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Bifurcation-aware optimization and robust synchronization of coupled laser diodes
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We interpret the problem of synchronizing multiple coupled laser diodes as a robust stabilization problem.
We show that mathematical optimization, specifically constrained nonlinear programming, can be applied to
identify stable and robust points of operation with optimal intensities. In contrast to existing methods, the method
proposed here does not require multicriteria or Pareto-optimizations for a simultaneous treatment of optimality
and robustness. It is based on enforcing a safe distance to manifolds of saddle-node and Hopf bifurcations (or
generalizations thereof), where the distance can be chosen to reflect parametric uncertainties of the model or the
system operation. While the method involves linearizations, it captures, in the same sense as bifurcation theory,
the true nonlinear behavior of the system.
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I. INTRODUCTION

Photon lifetimes, which determine the speed of dynamics
in semiconductor lasers, are typically in the magnitude of a
picosecond [1, p. 232]. Consequently, it is not trivial to con-
trol their stability properties. Moreover, semiconductor lasers
can exhibit complex dynamical behavior since, among other
reasons, the refractive index of the semiconductor depends on
the carrier density. This distinguishes them from other lasers,
especially in the presence of a second, external cavity. A laser
model that is able to explain these experimental findings is the
Lang-Kobayashi model [2].

There are many variations of the Lang-Kobayashi model
available. It is, for example, possible to include carrier diffu-
sion in the dynamical model, which increases the dimension
of the state space [3] and, consequently, the computational
effort of an analysis [4]. A common simplification assumes
a linear relation of carrier density and modal gain [4–9].

Laser diodes are coupled for one of three reasons: to induce
chaos to their dynamics, to electronically move the laser
beam, or to achieve a greater output intensity than with a
single laser diode. The first case exploits that two lasers might
be in a mode where they synchronize with each other, even
when they are operating chaotically [6,10]. The chaotic signal
can, for example, be used as a carrier for secure communica-
tion [11]. The second reason to couple lasers is to electroni-
cally scan with a laser beam. If single arrayed lasers emit light
with an electronically induced phase shift, their interference
pattern is manipulated and the direction of the largest output
intensity changes [12]. The last reason to couple lasers is over-
coming the intensity limitations of single laser diodes. Scaling
up the pump current as the energy source cannot increase the
intensity of a single laser diode arbitrarily [1, p. 218].

The complex dynamics of semiconductor lasers have been
studied extensively by bifurcation analysis. Laser diodes with
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phase conjugating external feedback [13] as well as conven-
tional optical feedback [5,7,14,15] and semiconductor ring
lasers [16] are just a few examples of interesting targets for
bifurcation analysis.

The fast and complex dynamics of semiconductor lasers
have motivated strategies for finding parameters that enable
their stable open-loop operation. Kozyreff et al. [17,18]
present a comprehensive analysis of coupled identical laser
diodes and identify bifurcation manifolds that separate param-
eter space regions with different synchronization properties.
Kozyreff et al. point out that these boundaries are, beyond
their fundamental importance, of technological interest, be-
cause they can be used to find stable points of operation with
large output power.

Several authors have applied methods from the field of
mathematical optimization, such as nonlinear programming
(see, e.g., Ref. [19]) and multicriteria or Pareto-optimization
(see, e.g., Ref. [20]), to laser diodes. Mathematical optimiza-
tion is an interesting alternative whenever a comprehensive
analysis, for example a bifurcation analysis, is too difficult
or time consuming. This may be the case if the number of
parameters (such as adjustable pump currents) is large and
cannot be reduced by exploiting symmetries, for example.
Vanbiervliet et al. [21] propose an optimization method for
the stabilization of nonlinear systems with delay and apply
their approach to laser dynamics. They minimize the real part
of the leading eigenvalue for external cavity mode solutions.
Kouomou and Woafo [22] use a similar approach for the
synchronization of laser diodes. Here, the leading eigen-
value real part is minimized to accelerate synchronization.
Priyadarshi et al. [23] state and solve an optimization problem
that achieves a fast convergence to a state of synchronization
and an increased signal-to-noise ratio in coupled lasers. A
minimization of leading eigenvalue real parts is also possi-
ble for uncertain delayed systems. Fenzi and Michiels [24]
propose an optimization approach where stochastic parameter
uncertainty is treated by minimizing the expected real part of
the leading eigenvalue.

The optimization approaches in Refs. [21,24] include sta-
bility properties in their objective functions. Essentially, the
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objective function is used to push the eigenvalues as far to
the left in the complex plane as possible. This is reasonable
when it is the objective to converge to a steady state as fast
as possible. However, while the distance of the leading eigen-
value to the imaginary axis is a good measure for stability
and the rate of convergence, it is not a good measure for
robustness. This difference between stability and robustness
arises because eigenvalues are not uncertain themselves, but
their uncertainty is caused by properties of the model such as
uncertain parameters. The leading eigenvalue may, for exam-
ple, be insensitive to the variation of the uncertain parameters.
Another eigenvalue may be sensitive and therefore take the
role of the leading eigenvalue under parameter variations. As
a result, the distance to the imaginary axis of the leading
eigenvalue for nominal parameters is not a measure for how
large parameter variations may become before stability is
lost. We propose to use the distance to the closest mani-
fold of critical points in the parameter space as a measure
for robustness (see Sec. II D). As a side effect, robustness
requirements can be stated as constraints of a constrained
nonlinear programming problem. Consequently, stability and
robustness properties no longer need to be incorporated in the
objective function. The objective function may therefore be
used to state other criteria (such as laser intensity) without
any need for Pareto-optimization or multicriteria optimization
with weighting factors.

The proposed approach belongs to the class of normal vec-
tor methods [25]. Dobson [26] proposed using normal vectors
on bifurcation manifolds to find the closest manifold, i.e., the
bifurcation that can be caused by the smallest multidimen-
sional parameter shift. This idea was adopted by Mönnigmann
and Marquardt [25] to keep a predefined parametric distance
from bifurcation manifolds during steady state optimization
of systems governed by ordinary differential equations. There
exist extensions of the normal vector method, to robust dis-
turbance rejection [27], discrete time systems [28], delayed
systems [29], and periodically operated systems [30]. In
this contribution we extend previous results for delayed sys-
tems [31,32] to periodically operated systems with rotational
symmetry and apply these methods to coupled lasers.

Section II first motivates why robust optimization methods
are required for finding optimal open-loop stable modes of
operation for laser diodes. Subsequently, the method proposed
in this paper is introduced. A simple network of two coupled
lasers serves as an example. More complex problems with
up to ten nonidentical lasers and ten uncertain parameters are
treated in Sec. III. Conclusions are given in Sec. IV.

II. ROBUST OPTIMIZATION OF COUPLED
LASER DIODES

A. Laser model and coupling

All laser diodes in Secs. II and III are modeled by a
Lang-Kobayashi model. The delay differential equation
system reads

1

θ
Ė(t ) = (1 + iα) n(t )E(t ) + η eiφE(t − τ ), (1a)

1

θ
ṅ(t ) = ε{p − n(t ) − [2n(t ) + 1]|E(t )|2}. (1b)

TABLE I. Model parameters for each laser diode as given in
Ref. [15]. Coupled lasers have multiple coupling coefficients, there-
fore the value of η does not apply for laser networks. The pump
current p is omitted, as it will be the optimization variable.

Parameter Numerical value

α linewidth enhancement factor 4
η coupling coefficient 0.005
φ coupling phase −2
τ coupling delay rescaled: 100 1

θ

ε carrier relaxation time 0.005

We added the time scaling factor θ = 1000 to the standard
model [5,7,8,33] for more convenient time scales in trajectory
plots later on. Parameters are given in Table I.

We couple the laser diodes symmetrically as shown in
Fig. 1. Both lasers receive their own feedback signal and
the coupling signal emitted by the other laser. These signals
interfere additively [6,17].

The delay differential equation system for this laser net-
work reads

1

θ
Ė1(t ) = (1 + iα)n1(t )E1(t ) +

2∑
k=1

η1keiφEk (t − τ ), (2a)

1

θ
ṅ1(t ) = ε{p1 − n1(t ) − [2n1(t ) + 1]|E1(t )|2} (2b)

1

θ
Ė2(t ) = (1 + iα)n2(t )E2(t ) +

2∑
k=1

η2keiφEk (t − τ ) (2c)

1

θ
ṅ2(t ) = ε{p2 − n2(t ) − [2n2(t ) + 1]|E2(t )|2}. (2d)

The sum in Eq. (2a) represents the electrical field that is fed
into laser 1. The sum in Eq. (2c) is motivated accordingly.
Since light emitted by each laser diode has to be fed back
into two lasers, it must be split. We use the coupling coeffi-
cients ηjk = 0.0025 for j, k = 1, 2, which obey the relation
η = η1k + η2k for both laser diodes, i.e., k = 1, 2.

It is convenient to analyze the synchronized state of the
coupled lasers in a coordinate frame that rotates with the com-
mon frequency of the two lasers. Rotating coordinate frames
are established in the analysis of single lasers [2,5,7,14,15].
This change of coordinates Eq. (3) results in an eigenvalue
λ = 0, which, however, is known not to have any impact on
stability [7,21,34]. Substituting the rotating coordinates

Ej (t ) = Aj (t ) ei�t , (3)

FIG. 1. Coupling structure of two coupled lasers.
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where � is the angular frequency of rotation, into Eq. (2)
yields

1

θ
Ȧ1(t ) = −i�A1(t ) + (1 + iα)n1(t )A1(t )

+
2∑

k=1

η1kei(φ−�τ )Ak (t − τ ), (4a)

1

θ
ṅ1(t ) = ε{p1 − n1(t ) − [2n1(t ) + 1]|A1(t )|2}, (4b)

1

θ
Ȧ2(t ) = −i�A2(t ) + (1 + iα)n2(t )A2(t )

+
2∑

k=1

η2kei(φ−�τ )Ak (t − τ ), (4c)

1

θ
ṅ2(t ) = ε{p2 − n2(t ) − [2n2(t ) + 1]|A2(t )|2}. (4d)

Steady states of Eq. (4) correspond to synchronized states of
the coupled lasers, which implies that both lasers emit light
with the same frequency �. Also, steady states of the coupled
lasers Eq. (4) are equivalent to external cavity modes (ECMs)
of single laser diodes. Therefore, an additional equation is
necessary to resolve the phase indeterminacy [7]. We will use
the phase condition

0 = Re{A1} − Im{A1}, (5)

which was proposed by Verheyden et al. [4].
We abbreviate Eqs. (4) and (5) by

ẋ(t ) = f (x(t ), x(t − τ1), . . . , x(t − τm), p,�), (6)

0 = ϕ(x). (7)

In Eq. (4) we have nx = 6 states in a vector x = [Re{A1},
Im{A1}, n1, Re{A2}, Im{A2}, n2]T , one delay τ , np = 2 un-
certain parameters1 in a vector p = [p1, p2]T , and one alge-
braic variable �.

The synchronization condition above still allows the laser
diodes to operate at different phase angles. Different phase an-
gles might reduce the resulting intensity, when the oscillating
outputs of the laser diodes interfere. However, the following
results show that a laser network might reach its highest output
while laser diodes operate at different phase angles, which
is the case for asymmetric network topologies or when laser
diodes have different pump current restrictions.

B. Naive optimization fails

Consider the problem of maximizing the intensity of two
synchronized lasers by varying the pump currents p1 and p2.
Assume all parameters are fixed and only p1 and p2 may be

1The vector of uncertain variables is usually denoted
α [25,27,30,35]. In the current paper, we use the symbol p

instead to avoid a mix-up with the linewidth enhancement factor α.

FIG. 2. The intensity is limited by the upper bounds of p1 and p2.
Dashed lines are contour lines and represent the intensity, which
ranges from 0 in the lower left corner to 2.9 in the upper right corner.
The arrow points in the direction of higher intensities.

varied. This leads to the optimization problem

min
p1,p2

−|A1 + A2|2, (8a)

s.t. 0 = f (x, x, p,�), (8b)

0 = ϕ(x), (8c)

p1 ∈ [0, 0.8], p2 ∈ [0, 0.5]. (8d)

The objective function Eq. (8a) rewards increasing intensities.
The constraints Eq. (8b) ensure that the lasers operate at a
steady state and the common frequency �. Equation (8c)
represents the phase condition Eq. (5). The remaining con-
straints impose lower and upper bounds on the pump currents.
We assume the first laser can dissipate more heat and therefore
permits a higher pump current. The laser diodes are not iden-
tical, since different constraints Eq. (8d) apply to them. We
anticipate the laser diodes are not identical in the subsequent
examples. Note that this implies that symmetry cannot not be
exploited to simplify an analysis.

The optimization Eq. (8) drives both pump currents to-
wards their upper bounds,

p = [p1, p2]T = [0.8, 0.5]T . (9)

This optimal point, which obviously results because the inten-
sity increases with the pump currents, is illustrated in Fig. 2.

While the optimal point of operation Eq. (9) maximizes
the intensity, it is of little use because it is not stable. This
is illustrated with the time series shown in Fig. 3. After
initialization in the state of synchronized operation (t = 0),
the lasers operate with a common frequency �. At about t =
1.8, the synchronization is lost and the lasers start to operate
chaotically. The loss of synchronization is spontaneous and is
caused by the finite numerical precision in the simulation.

The result obtained in this section shows that a naive
optimization may yield a point of operation that is optimal
with respect to the objective function, but has unacceptable
dynamical properties. This motivates to introduce constraints
for stability and robustness. Specifically, we would like to
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FIG. 3. Operation of the coupled lasers for the optimal parame-
ters Eq. (9). Results are shown both in rotating coordinates Aj and
original coordinates Ej .

ensure robust exponential stability of the synchronized state
of Eq. (4).

C. Constraints on dynamical properties

Stability and robustness properties of optimal points of
operation can be ensured by augmenting the optimiza-
tion problem Eq. (8) by additional constraints. These con-
straints build on notions from applied bifurcation theory (see,
e.g., Ref. [36]; see Ref. [25] for a concise description adapted
to the use here). We first describe these constraints informally
and then state technical details on the particular case treated
here in Sec. II D.

Consider a nonlinear dynamical system with nx state vari-
ables and np parameters. The system Eq. (4) with nx = 6 and
np = 2 may serve as an example. When starting at a stable
steady state and varying one or more of the parameters qua-
sistatically, the dynamical system will quasistatically move
within its set of steady states. Simultaneously, the eigenvalues
of the linearized dynamical system vary, and stable steady
states turn into unstable ones when the leading eigenvalue
crosses the imaginary axis into the right half of the complex
plane. We refer to a point in parameter space at which a stable
steady state turns into an unstable one, or, more generally,
a steady state loses a desired property, as critical parameter
value. Note that there may exist steady states beyond the
critical values, which can be determined by solving the steady
state equations even if it is not practical to operate the system
at these values (due to instability, for example).

The set of steady states constitutes an np-dimensional
manifold in the (nx + np )-dimensional state-parameter space
under mild conditions (see, e.g., Ref. [36, p. 429]). The
critical parameter values constitute an (np − 1)-dimensional
manifold, which is usually depicted after projecting it on the
np-dimensional parameter space. Figure 4 shows a sketch
of a two-dimensional parameter plane (i.e., np = 2) which
is separated into an unstable and a stable region by a one-
dimensional critical (i.e., (np − 1)-dimensional) manifold.
The (np − 1)-dimensional manifolds of critical points can in
general be described by systems of nonlinear equations of the

FIG. 4. The normal vector r connects p(0) to a closest critical
parameter space point p(c) on the critical manifold defined by G = 0.
The square represents Eq. (12).

form [25,26]

G(x (c), p(c), u(c) ) = 0, (10)

where p(c) and x (c) refer to the critical parameter value and
the corresponding steady state and u(c) collects auxiliary
variables. The specific equations G required in the present
paper are stated in Sec. II D.

The distance of a stable point to the critical manifold can
serve as a measure for robustness [26]. The shortest distance
of a candidate point to the critical manifold occurs along a
direction r that is normal to the critical manifold (see Fig. 4
for the sketch again). Just as the critical manifold can be
characterized by Eq. (10), the normal vector can be calculated
from a system of nonlinear equations of the form

H (x (c), p(c), u(c), v(c), r ) = 0, (11)

where r ∈ Rnp is the normal vector and v(c) is short for
additional auxiliary variables that appear in H but not in
G. Normal vector systems Eq. (11) can be derived with a
scheme given in Ref. [25]. The specific normal vector systems
required in the present paper are given in Sec. II D and in the
Appendices.

The normal vector r can now be used to state a constraint
for robustness in optimization problems of the type Eq. (8) as
follows [25]. Assume the parametric uncertainty of a dynam-
ical system such as Eq. (4) can be described with uncertainty
intervals. More precisely, assume the precise value of the
parameters p is not known, but the elements of p are known
to lie in intervals

pi ∈ [
p

(0)
i − �pi, p

(0)
i + �pi

]
(12)

for i = 1, . . . , np, where �pi are known. If the parameters
are scaled such that �pi = 1 for all i for convenience,
then Eq. (12) defines an uncertainty hypercube (see Fig. 4 for
a sketch for np = 2). All parameter values in this uncertainty
hypercube can be guaranteed to lie in the stable region by
enforcing the distance d in Fig. 4 to be larger than the radius√

np of the uncertainty hyperball that encloses the uncertainty
hyperrectangle Eq. (12). This constraint can be expressed
mathematically as

p(c) = p(0) + d
r

‖r‖ , d >
√

np, (13)
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where the notation r/‖r‖ is used to point out that the normal
vector has unit length.

By augmenting the optimization problem Eq. (8) with the
constraints Eq. (13), robust stability can be ensured in the fol-
lowing sense: If there exists a steady state x (0) for parameters
p(0) that obey Eq. (13), then x (0) is robust in that quasistatic
variations of p around p(0) within Eq. (12) (the square in
Fig. 4) will not cause the system to cross the critical manifold.

Note that more than one normal vector constraint may be
necessary, because the robust region may be nonconvex, or
because more than one critical manifold exists.

D. Constraints for robust exponential stability

The normal vector method summarized in the previous
section has originally been developed to treat stability bound-
aries [25]. Local asymptotic stability of a steady state of the
nonlinear system can be guaranteed by enforcing negative
real parts of all eigenvalues of the linearized system at this
steady state. While asymptotic stability can be guaranteed this
way, the convergence to the steady state may become slow if
eigenvalues exist very close to the imaginary axis. It is there-
fore of interest to generalize stability boundaries to critical
boundaries for exponential stability to enforce a decay rate to
the steady state. The decay rate, which can be specified by
the user of the optimization method, is denoted σ below. We
note that critical boundaries for exponential stability have first
been treated in Ref. [28] for ordinary differential equations
and in Ref. [32] delay differential equations.

The systems of equations G = 0 and H = 0 as introduced
in Eqs. (10) and (11) for the characterization of these bound-
aries and the calculation of the normal to them, respectively,
can be derived with the scheme proposed in Ref. [25]. We
briefly summarize the resulting systems here as needed for the
remainder of the paper. Technical details are deferred to the
Appendix whenever possible to keep the explanations short.

For the general class of delay differential systems of the
form Eqs. (6) and (7), the equations G and H introduced
in Eqs. (10) and (11), respectively, read

f (x̃ (c), x̃ (c), . . . , x̃ (c), p(c),�(c) ) = 0, (14a)

σw − AT
0 w −

m∑
i=1

AT
i exp(−στi ) w = 0, (14b)

wT w − 1 = 0, (14c)

ϕ(x̃ (c), p(c),�(c) ) = 0, (14d)
⎡
⎢⎣

∇x̃ (c)f T Bfold
12 0 ∇x̃ (c)ϕ

0 Bfold
32 2w 0

∇�f T Bfold
32 0 ∇�(c)ϕ

⎤
⎥⎦κ = 0, (14e)

[∇pf T Bfold
42 0 ∇p(c)ϕ

]
κ − r = 0, (14f)

rT r − 1 = 0, (14g)

where A0 and Ai refer to the Jacobians of f with respect to
x(t ) and x(t − τi ), σ < 0 is the desired decay rate and thus the
critical value of the real parts of the eigenvalues, and the terms
Bfold

ij are stated in the Appendices. Equations (14a)–(14d)

FIG. 5. Constraint geometry and optimum. Dashed lines are
contour lines and represent the intensity |A1 + A2|2, which ranges
from 0 in the lower left corner to 2.9 in the upper right corner. The
arrow points in the direction of increasing intensities. The maximal
intensity is limited by the upper bound of p2 and by a requirement of
robust exponential stability. The interior of the dashdotted rectangle
is shown in detail in Fig. 6.

constitute G = 0 as introduced in Eq. (10), where Eq. (14a)
enforce that x̃ (c) for the critical parameter value p(c) is located
on the steady state manifold, Eq. (14b) state that an eigenvalue
with real part σ exists, Eq. (14c) is required to ensure regu-
larity, and Eq. (14d) resolves the rotational symmetry. Equa-
tions (14e)–(14g) constitute H = 0 as introduced in Eq. (11).
Essentially, Eqs. (14e) and (14f) span the normal space to the
critical manifold in the combined state-parameter space and
select the particular normal vector that is normal to the state
space (see Ref. [25] for details). Finally, Eq. (14g) normalizes
r to unit length, which is required for H = 0 to be regular.

We briefly note that Eqs. (14) generalizes G and H for
the fold bifurcation. Fold bifurcations are characterized by
a single real eigenvalue λ = 0 on the imaginary axis. Equa-
tions (14) extend the fold bifurcation case with λ = 0 to the
case with λ = σ for exponential stability [28,32]. Just as criti-
cal boundaries due to fold bifurcations have to be generalized
to the exponential stability case, Hopf bifurcations, which
are characterized by a complex conjugate pair of eigenvalues
λ = ±iω, must be generalized. The systems of equations for
G and H for the Hopf case are stated in Eqs. (B1)–(B9) in the
Appendices.

A robust optimal point can now be found using the normal
vector systems introduced in this section. More precisely, the
optimization problem Eq. (8) must be extended by Eq. (14)
to calculate the normal to the critical manifold for exponential
stability, and by Eq. (13) to enforce the desired robust distance
from the critical manifold in the parameter space. The opti-
mization result for a pump current uncertainty �pi = 0.01,
i = 1, 2 and eigenvalue bound σ = −1 is shown in Figs. 5
and 6.

It is evident from Figs. 5 and 6 that two critical boundaries
for exponential stability exist, one of which restricts the opti-
mal point. Note that a normal vector constraint is also required
to force the uncertainty ball into the halfspace p2 < 0.5. In
fact, normal vector systems can be stated for a large class
of feasibility boundaries [25]. Due to the simplicity of the
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FIG. 6. Detailed view of the constraint geometry in Fig. 5. The
robust exponential stability boundaries, the active upper bound, the
quadratic uncertainty region and its circular outer approximation are
shown.

boundary p2 < 0.5, the constraint can be stated explicitly. It
reads p2 < 0.5 − √

2�p2 = 0.4859.
The resulting optimal pump currents are

p = [p1, p2]T = [0.5537, 0.4859]T . (15)

Figure 7 illustrates the optimization result with a simu-
lation. The diodes are initialized in a nonsynchronized state
at t = 0 and arrive at a steady state around t = 1. At the
initial nonsynchronized state, the first laser diode is initialized
at a 50% increased frequency and 24% increased electrical
field, while the second laser diode is initialized with a 50%
decreased frequency, both relative to the synchronized state. A
more negative value of σ than σ = −1 chosen here would re-
sult in a faster synchronization speed. This value is respected
in spite of the parameter uncertainty, which is shown in Fig. 8.

Finally, we stress that the critical boundaries need not
to be known a priori, but can be detected in the course of
the optimization with an approach that mimics an active set
optimization method. We refer the reader to Ref. [35] for
details.

FIG. 7. Simulation of coupled lasers operating with pump cur-
rents Eq. (15). Aj shows synchronization as a steady state, Ej

shows the electrical field in common fixed coordinates. The lasers
synchronize.

FIG. 8. The real parts of the leading eigenvalues are plotted
against parameters within the uncertainty region. The largest eigen-
value real parts are found close to the critical manifold representing
the required exponential stability.

III. OPTIMIZATION OF MULTIPLE COUPLED
LASER DIODES

Having motivated the need for a robust optimization, we
apply the method introduced in Sec. II to several laser diode
networks. The networks treated in Secs. III A and III B involve
three uncertain parameters. The results for these two cases can
therefore be visualized and, at least in principle, the robust
optimal points could be determined by an elaborate visual
analysis of critical manifolds and level sets of the objective
function. This is no longer the case for the third exam-
ple, which has ten uncertain parameters. The third example
demonstrates that the proposed robust optimization method
can be applied to systems for which a visual analysis is no
longer practical.

A. Three symmetrically coupled laser diodes

The system shown in Fig. 9 is a straight forward extension
of the laser network in Sec. II. The delay differential equations
for this network read

1

θ
Ȧj (t ) = −i�Aj (t ) + (1 + iα)nj (t )Aj (t )

+
3∑

k=1

ηjkei(φ−�τ )Ak (t − τ ), (16a)

1

θ
ṅj (t ) = ε{pj − nj (t ) − [2nj (t ) + 1]|Aj (t )|2}, (16b)

FIG. 9. Coupling structure of three symmetrically coupled lasers.
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FIG. 10. Exponential stability boundaries and optimal point for
the network from Fig. 9. Points in the interior of the cone have the
required exponential stability. The dashdotted rectangles indicate the
cuts shown in Figs. 11 and 12.

where j = 1, . . . , 3. The coupling coefficients are set to
ηjk = 0.00167 for j, k = 1, 2, 3.

We assume the first laser can dissipate more heat than the
other two. This is modeled by setting the pump current bounds
to

p1 ∈ [0, 0.8], p2 ∈ [0, 0.5], p3 ∈ [0, 0.5]. (17)

We intend to maximize the combined intensity of this net-
work. The objective function therefore reads −|∑3

j=1 Aj |2.
Simultaneously, we want to ensure synchronization with a
decay rate σ = −1 and satisfaction of the constraints Eq. (17)
on the pump currents for an uncertainty of �pi = 0.01.

The result of the optimization is shown in Fig. 10.
Three critical points must be taken into account that all are
of the modified fold type and can therefore be described
with Eq. (14). The critical boundaries for exponential stability
are highlighted in Fig. 10.

The resulting optimal pump currents are

[p1, p2, p3]T = [0.5167, 0.4827, 0.4827]T . (18)

FIG. 11. p1-p2 plane of three symmetrically coupled lasers: The
active upper bound and the modified fold manifolds are visible and
labeled. Contour lines are dashed and indicate the intensity ranging
from 1.85 in the lower left corner to 2.2 in the upper right corner. The
arrow points toward increasing intensities.

FIG. 12. p2-p3 plane of three symmetrically coupled lasers: All
active constraints are visible and labeled. The depicted intensity
ranges from 1.75 in the lower left corner to 2.25 in the upper right
corner. The arrow points toward increasing intensities.

The upper bounds on p2 and p3 are active at the optimum
and so is one exponential stability boundary. The results are
visualized in Figs. 11 and 12, which show a cut at p3 =
0.4827 and a cut at p1 = 0.5167. All active constraints are
visible in Fig. 12, although the exponential stability boundary
(labeled with λ = −1) appears not to touch the spherical
uncertainty region. This is caused by the placement of the
cut. The contact point of exponential stability boundary and
uncertainty region is at p1 = 0.5303, which is outside the
cut. Note that it is evident from Fig. 12 that even for three
uncertain parameters, it would be difficult to find the robust
optimum based on visualizations.

Simulation results for this optimum are plotted in Fig. 13.
All lasers suffer from a disturbance at t = 0. The electrical
fields differ up to 20% from their synchronized state electrical
fields. Their initial frequencies vary in the range of ±50%,
based on their synchronized frequency. They quickly synchro-
nize. A more negative value than σ = −1 would have resulted
in a faster decay to the synchronized state but a lower value
for the optimal intensity.

FIG. 13. Three symmetrically coupled lasers at optimum
Eq. (18). Aj shows synchronization as a steady state, Ej shows the
electrical field in common fixed coordinates. The lasers synchronize.
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FIG. 14. Coupling structure of three asymmetrically coupled
lasers. The goal is that lasers 2 and 3 synchronize with laser 1, but do
not interact with each other.

B. Three hierarchically coupled laser diodes

The next laser network to be optimized is one with a hier-
archical structure that is shown in Fig. 14. This hierarchical
network does not allow any bidirectional interaction between
laser diodes. The first laser alone determines the frequency
of the laser network. The other lasers have to synchronize
without being able to influence the frequency in any way. Such
a laser network would be much easier to trim for a desired
frequency because local disturbances remain local.

The differential equations for this laser network are the
same as in Eq. (16). The differences in the structure can
be accounted for by adjusting the coupling coefficients ηjk .
They read η11 = η21 = η31 = 0.005 here. All remaining coef-
ficients ηj2, ηj3, j = 1, . . . , 3 are zero.

Due to the laser’s different properties, the first laser will
contribute a larger part of its output to the other lasers,
therefore the out-bound coupling coefficients of laser 1 are
ηj1 = 0.005. The out-bound coupling coefficients of lasers 2
and 3 vanish, ηj2 = 0 and ηj3 = 0. The bounds on the pump
currents read

p1 ∈ [0, 0.8], p2 ∈ [0, 0.7], p3 ∈ [0, 0.4], (19)

in this case. The upper bounds on the pump currents p2 and
p3 are set to different values to break the symmetry. The
objective function −|∑3

j=1 Aj |2, the decay rate σ = −1 and

FIG. 15. Exponential stability boundaries and optimal point for
the network from Fig. 14. Points in the interior of the cone have the
required stability properties. The dash-dotted rectangles indicate the
cuts shown in Figs. 16 and 17.

FIG. 16. p1-p2 plane of three hierarchically coupled lasers at the
optimum: active boundaries of both types (real eigenvalue λ = σ and
complex conjugated eigenvalue pair with Re{λ} = σ ) are visible and
labeled. The dashed contour lines depict intensities ranging from 1.9
in the lower left corner to 2.34 in the upper right corner. The arrow
points toward increasing intensities.

the uncertainties �pi = 0.01, i = 1, . . . , 3 are chosen as in
the previous example.

Figure 15 shows the optimization result in the space of
the pump currents. Two critical boundaries of the modified
fold type (darker facets) and two critical boundaries of the
modified Hopf type (lighter facets) exist. The optimal pump
currents are

[p1, p2, p3]T = [0.5943, 0.6061, 0.3827]T . (20)

The upper bound on p3, one normal vector constraint for
a modified fold boundary and a modified Hopf boundary
are active at the optimal point. The results are visualized in
Figs. 16 and 17.

A simulation with optimal pump currents is shown in
Fig. 18. The simulation starts at t = 0 with laser 1 in its steady
state, while lasers 2 and 3 are disturbed and their electrical
fields are elevated by 30% and 20%, respectively. The initial

FIG. 17. p2-p3 plane of three hierarchically coupled lasers at the
optimum: All active constraints are visible and labeled (cf. Fig. 16).
The intensity is depicted by dashed lines, it ranges from 1.88 in the
lower left corner to 2.26 in the upper right corner. The arrow points
toward increasing intensities.
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FIG. 18. Simulation of hierarchically coupled lasers at optimum
Eq. (20). Aj shows synchronization as a steady state, Ej shows the
electrical field in common fixed coordinates. The lasers synchronize.

frequency of laser 2 is 50% lower, the frequency of laser 3 is
30% higher, relative to laser 1. This scenario was intentionally
chosen because it emphasizes the benefits of the network
structure. Lasers 2 and 3 can influence neither each other nor
laser 1. Nevertheless, the lasers quickly synchronize. The rate
of decay to the synchronized state can be controlled with σ .

C. Ten coupled laser diodes

The last example demonstrates that the proposed robust
optimization method is suitable for large problems. While the
previous examples could arguably have been optimized by
hand, i.e., graphical analysis of the critical boundaries carried
out by a skilled person, the example treated here requires a
systematic and automatic method.

The network treated in this section consists of ten laser
diodes and, consequently, is described by a total of thirty
states (nx = 30) and one algebraic variable (the coordinate
rotation frequency �). There are np = 10 uncertain parame-
ters (pump currents p1 to p10). We anticipate that ten different
exponential stability boundaries of the modified fold type
appear in the optimization problem, each of which requires
4nx + 2np + 3 = 143 equations to describe both, boundary
and normal vector. In summary, the optimization problem has
1481 optimization variables, 1461 equality constraints, and 10
inequality constraints and uncertain parameters.

The model Eqs. (4) need to be extended to the case with
ten diodes. This results in

1

θ
Ȧj (t ) = −i�Aj (t ) + (1 + iα)nj (t )Aj (t )

+
10∑

k=1

ηjkei(φ−�τ )Ak (t − τ ), (21a)

1

θ
ṅj (t ) = ε{pj − nj (t ) − [2nj (t ) + 1]|Aj (t )|2}, (21b)

for j = 1, . . . , 10. Accordingly, the objective function for
maximum intensity now reads −|∑10

j=1Aj |2. We assume sym-
metric coupling with coupling coefficients ηjk = 0.5×10−3

FIG. 19. Ten symmetrically coupled lasers at optimum Eq. (22).
Aj shows synchronization as a steady state, Ej shows the electrical
field in common fixed coordinates. The lasers synchronize.

for j, k = 1, . . . , 10. The bounds on the pump currents are
set to

pj ∈ [0, 0.8] for j = 1, . . . , 3, (21c)

pj ∈ [0, 0.5] for j = 4, . . . , 10. (21d)

We choose these bounds to model a triangular or pyramidal
arrangement of the laser diodes on the semiconductor. The
laser diodes in the corners can dissipate heat more easily, and
therefore can bear larger pump currents. The uncertainty of
the pump currents �pj = 0.01, j = 1, . . . , 10 and the bound
σ = −1 are as before.

The robust optimization results in the optimal pump cur-
rents

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4813
0.4749
0.4774
0.4684
0.4684
0.4684
0.4684
0.4684
0.4684
0.4684

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

The upper bounds in Eqs. (21d) and one normal vector con-
straint are active at the optimum. Due to the high dimension,
a graphic representation of the optimal point, as carried out
in the previous examples, is no longer possible. A simulation
of the synchronization of ten laser diodes at the optimum
is shown in Fig. 19. The simulation starts at t = 0 with a
disturbance and therefore without synchronization. Compared
to the synchronized state, the electrical fields are larger by up
to 30%, while the frequencies vary up to ±50%.

Convergence to the synchronized state is slower than for
the previous examples, but the synchronized state is reached
at about t = 1.5.
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IV. CONCLUSION

We showed that optimal, open-loop stable and robust
points of operation of laser networks can systematically be
found with the normal vector method. Essentially, robustness
is achieved by surrounding the candidate optimal point of op-
timization with an uncertainty region in the parameter space.
The resulting optimal point is then guaranteed to remain
stable despite uncertainty in the pump currents. Furthermore,
we showed that it is straight forward to extend the method
for guaranteeing exponential stability with a user-specified
rate. This rate can be used to tune the convergence to the
synchronized state in the laser networks.

The optimized coupling configurations included symmet-
ric as well as hierarchical coupling structures and different
system sizes, ranging from a laser network with two laser
diodes and six state variables to a network with 10 lasers, 30
state variables, and 1481 optimization variables. This corrob-
orates that the proposed method can be applied to nontrivial
networks.
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APPENDIX A: NORMAL VECTOR SYSTEM
FOR MODIFIED FOLD BIFURCATIONS

The expressions for Bfold
ij introduced in Eq. (14) read as

follows:

Bfold
12 = −

m∑
i=0

exp(−στi )∇x̃ (c) (wT Ai )

+ σ

m∑
i=0

wT Ai exp(−στi )∇x̃ (c)τi,

Bfold
22 = σI −

m∑
i=0

Ai exp(−στi ),

Bfold
32 = −

m∑
i=0

exp(−στi )∇�(wT Ai ),

Bfold
42 = −

m∑
i=0

exp(−στi )∇p(c) (wT Ai )

+ σ

m∑
i=0

(∇p(c)τi )[exp(−στi ) wT ]AT
i .

Equations (14a)–(14d), which constitute G = 0 as introduced
in Eq. (10), comprise 2nx + 2 equations that are regular in the
2nx + 2 variables x̃ (c), w, � and one of the parameters p

(c)
i ,

where all other parameters p
(c)
j , i �= j are fixed.

APPENDIX B: NORMAL VECTOR SYSTEMS
FOR MODIFIED HOPF BIFURCATIONS

A Hopf bifurcation occurs if a leading pair of complex con-
jugate eigenvalues with nonzero imaginary part transversally

crosses the imaginary axis into the right half of the complex
plane under parameter variations (see, e.g., Ref. [36, p. 93]),
in particular, σ = 0 at a Hopf bifurcation. We are interested
in critical points defined by values σ < 0, where σ can be
specified by the user of the optimization method in order to
achieve a desired decay rate. In analogy to the well-known
necessary conditions for a Hopf bifurcation, the following
system G = 0 can be stated for the modified Hopf bifurcation
point with σ < 0:

f (x̃ (c), x̃ (c), . . . , x̃ (c), p(c),�) = 0, (B1)

σa − ωb −
m∑

i=0

Ai[c(λ, τi )a + s(λ, τi )b] = 0, (B2)

ωa + σb −
m∑

i=0

Ai[c(λ, τi )b − s(λ, τi )a] = 0, (B3)

aT a + bT b − 1 = 0, (B4)

aT b = 0, (B5)

ϕ(x̃ (c), p(c),�(c) ) = 0. (B6)

Here, τ0 = 0, c(λ, τi ) = exp(−στi ) cos(ωτi ), and s(λ, τi ) =
exp(−στi ) sin(ωτi ), Eq. (B1) ensures that x̃ (c) is a steady state
for the parameter values p(c), and Eqs. (B2) and (B3) enforce
that there exists an eigenvalue pair σ ± iω. The remaining
two equations ensure that Eqs. (B1)–(B6) is a regular system
of 3nx + 3 equations for x̃ (c), a, b, ω, � and one of the
parameters p

(c)
i , where the remaining parameters p

(c)
j , j �= i,

and σ are fixed.
When Eqs. (B1)–(B6) are extended by the following equa-

tions, the normal vector system H = 0 results:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇x̃ (c)f T B
Hopf
12 B

Hopf
13 0 0 ∇x̃ (c)ϕ

0 B
Hopf
22 B

Hopf
23 2a b 0

0 B
Hopf
32 B

Hopf
33 2b a 0

0 B
Hopf
42 B

Hopf
43 0 0 0

∇�(c)f T B
Hopf
52 B

Hopf
53 0 0 ∇�(c)ϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

κ = 0,

(B7)
[∇p(c)f T B

Hopf
62 B

Hopf
63 0 0 ∇p(c)ϕ

]
κ − r = 0,

(B8)

rT r − 1 = 0. (B9)

The expressions for B
Hopf
ij are stated below. Essentially,

Eqs. (B7) and (B8) determine that the normal direction to the
manifold of modified Hopf points in the space of the uncertain
parameters [25]. The last equation is required to normalize
the normal vector to unit length. The matrices B

Hopf
ij read as

062212-10



BIFURCATION-AWARE OPTIMIZATION AND ROBUST … PHYSICAL REVIEW E 98, 062212 (2018)

follows:

B
Hopf
12 =

m∑
i=0

σ (∇x̃ (c)τi )[c(λ, τi )a
T + s(λ, τi )b

T ]AT
i

−
m∑

i=0

ω(∇x̃ (c)τi )[c(λ, τi )b
T − s(λ, τi )a

T ]AT
i

−
m∑

i=0

c(λ, τi )
(∇x̃ (c)aT AT

i

) + s(λ, τi )
(∇x̃ (c)bT AT

i

)
,

B
Hopf
13 =

m∑
i=0

σ (∇x̃ (c)τi )[c(λ, τi )b
T − s(λ, τi )a

T ]AT
i

+
m∑

i=0

ω(∇x̃ (c)τi )[s(λ, τi )b
T + c(λ, τi )a

T ]AT
i

−
m∑

i=0

c(λ, τi )
(∇x̃ (c)bT AT

i

) − s(λ, τi )
(∇x̃ (c)aT AT

i

)
,

B
Hopf
22 = σI −

m∑
i=0

c(λ, τi )A
T
i ,

B
Hopf
23 = ωI +

m∑
i=0

s(λ, τi )A
T
i ,

B
Hopf
32 = − ωI −

m∑
i=0

s(λ, τi )A
T
i ,

B
Hopf
33 = σI −

m∑
i=0

c(λ, τi )A
T
i ,

B
Hopf
42 = − bT +

m∑
i=0

τi[s(λ, τi )a
T − c(λ, τi )b

T )]AT
i ,

B
Hopf
43 = aT +

m∑
i=0

τi[s(λ, τi )b
T + c(λ, τi )a

T )]AT
i ,

B
Hopf
52 = −

m∑
i=0

c(λ, τi )
(∇�aT AT

i

) + s(λ, τi )
(∇�bT AT

i

)
,

B
Hopf
53 = −

m∑
i=0

c(λ, τi )
(∇�bT AT

i

) − s(λ, τi )
(∇�aT AT

i

)
,

B
Hopf
62 =

m∑
i=0

σ (∇p(c)τi )[c(λ, τi )a
T + s(λ, τi )b

T ]AT
i

+
m∑

i=0

ω(∇p(c)τi )[s(λ, τi )a
T − c(λ, τi )b

T ]AT
i

−
m∑

i=0

c(λ, τi )
(∇p(c)aT AT

i

) + s(λ, τi )
(∇p(c)bT AT

i

)
,

B
Hopf
63 =

m∑
i=0

σ (∇p(c)τi )[c(λ, τi )b
T − s(λ, τi )a

T ]AT
i

+
m∑

i=0

ω(∇p(c)τi )[s(λ, τi )b
T + c(λ, τi )a

T ]AT
i

−
m∑

i=0

c(λ, τi )
(∇p(c)bT AT

i

) − s(λ, τi )
(∇p(c)aT AT

i

)
.

The expressions ∇x̃ (c)aT AT
i are given by

(∇x̃ (c)aT AT
i

)
μ,ν

=
n∑

ρ=1

aρ

∂2fν

∂x̃
(c)
μ ∂x̃

(c)
ρ (t − τi )

.

The expressions ∇x̃ (c)bT AT
i , ∇p(c)aT AT

i , and ∇p(c)bT AT
i are

defined accordingly.
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