its parameters) depends on the characteristic
frequency scale ωv of the noise. This scale dependence is
absent in the absence of external noise.

The running in the decay constants (rv, ru) implies a run-
ning in the convex parameters (j1, j2) as shown in Fig. 2(b).
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(a)

(b)

(c)

FIG. 2. Running of the parameters ru, rv (a), j1, j2 (b), and h1, h2

(c) as a function of scale. Fixed parameters are ω∗
v = 0.1, ru(T ∗) =

0.5, rv (T ∗) = 0.6, λ = 1.0, f = 1.5, δ = 0.1. Dotted lines represent
the running without noise (Av = 0, trivial scaling), while full lines
represent the running with noise (Av = 0.001 �= 0).

We see that j2 decreases and j1 increases as ωv increases.
Thus according to Eq. (9), the matter flux traversing the
catalytic pathway E2 diminishes whereas the flux through the
“unproductive” pathway E1 increases as the noise frequency
scale is increased. From the point of view of an observer

outside the enclosing box in Fig. 1, increasing ωv would result
in a decrease of P with respect to Q.

There is a critical scale ωc
v at which the two effective

fluxes equalize j1(ωc
v ) = j2(ωc

v ) and above which they are
undefined. This feature follows from the relationships (15)
and (16) which develop imaginary parts whenever f 2 < 4rurv

λ
.

If the effective decay rates at large frequency scales grow
in magnitude such that they overwhelm the feed term f at
or above that scale, then the latter is unable to maintain
the system in a steady state, and so the SNA approach no
longer applies (SNA is only valid for stationary states). In
other words, the two nontrivial fixed points of Eqs. (5) and
(6) (which are equal to 1/h1 and 1/h2) become complex
when f 2 < 4rurv

λ
and thus do not correspond to any real

concentrations for which the system is stationary. This signals
the onset of a chemical instability, where the system goes from
a bistable regime where the system is either “alive” (V �= 0)
or “dead” (V = 0) to a single stable regime where the system
consists solely of a uniform distribution of nutrient U.

The inverse stationary state concentrations (h1, h2) also run
with the noise frequency scale ωv as shown in Fig. 2(c). Note
here that as ωv is increased, the observed decrease in h1 =
1/[V ]ss corresponds to an increase in the steady-state concen-
tration of species V. So there is relatively more V (replicating
species) at shorter timescales (greater concentrations) with
respect to the concentration at the reference frequency scale
ω∗

v . At the scale where the two inverse concentrations become
imaginary, the system goes from a bistable to a monostable
regime and effectively “dies.” In this case, from the point
of view of an observer outside the enclosing box in Fig. 1,
decreasing the noise frequency scale ωv would result in an
increase of P with respect to Q.

IV. CONCLUSIONS

We have demonstrated that external adjustable noise can
be used to control the directly observable matter fluxes that
traverse the reaction pathways in an overall reaction model
by combining the renormalization group with stoichiometric
network analysis. For the case of the CAR model treated
here, the fluxes along the driven autocatalytic pathway E2 and
along the driven unproductive flow-through pathway E1 can
be controlled. SNA predicts generally that the renormalization
of reaction model parameters implies an associated renor-
malization of the convex parameters (the flux magnitudes)
and the inverse stationary concentrations. The feasibility of
noise-controlled fluxes is thus expected in general complex
reaction networks coupled to external noise sources, and has
recently been reported for the BZ reaction [9].

The physicochemical interpretation of the results of this
paper opens the door to the extension and application in many
directions where optimization or selection of “chemical” path-
ways is naturally occurring or desirable (as an example, noise
control could be used to implement chemical logic gates
using the approach in Ref. [41]). This is due to the fact
that, depending on noise statistics, one can channel energy at
the molecular levels to processes where the external energy
selectively provided by the noise makes the system visit some
pathways more frequently than others, as opposed to the
situation without noise. A future direction for this research
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would be to try this technique in more complicated chemical
models, where it might be possible to shut down a pathway
or activate a previously nonaccessible one. This is a direct
consequence of the connection shown here between noise
parameters and stoichiometry. Potential practical applications
range from electrochemistry, systems chemistry, epidemiol-
ogy, immunology, and ecology to large-scale industrial pro-
cesses and environmental applications.
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APPENDIX A: STOICHIOMETRIC NETWORK ANALYSIS

We summarize the basic notions of the stoichiometric
network analysis needed in the present paper. A fuller de-
tailed account of SNA and a concise review are given in
Refs. [19,20]. The chemical reactions for r reactions and n

reacting species obeying mass-action kinetics can be written
as

α1j S1 + · · · + αnjSn

kj→ β1j S1 + · · · + βnjSn, j = 1, . . . , r,

(A1)

where the Si , 1 � i � n, are the chemical species and each
kj the reaction rate constant for the j th reaction. From the
coefficients in Eq. (A1) we construct the n × r stoichiometric
matrix S with elements:

Sij = βij − αij . (A2)

The reaction rate of the j th reaction, assuming mass action
kinetics, takes the form of a monomial:

vj (x, kj ) = kj

n∏
i=1

x
κij

i , (A3)

where κij = αij is the molecularity of the species Si in the
j th reaction, κ the n × r kinetic matrix. The xi = [Si] denote
concentrations and vj is the flux or reaction rate of the j th
reaction.

Dynamic mass balance equations for the system shown in
Eq. (A1) can be written as (in vector notation)

dx
dt

= Sv. (A4)

Just as for the stoichiometry, the pathway structure should be
an invariant property of the reaction network. We can find this
from the steady-state condition:

0 = Sv, (A5)

which defines the right null space of S, and corresponds to the
set of all stationary-state (ss) solutions (v) of Eq. (A4). Since
the reaction rates in Eq. (A3) are positive-definite, they satisfy
vi (x, k) > 0, and therefore must belong to the intersection of
the null space Eq. (A5) with the positive orthant Rr

+:

v(xss, k) ∈ {z ∈ Rr |Sz = 0, z ∈ Rr
+} = ker(S)

⋂
Rr

+. (A6)

This intersection defines a convex polyhedral cone Cv

[22] spanned by a set of M minimal generating vectors Ei’s

FIG. 3. The convex cone Cv , where each orthogonal axis in the
positive orthant Rr

+ corresponds to one of the 1 � j � r stationary
reaction rates vj [see Eq. (A3)] and so satisfies Eq. (A5) and belongs
to the intersection Eq. (A6). The general stationary reaction rate can
be written in vector form, as a point in this cone: a linear combination
of the M cone edge vectors Ei with positive coefficients ji > 0. For
purposes of clarity, only four such edge vectors are drawn here.

(see Fig. 3):

Cv =
{

v =
M∑
i=1

ji Ei : ji > 0

}
. (A7)

These extreme currents or extreme flux modes (EFMs)
{Ei}Mi=1 are vectors having r components, equal to the number
of reactions [20]. The positive-definite expansion coefficients
ji > 0 are called the convex parameters. Programs, such as
COPASI, are freely available for calculating these extreme
currents [42].

Define hi = 1/(xss )i as the inverse of the stationary-state
concentration. Then conventional reaction rate constants can
be written in terms of the SNA variables (j, h) through the
identities [20]

kl =
(

M∑
i=1

ji Ei

)
l

n∏
i=1

(hi )
κil ⇒ kl = kl (j, h). (A8)

This follows immediately from Eqs. (A3) and (A7) and the
definition of hi . This general relation relates running in the
reaction rate constants (k) to running in the SNA variables
(j, h).

APPENDIX B: FEYNMAN RULES FOR THE CAR MODEL

Following standard procedures [23,25,35], the Feynman
rules for the CAR model can be obtained from the formal
solution of the CAR evolution equations. The various build-
ing blocks are shown graphically in Fig. 4, where the free
response functions are given by

Gu0(ω) = 1

−iω + ru

, (B1)

Gv0(ω) = 1

−iω + rv

, (B2)

the noise insertions by

Nu0(ω) = 2Au|ω/ωu|−θu , (B3)

Nv0(ω) = 2Av|ω/ωv|−θv , (B4)
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Gu0 = Nu0 =

Nv0 =Gv0 =

Γu0 = Γv0 =

Γ
(f)
u0 = Γ

(f)
v0 =

FIG. 4. Feynman rules for the CAR model. See text for defini-
tions of symbols.

and the vertices by

�u0 = −�v0 = −λ, (B5)

�
(f )
u0 = −�

(f )
v0 = −λf

ru

. (B6)

To write down a specific Feynman diagram, the above graph-
ical rules must be supplemented with conservation of fre-
quency at each vertex and integration over undetermined
frequencies. Note that to obtain the vertices in Eq. (B6), we
use the redefinition U → Ũ = U − f/ru to get rid of the
constant feeding term.

APPENDIX C: POWER COUNTING

In this paper, we restrict ourselves to one-loop calculations,
and we are interested in diagrams that diverge in the ultraviolet
(UV). For power counting purposes, response functions and
noise insertions can be estimated as follows in the UV limit:

Gv0 ∼ Gu0 ∼ ω−1, (C1)

Nv0 ∼ Nu0 ∼ Au,vω
−θu,v , (C2)

and each loop integration contributes one power of ω.
Using the above, we can find the UV divergence struc-
ture of corrections to various CAR model parameters.

ω ω

ω1−ω1

ω ω

ω1−ω1−ω1ω1

ω1 + ω

ω ω

FIG. 5. One-loop corrections to Gu0 (top row) and Gv0 (lower
row).

FIG. 6. One-loop corrections to �u0 (left column) and �v0 (right
column).

Figure 5 shows one-loop diagrams corresponding to cor-
rections to Gu0 and Gv0 (or ru and rv). Power count-
ing gives �(row 1)

ru
∼ �

(row 2,right)
rv

∼ �−θv−1 and �(row 2,left)
rv

∼
�−θv−2, where � is a large frequency cutoff scale. One-
loop corrections to �u0 and �v0 (or λ) are shown in Fig. 6.
Counting powers of frequency for each diagram, we get
that �(row 1)

u ∼ −�(row 1)
v ∼ �−θv−2 and �(row 2)

u ∼ −�(row 2)
v ∼

�(row 3)
u ∼ −�(row 3)

v ∼ �−θv−3. One-loop corrections to �
(f )
u0

and �
(f )
v0 (or f ) are shown in Fig. 7. Power counting

gives �
(f ) (row 1)
u ∼ −�

(f ) (row 1)
v ∼ �−θv−2 and �

(f ) (row 2)
u ∼

−�
(f ) (row 2)
v ∼ �−θv−3. One-loop corrections to Nu0 and Nv0

(or Au and Av) are shown in Fig. 8. Counting powers of fre-
quency for each diagram, we get that Nu ∼ Nv ∼ �−2θv−3.

Note that none of the one-loop diagrams shown in Figs. 5–
8 depend on the noise ηu(t ). Noise on the U chemical starts
to contribute to the running of parameters at two-loop, and

FIG. 7. One-loop corrections to �
(f )
u0 (left column) and �

(f )
v0 (right

column).
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FIG. 8. One-loop corrections to Nv0 (left column) and Nu0 (right
column).

is thus negligible compared to the effect of noise on the V
chemical.

Each diagram in Figs. 5–8 may be UV divergent, depend-
ing on the noise exponent θv . From the above power counting,
we can identify three regimes:

Regime 1. When − 3
2 < θv � −1, two parameters (ru and

rv) run.
Regime 2. When the temporal noise exponent is −2 <

θv � − 3
2 , four parameters (ru, rv, Au,Av ) run. There is even a

chance that the exponents themselves (θu, θv ) might also run,
depending on the form of the one-loop corrections.

Regime 3. When the temporal noise exponent is θv � −2,
six parameters (ru, rv, Au,Av, λ, f ) run. For low enough
values of θv , non-renormalizable operators might also play an
important role in the dynamics, as discussed in Ref. [25].

For simplicity and for the purpose of illustration, we con-
centrate on regime 1 in the following.

APPENDIX D: RENORMALIZATION GROUP FLOW
OF THE MODEL PARAMETERS

In this section, we present some details on how to obtain
the running of the model parameter ru (rv is done in a similar
way) by computing its β function. We start with the one-loop
correction to the response function Gu0 (see Fig. 5, top row):

�ru
(ω′) = −2λAv

ω
−θv
v

∫
dω

(2π )
|ω|−θv Gv0(ω)Gv0(−ω)

= −2λAv

ω
−θv
v

∫
dω

(2π )
|ω|−θv

(
1

ω2 + r2
v

)
. (D1)

To regulate this potentially divergent integral, we analytically
continue the time dimension to z:

�ru
(ω′) = −2λA(z)

v

ω
−θv
v

∫
dzω

(2π )z
|ω|−θv

(
1

ω2 + r2
v

)
, (D2)

where the superscript (z) in A(z)
v indicates that the engineering

dimension of the noise amplitude depends on the analytically
continued time dimension z. The integral in Eq. (D2) can be
done using the method regularization in the presence of noise
of Ref. [26]. The result is

�ru
(ω′) = −2λA(z)

v

ω
−θv
v

π

(4π )z/2�(z/2)

(rv )−2+z−θv

sin π
(

z
2 − θv

2

) . (D3)

Equation (D3) has an infinite number of poles, and the loca-
tions of those poles depend on the noise exponent θv . Focusing
on regime 1, we expand Eq. (D3) around the pole located
at θv = −1, corresponding to a logarithmic UV divergence.
Defining the quantity z − θv = 2 − δ for convenience and
performing a δ expansion of Eq. (D3), we obtain

�ru
(ω′) = −4λA(θv+2)

v K1

ω
−θv
v

1

δ
+ finite, (D4)

where K1 = 1/[(4π )(θv+2)/2�((θv + 2)/2)] and “finite”
means terms that are finite in the δ → 0 limit. Those terms
are not necessary for β-function computations, and we ignore
them in the following.

The Z factor for ru is given by

Zru
= 1 + �ru

(ω′)
ru

= 1 − 4g(z)
u K1T

δ

δ
, (D5)

where T is an arbitrary temporal scale and where we defined
the effective coupling:

g(z)
u = λA(z)

v

ru

. (D6)

The β function for ru is obtained by taking the derivative of
the bare effective coupling (D6) with respect to the arbitrary
timescale T . The result is

βgu
≡ T

dgu

dT
= δgu − 4g2

uK1 + O(g3). (D7)

In terms of the original model parameters, the β function
becomes

βru
≡ T

dru

dT
= −δru + 4λAvK1

ω
−θv
v

. (D8)

Integrating the above β function gives the running of ru as a
function of the arbitrary temporal scale T :

ru(T ) =
[
ru(T ∗) + 4λAvK1

|δ|ω−θv
v

](
T

T ∗

)|δ|
− 4λAvK1

|δ|ω−θv
v

, (D9)

where ru(T ∗) is an experimentally known value of the decay
rates at some reference temporal scale T ∗. The expression for
rv (T ) can be obtained in a similar way:

rv (T ) =
(

T
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⎣r2
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APPENDIX E: STABILITY ANALYSIS OF STEADY STATES

Stability analysis is carried out in terms of the positive
convex parameters ji > 0 and the positive inverse stationary
concentrations hi > 0. The Jacobian matrix is given by [43]

Jac( j , h) = Sdiag( j · E)κT diag(h). (E1)

Substituting in Eqs. (7) and (8) this gives

Jac( j , h) =
(

−h1(j1 + j2) −2h2j2

h1j2 h2j2

)
, (E2)

and its characteristic polynomial P (λ) = λ2 + a1λ + a2,
where a1 = −h2j2 + h1(j1 + j2), and a2 = h1h2j2(j2 − j1).
Then the stability of the stationary states h1 > 0, h2 > 0
requires that both coefficients a1 > 0 and a2 > 0 be positive
simultaneously [44]. This leads to

j2 > j1 and
j1 + j2

j2
>

h2

h1
> 0 (E3)

as claimed.
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