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Resonator neuron and triggering multipulse excitability in laser with injected signal
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Semiconductor lasers with coherent forcing are expected to behave similarly to simple neuron models in
response to external perturbations, as long as the physics describing them can be approximated by that of an
overdamped pendulum with fluid torque. Beyond the validity range of this approximation, more complex features
can be expected. We perform experiments and numerical simulations which show that the system can display
resonator and integrator features depending on parameters and that multiple pulses can be emitted in response to
larger perturbations.
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I. INTRODUCTION

The quest for new approaches to computing takes many
forms and one of the most exciting is certainly the use of
dynamical systems, in particular with the design of brain-
inspired processors [1]. Most of these approaches are based
on electronic platforms, which are the most natural and im-
mediate choice as most computing devices rely on electronics
already. However, since the transport of information over large
distances and increasingly also over short distances is based
on light, there is an interest in offloading part of the data
processing to optical devices which would naturally interface
with the optical layer. For instance, photonic reservoir com-
puters (see, e.g., [2–6]), nanophotonic circuits [7], or even
a multiple scattering method [8] aim at leveraging complex
dynamics in optical systems to provide part or all of the com-
putation stages required to accomplish computing tasks, even
when the components of the system do not attempt to emulate
neurons. A complementary approach consists in achieving
with optical devices activation functions which actually mimic
that of biological neurons, an approach sometimes termed
photonic spike processing [9].

Along this last line, one of the landmarks of neurosciences
is the analysis of the electrical response of a neural cell to
external perturbations [10,11]. The all-or-nothing response of
the cell, which is triggered only for perturbations which are
large enough but does not depend on the perturbation itself
once the threshold is overcome, is widely considered as a
key ingredient for the processing of information by neural
cells. For this reason, this type of “excitable” response has
been investigated in many physical systems and in particular
in optical devices. In this specific context, several possible
dynamical scenarios have been analyzed: close to a saddle-
node bifurcation [12–14], weakly saturated Hopf bifurca-
tion [15], and saddle-loop bifurcation [16,17]. Most recent
approaches in this direction are based on potentially integrable
components such as semiconductor lasers [18–20] sometimes
with polarization effects [21–24], silicon microrings [25],

micropillars with integrated saturable absorber [26–28], and
resonant tunneling diodes [29,30].

Interestingly each of these systems differs not only by their
physical nature but also by the dynamical mechanisms which
are at the origin of their excitable character. This is important
since, depending on the type of bifurcation which causes
the excitable response, neurons can have different additional
properties with respect to repeated perturbations [31], which
of course strongly influences the dynamics of coupled systems
and in turn their computational properties. In particular, some
neurons have the capability to integrate several subthreshold
repeated perturbations, leading to an excitable response when
a sufficient number of perturbations are applied repeatedly. In
optics, this behavior typical of “integrator” neurons has been
observed in [28] and is also expected to exist in the case of a
laser with injected signal when the dynamics can be reduced
to that of the optical phase, i.e., when the excitable response
consists only of a 2π rotation of the laser phase with respect
to the injection signal. Other neurons though, have the specific
property of responding to repeated subthreshold perturbation
only if these are adequately separated in time. In the case
of optics, this behavior has not been observed yet, but the
laser with injected signal is certainly a good candidate for
this kind of observation as soon as the dynamics cannot be
completely reduced to that of the optical phase, such as when
multipulse excitability [32,33] is present. In the following,
we analyze the response of a laser with injected signal close
to unlocking transition, where the control of excitable pulses
and the existence of a refractory time were demonstrated re-
cently [18,19]. We demonstrate that indeed two perturbations
can be integrated by the system and lead to an excitable
response even when each of them would not be sufficient
to trigger a spike. At variance with a pure integrate and fire
neuron though, we show that there is an optimum value for the
time separation between these two perturbations, for which
their efficiency is maximum. We analyze these results from
two perspectives. First we show that an ad hoc generalization
of the Adler equation [34] is sufficient to reproduce the results
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FIG. 1. Schematic of the experimental setup. The injection setup
is highlighted in green, and the electrical perturbation setup is
highlighted in blue.

and second we study this same behavior in a realistic model
for a Class-B laser with optical injection.

II. EXPERIMENTAL SETUP

The experimental setup is that of a VCSEL (vertical cavity
surface emitting laser) with optical injection, as shown in
Fig. 1. It is exactly the same setup used in [18], with the
addition of a more involved electrical perturbation setup.

The aim is to inject the signal coming from a master
laser into the slave laser (a VCSEL). In Fig. 1 we can
see the injection setup, which is composed of the master
laser (tunable via an external grating); an optical isolator to
prevent unwanted reflections from reaching the laser back;
a fiber-coupled electro-optic modulator (EOM) and a half-
wave plate plus a polarizer (with vertical orientation) to
modulate the intensity of the injected beam. The EOM al-
lows us to apply a phase perturbation to the master signal
with shape and amplitude that is determined by a voltage
input.

After that, the master signal is injected into the slave laser
through a beam splitter. A half-wave plate is placed just at the
output of the collimating lens of the slave laser in order to
adjust the polarization of the slave laser to the vertical axis.
The output from the slave laser is then first conveyed through
an optical isolator to prevent again spurious reflections toward
the slave laser, and then sent to a 9-GHz photodetector and
a Fabry-Pérot interferometer for spectral monitoring. The
detection signals are acquired with a 12.5-GHz bandwidth
real-time oscilloscope.

The application of repeated perturbations in the phase of
the injection beam is obtained via the application of repeated
voltage perturbations to the EOM. The applied perturbation
has the shape of Fig. 2. It consists of a series of pulses, always
in pairs, with a constant height of 7.4 V (2 rad) and a duration
of about 0.12 ns, where the delay between the first pulse and
second pulse can be increased from a minimum of 0.08 ns
to a maximum of 1.05 ns (the delay is defined as the time
between the two maxima). The experiment is performed in a

FIG. 2. Simplified depiction of the shape of the periodic elec-
trical perturbation sent to the EOM. The delay times between each
couple of pulses increases gradually from a minimum of 0.08 ns to
a maximum of 1.05 ns. Each couple is separated by its neighbors by
a 20 ns delay. The same perturbation is repeated periodically after
completion, where each period takes 2.5 μs in total.

repetitive way to allow for statistics. In order to consider the
many realizations of the experiment as independent, they must
be sufficiently separated in time. In this case, the time between
two realizations is 20 ns, which is very long as compared
to the previously observed refractory time, of the order of
1 ns [35]. In order to scan the delay in an automated way, we
continuously scan the delay between the two perturbations,
from 0.08 to 1.05 ns. This whole measurement is then repeated
every 2.5 μs, starting again from the minimum delay all the
way to the maximum delay. We require this kind of perturba-
tion in order to explore all of the different delays in one go,
without letting too much time pass between one delay and the
next, so that we can assume that the parameters of the system
are stationary during the acquisitions.

To obtain this kind of perturbation we have assembled
the electrical perturbation setup as in Fig. 1. We use two
pulse generators: an Alnair Labs EPG-200B-0050-0250 (first
pulse generator) and an Alnair Labs EPG-210B-0050-S-P-
T-A (second pulse generator). They respond to an input
raising front by generating a pulse with constant amplitude
and tunable width. Each of them is then able to generate a
50-ps-duration pulse. In order to progressively increase the
delay between the creation of the two pulses in a pair, we
trigger the first pulse generator by a 50 MHz square wave,
and the second pulse generator by a second 50 MHz square
wave with 800 kHz phase modulation in the shape of a
down-ramp. Since the two square waves are synchronized
(because they are generated by the same signal generator)
this creates a periodic shift between the two square waves,
that later translates into a delay between the creation of
the two pulses by the pulse generators. The pulses are later
added by an rf combiner, and amplified up to 7.5 V before
entering the EOM. We also detect the signal coming from
the second pulse generator (used as a trigger for the oscillo-
scope), and the signal going to the EOM, in order to record
at the same time the perturbation and the response of the
system.

III. RESULTS

In this study we want to probe the integration property of
the optical device. After having it prepared in an excitable
regime by placing it inside the locking region close to the
unlocking boundary defined by the saddle-node bifurcation
(procedure already described in [35]), we then apply a series
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FIG. 3. Experimentally measured time traces of the response of
the system when the two perturbations are separated by 0.10 ns (top)
and 0.50 ns (bottom). The emitted power (dc level) is about 500 μW
and the injected power is 4.6 μW. Insets: shape of the perturbations.
Pumping current: 1.023 mA. Forty realizations are superimposed and
show that on the bottom trace, no excitable pulse was observed. One
example realization is shown as the black trace.

of perturbations which are, by themselves, under threshold.
The integration behavior of the system would be revealed
if, given two or more underthreshold perturbations that are
close in time, we were nevertheless able to observe an ex-
citable response. The type of perturbations that we applied
consists of a series of couples of pulses with different delays
between them, as described before. Two examples for two
different delays are shown in Fig. 3, where we show the
persistence histogram for the two delays of 0.10 and 0.50 ns.
When the two perturbations are sufficiently close in time
(0.10 ns) an excitable spike can be generated, while no spike
is generated when the two perturbations are too separated in
time (0.50 ns).

To quantify our results, we calculate the efficiency of each
pair of perturbations, where the efficiency is defined as the
number of excitable responses over the number of perturba-
tions applied. In our analysis, we define an excitable response
as a pulse whose amplitude is bigger than a certain threshold
that we define a posteriori (in this case, that is bigger than 23
arbitrary units from the baseline of the intensity signal). The
results are shown in the bottom panel of Fig. 4. We observe
that the efficiency curve does increase for small delays, but
it also presents a maximum at around 0.12 ns. This can be
interpreted as a resonant feature, that is, the system has a
higher probability of generating a pulse if we perturb it twice
with the correct temporal separation. Notably, this optimal
temporal separation is very similar to the temporal separation

FIG. 4. Experimental response time histogram and efficiency
curve of the perturbation for around 4000 events for each delay
(S = 1.023A). The histogram is normalized so that each vertical slice
for a single delay sums up to the corresponding efficiency value.

between subsequent spikes in the case of multipulse emission
discussed in Sec, VII.

We have also analyzed the response time of the excitable
response for different delays, as shown in the top panel of
Fig. 4. Note that the absolute value of the response time
shown here is defined as the time difference between the
maximum of the excitable pulse and the trigger time of the
data acquisition system. Thus, it includes a very large offset
which is purely of instrumental origin and not related to
laser physics. The histogram is normalized to the efficiency
curve, so that each vertical slice for a single delay sums up
to the corresponding efficiency value. For high delays, the
dashed blue line (horizontal) is the average arrival time of an
excitable response generated by the first pulse of the pertur-
bation (which is constant), while the black dashed line is the
average arrival time of a response created by the second pulse
(which moves away as the delay increases). We underline
that the phenomenon of a single perturbation triggering a
response is very rare, as indicated by the very low efficiency
(bottom panel) for large delays. It is, however, revealed by
the use of the logarithmic color scale for histograms or arrival
times shown on the top panel. We extend these lines for
smaller delays in order to have a frame of reference. For
small delays, we observe that the responses happen mostly
in a narrow range, with a big spread in time. The core with
higher probability of arrival times also happens to be below
the blue dashed line. This means that the excitable responses
generated by resonance of the two pulses are created a bit
faster than the response of a single perturbation which is
coherent with the observation that a stronger perturbation can
generate a response faster than a weaker perturbation [35].
Another observation is that, even though it is not visible in
the efficiency curve, there is still some interaction between
the two responses for delays between 0.4 and 0.6 ns. In this
range the response time histogram shows gaps and lines that
are not coherent with a single sum of the two perturbations as
with longer delays. This weak interaction slowly disappears
for delays longer than 0.7–0.8 ns, which is the same order of
magnitude of the interaction time between two perturbations
already observed in [35].
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IV. AD HOC MODELING: BEYOND THE OVERDAMPED
PENDULUM

Interestingly, the reduction of the dynamics of a laser with
injected signal to that of the optical phase leads to describing
the laser with the Adler equation, which also describes an
overdamped mechanical oscillator with forcing [36] and is
also known in neurosciences as the θ -model or Ermentrout-
Kopell canonical model [31,37]. In [36], the case of finite
damping (presence of inertia) was also analyzed, leading to
bistability between the locked and the oscillating solution. As
a pure ad hoc phenomenological modeling, we consider the
response of a damped (but not overdamped) pendulum with
fluid torque, i.e., an Adler equation with a small inertial term.
In practice, what we model here is that, after the first pulse
perturbation, the pendulum does not simply relax into the
fixed point but instead oscillates around it a few times. If we
can time the second perturbation so that it kicks the pendulum
when it oscillates closer to the unstable point, then it is more
likely that an excitable response will be triggered. This added
dimension (inertia) in the phase space has been shown to
heavily impact the interspike time distribution in the case
of an excitable system with noise [38] and also to strongly
impact the transition to synchrony in a modified Kuramoto
model [39]. Here we check numerically that indeed, this
new dimension adds to the integrate and fire mechanism and
leads to a maximum in the efficiency curves as observed
experimentally.

First we check in the Adler model [a class 1 neuron model,
Eq. (1)] that an integrate-and-fire response should follow a
pair of perturbations. This integrator property can be seen
in the numerical simulations in Fig. 5. Here we simulate the
perturbed Adler model with white noise shown in Eq. (1).
The integration algorithm is the Euler-Maruyama method with
Gaussian white noise 〈ξ (t )〉 = 0, 〈ξ (t )ξ (t − τ )〉 = βδ(τ )
with β = 0.08 as the weight parameter of the random
variables.

φ̇ = ω + �ω(t ) − sin φ + ξ (t ), (1)

where �ω(t ) is the perturbation, with the shape of two
Gaussians, which is applied with different delays. The effi-
ciency curve shows that, for small delays, the two pertur-
bations are added and we observe a phase jump of 2π (an
excitable event), while for delays larger than 1.5, we see no
response. This means that, when the two perturbations are
close enough, they get integrated and are able to overcome
the threshold and produce a response.

I φ̈ + φ̇ = ω + �ω(t ) − sin φ + ξ (t ). (2)

In the presence of an inertial term as in Eq. (2), the response
of the system to pairs of perturbation changes drastically.
Instead of the monotonous increase in the efficiency upon
delay reduction as in the pure Adler model (Fig. 5, top panel),
several maxima are easily observed for separations about 28,
50, and 70 time units, which indicates the resonator behavior.
We note that clearly the efficiency also increases for shorter
and shorter delays between perturbations (below 20 time
units) but this increase is less related to the resonator nature
of the system. In fact, as shown by the inset in Fig. 5, the two
Gaussian perturbations start to overlap for delays shorter than

FIG. 5. Integrator behavior of the Adler equation (top) and res-
onator behavior in the presence of inertia (bottom). Top: Numerical
response time histogram and efficiency curve of Eq. (1), with ω =
0.01 and β = 0.08, constructed from 10 000 events for each delay.
Inset: Shape of the perturbation for a delay of 1.3 (at approximately
0.5 efficiency). Each of the two Gaussians has an amplitude of 2.8 Hz
and standard deviation of 0.35. Bottom: Numerical response time
histogram and efficiency curve of Eq. (2), with ω = 0.01, I = 10,
and β = 0.08, constructed from 20 000 events for each delay. The
perturbation is made of two Gaussians with amplitude of 0.96 Hz
and standard deviation of 5.65. Inset: Shape of the perturbation for a
delay of 20.

20 time units and the resulting perturbation is not subthreshold
anymore.

In Sec. III, we have demonstrated that the semiconduc-
tor laser with injection, often described in terms of the
Adler equation when discussing excitability, can present a
resonator behavior. This resonant feature is absent from the
pure Adler model, which is known as an integrator neuron.
From the analysis above, we conclude that a small inertial
term (absent in the pure Adler, overdamped limit) is sufficient
to recover the resonator behavior and to recover to some
extent the analogy between a mechanical and an optical
system.

V. LASER MODEL: FROM INTEGRATOR TO RESONATOR

Beyond the ad hoc modeling presented above, further
insight into the dynamics of the laser device can be gained
by analyzing the following set of dynamical equations used
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in [35] to analyze the integrator behavior.

dE

dt
= σ [EI + (1 − iα)DE − (1 + iθ )E] + ξ (t ),

dD

dt
= μ − (1 + |E|2)D, (3)

where E (complex variable) is the slowly varying envelope
of the electric field and D (real variable) is the population
variable proportional to the excess of carriers with respect to
transparency. This system was also integrated using the Euler-
Maruyama algorithm with β = 0.01 as the noise coefficient
of the system. Note that in the case of the D variable, the
noise was set to zero, as was done in [35]. This is because
the physically relevant noise source is the noise present in the
field, and not in the population.

The physical parameters are α, which is the linewidth
enhancement factor, and σ , which is σ = τc/τp where τp is
the photon lifetime, and τc is the carrier lifetime. The time of
the simulations is scaled to the carrier lifetime.

The three control parameters of the experiment here are
denoted by θ , μ, and EI . EI is the dimensionless complex am-
plitude of the externally applied field, μ is the pump parameter
of the slave laser proportional to the excess of injected current
Isl with respect to the threshold Ith, and the cavity detuning
θ which is related to the experimental detuning � = νS − νM

(defined as the frequency of the slave laser minus that of the
master) by

θ = −α + 2π�τp = −α + 2π�′

σ
, �′ = �τc. (4)

Assuming τc = 1 ns, �′ is just the detuning in GHz. In the
simulations we fixed the physical parameters α = 4, σ = 50
(i.e., τp = 20 ps if τc = 1 ns). The optical injection strength
was then set to μ = 15, and we chose the input intensity |EI |
to be either 0.3 or 0.8, with the phase of the injected field
equal to zero (φI = 0). The detuning �′ was chosen as to
be very close to the saddle-node transition in the bifurcation
diagram of Fig. 6, but not too far from the Hopf bifurcation.
We chose two different values: �′ = 4.2 and �′ = 4.8, and
the difference between the two cases will be discussed later.

As already explained in [35], in our range of parameters
the system is governed by three fixed points: un unstable focus
very close to the origin in the complex plane [Re(E), Im(E)]
(the blue point in Figs. 7 and 8) and a couple of stable-
unstable nodes that arise from a saddle node on invariant circle
bifurcation (the green point is the stable node, and the red
point is the saddle).

Furthermore, our model can be seen as a slow-fast system.
We can in fact rewrite it as

dE

dt
= EI + (1 − iα)DE − (1 + iθ )E ≡ f (E,D),

dD

dt
= ε[μ − (1 + |E|2)D] ≡ g(E,D, ε), (5)

where ε ≡ 1/σ = 0.02 with our choice of parameters. We
then know from slow-fast systems theory and more particu-
larly from geometric singular perturbation theory [40,41], that
where the critical manifold is stable (i.e., all the eigenvalues
of the Jacobian calculated on the manifold have negative real
part), the system will asymptotically converge toward the

FIG. 6. Bifurcation diagram of principal codimension 1 bifurca-
tions, with α = 4, σ = 50, and μ = 15. The diagram shows a Fold-
Hopf bifurcation, where a saddle-node and a Hopf bifurcation collide
on a single point. The parameters for the simulations are chosen
in the region in between the Hopf and the saddle node bifurcation.
The pink (right) and cyan (left) points correspond to the parameter
set in which the resonator behavior is analyzed (pink being closest
to the experimental observation) while the orange square shows the
parameter set we chose for the integrator regime.

slow manifold. Here the critical manifold is defined by the
parametric curve:

f (E,D) = 0 → E(D) = EI

(1 + iθ ) − (1 − iα)D
.

(6)

It has the shape of a string going from negative values of D

toward positive values of D close to the origin, with a circular
loop that develops around 0.6 < D < 1.0. From a numerical
analysis we know that it is stable in the green continuous
regions in Fig. 7. Near these regions, the systems will then
converge toward the slow manifold, possibly with some os-
cillations. These oscillations are the ones commonly referred
to as “relaxation oscillation” in laser physics, although in
this specific instance they do not show the typical features of
slow-fast relaxation oscillators (see Appendix). The couple of
saddle-node points lie exactly on this loop.

In our simulations, we always start at the stable point. We
then perturb the system with a phase perturbation γ (t ), which
has the shape of a double-Gaussian pulse, where each pulse
has a variable height and a standard deviation of 0.03 ns (so
that the full width at half maximum is 0.07 ns), and the delay
between the two pulses is varied from 0.2 to 0.8 ns. We apply
the perturbation to the phase of the injected field as follows:

dE

dt
= σ [EIe

iγ (t ) + (1 − iα)DE − (1 + iθ )E] + ξ (t ),

(7)

which is analogous to the phase perturbation applied in the
experiment.

It is well established that in the range of parameters
(especially in terms of � and EI ) close to the saddle-node
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FIG. 7. Critical manifold and fixed points. The green (down-
ward) continuous part of the critical manifold is stable; the red
dashed part (upward) is unstable. The red (bottom) dot is the saddle
point and the green (top right) dot is stable. The blue dot (left) is
the unstable focus, which cannot be seen in the upper panel as it lies
much higher in the D direction of phase space. Starting very close
to the red saddle point, the system can relax back to the green stable
fixed point following either of the two trajectories depending on the
exact initial conditions (purple or blue lines, simulations without
noise starting close to the red saddle point, �′ = 4.2).

bifurcation, the system can be modeled with the Adler equa-
tion, and therefore it should behave as an integrator. Further
away from this parameter region, we expect the system to
behave as a resonator. This transition from one to the other
behavior is analyzed in Fig. 8. The black triangle denotes
the application of the second perturbation and the blue, red,
and green dots in phase space denote as before the unstable
focus, saddle, and stable fixed points, respectively. In the
[Re(E),D] plane, the unstable focus is not visible as it lies

close to the origin in the Argand plane (EA ≈ 0) and therefore
DA ≈ μ = 15. In the left part of the figure, we show the
integrator behavior observed for �′ = 2.45 and |EI | = 0.3.
The first two rows show two different simulations performed
for a delay of 0.2 and 0.6 ns. In all cases, we start the
simulation at the stable (green) fixed point, and we return at
the end of the simulation time to the same point. We then
apply the first perturbation and we observe that, after the effect
of the perturbation, the system is displaced from the critical
manifold but comes back to its original point almost without
laser relaxation oscillations (better seen on the third column
in a projection on the Re(E)-D plane). Here if we send a
double-pulse perturbation, we find a clear integrator behavior
which closely resembles the simulations of the Adler model
since two perturbations which are separated by 0.2 ns trigger
a response (top row) while two perturbations separated by
0.6 ns (second row) do not. Repeating the simulations varying
the delay and introducing a noise of β = 0.01, we get the
efficiency figure in the bottom row, which is very similar to
that of the Adler model (Fig. 5).

In contrast, the resonator case can be observed with �′ =
4.2. The simulations are shown on the right side of Fig. 8.
Here the first two rows show two different simulations per-
formed for a delay of 0.35 and 0.42 ns. This time, after the first
perturbation the system relaxes back toward its stable fixed
point but clearly oscillates around it a few times. Again, the
role of these laser relaxation oscillations is more visible in
the Re(E)-D plane (rightmost panel). Quite importantly, it
is the coupling between amplitude and phase due to the
linewidth enhancement factor α which is crucial to bring the
system close to the separatrix. If we apply a second perturba-
tion (represented by the black triangle) the system is displaced
again, and if the timing is right so that the second perturbation
comes when the system is already going anticlockwise during
the oscillations, then the two perturbations will sum up and
trigger an excitable event. This happens for a delay of 0.42 ns
but not for a delay of 0.35 ns, which indicates a nonintegrator
behavior. As before, performing statistical analysis in pres-
ence of noise and varying the delay between the two inputs,
we can observe that the efficiency of the double perturbations
oscillates with the delay between the perturbations (bottom
row). This is a clear example of a resonator feature, which in
this case is due to the laser converging toward its stable fixed
point in an oscillatory fashion. The period of these oscillations
is of about 0.16 ns, which is coherent with a theoretical
calculation of the laser relaxation oscillations in this system
given our parameter range (see Appendix for more details).

Since the integrator behavior is clearly found when reso-
nance features vanish, the transition between the two regimes
is gradual. In fact, between these very strongly typed exam-
ples of integrator and resonator types, a simulation which
closely matches the experimental findings can be obtained
as shown in Fig. 9. Here the perturbation strength (i.e., the
amplitude of the pulses) is of of 2.96 rad or 169◦. Performing
the same statistical analysis as before, we obtain a single peak
in the efficiency of the perturbation. Actually, this peak is
more of a plateau due to the efficiency reaching unity, with
a slight bump at the end due to multipulse excitability.

As before, the origin of the bump in the efficiency curve
comes from the laser relaxation oscillations, even though in
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FIG. 8. Left: Integrator example (�′ = 2.45, |EI | = 0.3). First column: time series showing the perturbations, the emitted intensity, the
relative phase, and the population inversion. Second column: trajectory in the Argand plane. Third column: phase-space projections on the
Re(E), D plane. Black triangles indicate the occurrence of the second perturbation. Blue (left), red (bottom), and green (right) dots: unstable
focus, saddle, and stable fixed point. Top row: two perturbations separated by 0.2 ns trigger a response (no noise). Middle row: two perturbations
separated by 0.6 ns do not (no noise). Bottom row: efficiency of repeated perturbations with varying delay between them (β = 0.01). Right:
Resonator example (�′ = 4.2). Two perturbations separated by 0.35 ns do not trigger a pulse (top, no noise), but perturbations separated by
0.42 ns do (middle row, no noise). Bottom row: the efficiency shows several maxima depending on the time separation between perturbations
(β = 0.01).

the second case we do not see other bumps in efficiency for
successive time delays. The reason why in the experiment we
were only able to see only one single maximum is twofold.
Firstly, we discarded the cases where a linear and an excitable
response were not clearly separable by using a threshold in
the height of the generated pulse. Secondly, the amplitude
of the perturbation used in the numerics to observe a strong
resonance feature is large (203◦) compared to the second case
(169◦), and that goes beyond the maximum amplitude that can
be applied in the experiment, which is around 170-180◦.

In Figs. 8 and 9 the efficiency is sometimes apparently
larger than unity. This is due to the fact that in the simulations

FIG. 9. Resonator example and efficiency (�′ = 4.8, β = 0.01).

the detection of the excitable pulses was performed on the
phase of the electric field and counting an excitable event
every time there is a 2π phase rotation. Thus, the efficiency
larger than unity is associated to those realizations in which
the response of the system consists of more than one 2π

rotation (which we discuss later in Sec. VII).

VI. SEPARATRIX

In the previous section we have introduced the slow mani-
fold as a reference structure that can help one understand the
numerical simulations. The attractive sections of the mani-
fold are especially important, since the system will converge
toward them if it is sufficiently near. Another structure that
can give us insights into the nature of the excitability of the
system for different parameters is the separatrix manifold,
which in this context is the two-dimensional (2D) surface in
the three-dimensional (3D) phase space Re(E)-Im(E)-D that
separates the regions where the system is excited from the
regions where it is not. In particular, whenever the system
starts from a not excited region and then crosses the separatrix,
soon after it will emit one or more excitable responses.

Figure 10 displays the part of the separatrix structure that
is of most interest to us, i.e., when we are close to the

062211-7



DOLCEMASCOLO, GARBIN, PEYCE, VELTZ, AND BARLAND PHYSICAL REVIEW E 98, 062211 (2018)

FIG. 10. 3D plot of the critical manifold, saddle-node pair, and
the separatrix in phase space Re(E)-Im(E)-D. Bottom figures are a
top-down view of top figures. Left figures: separatrix manifold in the
integrator regime (�′ = 2.45, |EI | = 0.3). Right figures: separatrix
manifold in the resonator regime (�′ = 4.2, |EI | = 0.8). The color
coding of the surface is proportional to D to improve readability in
the [Re(E), Im(E)] plane.

saddle-node pair. The separatrix is calculated both for the
integrator (left figures) and the resonator (right figures) set
of parameters. It is computed by following the evolution of a
large number of initial conditions (in this case 853 = 614 125
initial conditions) arranged in a 3D grid. After running the
numerical simulations starting from each point on the grid
(without noise), we separate the ones that display at least an
excitable response from the ones that do not. Each point of
the grid will then be labeled with either a 1 or a 0 depending
on the result, so that by the end of this procedure we obtain
a 3D discrete scalar field. By employing a marching cubes
algorithm [42], we can extract the polygonal mesh of the iso-
surface that separates the two sets, and plot it as a 2D surface.

By looking at the shape of the separatrix with respect to
the saddle-node pair, we can better interpret the behavior of
the system as an integrator or a resonator. When observed
from the stable node where the system initially rests, in both
cases the separatrix surface has the shape of an open tube
that is mostly parallel to the D direction. It envelops large
segments of the slow manifold close to E = 0 and intersects
the slow manifold in the red saddle point. Since the system
will stay on the stable point when unperturbed and it does
not travel too far from the slow manifold when perturbed, the
most important part of the separatrix is the surface near the
stable point, which can be approximated by a curved section
of a cylinder with an axis oriented along D. In the case of
the integrator regime (left figures) this section is very close
to the fixed node, so that a perturbation in the right direction
can easily push the system over the separatrix and generate
an excitable response. Furthermore, the relaxation oscillations
have a very small amplitude, so that, given two perturbations,

FIG. 11. Multipulse response obtained when applying strong
perturbations outside of the integrator regime. Larger perturbations
cause a larger number of spikes, but there is a clear stochastic
component in the phenomenon. Beyond 140◦ all perturbations elicit
a response but already at 120◦ the double-spike response is the most
probable one.

they will not add more efficiently for a particular delay, at
variance with the integrator behavior observed in the exper-
iment. By comparison in the resonator regime (right figures),
the separatrix near the stable point is slightly far from the point
itself. After a first perturbation, the relaxation oscillations will
follow, and they will occur in a plane which is almost parallel
to the D direction. If a second perturbation is well placed
in time, it can then push the system over the separatrix and
trigger a response. Because of the laser relaxation oscillations
and the semiconductor linewidth enhancement factor α, in
this case the timing of the perturbation is important. This is
reflected in the efficiency curve of Figs. 8 and 9 that display a
resonance feature.

VII. MULTIPULSE DYNAMICS

In the previous section we mentioned the existence of
multipulse response to perturbations. These multiple spikes
have already been observed in semiconductor lasers with
optical injection but in general not in response to controlled
perturbations. Here we show that multiple pulses can be
nucleated by perturbations and that the probability to emit
one, two, or more consecutive spikes is controlled by the
strength of the perturbation.

We show in Fig. 11 the different responses which can
be obtained when moving away from the simplest excitable
regime. The data was obtained by applying a series of 3800
perturbations of increasing amplitude and measuring the re-
sponse of the system. An example is shown in the inset where
the background reflects a two-dimensional histogram of the
many possible responses of the system, with an example
trace as an overlay. The bottom panel shows the measured
probability of 0,1,...,12 emitted pulses in response to one
perturbation. For low perturbation amplitude (up to 100◦) no
responses are detected. For increasing perturbation amplitude,
single and double pulses are detected until at about 120◦ the
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FIG. 12. Multipulse response consisting of 6π phase rotation in
response to perturbation (�′ = 4.2, delay of 0.27 ns, β = 0.01).

double-pulse response becomes more frequent than the single
pulses. The same features can be visualized in the top panel,
which also includes the “total” efficiency in terms of detecting
any nonzero number of spikes. It can also be appreciated that
above 130◦, the three-spikes response becomes more frequent
than the single spike, while never reaching the same value as
the double spike. Of course these features cannot be observed
in the simple Adler model and they can be related to the carrier
dynamics which is also responsible for the resonator feature.
From an applicative point of view, the resonance phenomenon
enables nontrivial temporal summation operation and here we
see that the multipulse behavior can be used to realize an
analog-to-digital conversion where the perturbation is con-
verted into a series of pulses whose number is largely set by
the height of the incoming pulses.

Indeed, as described in Sec. V, multipulse can be observed
in response to repeated perturbations in the resonator regime,
as shown in Fig. 12. In this case, three distinct spikes can be
detected, which correspond to three successive rotations of the
phase around the unstable branch of the slow manifold.

VIII. DISCUSSION AND CONCLUSION

As we saw both in the experimental results and in the sim-
ulations, the system of a laser with injected signal subjected to
a phase perturbation can act both as an integrator and as a res-
onator. This means that, if we stimulate it at a frequency which
is close (or a multiple) of the relaxation oscillation period, it
will respond with an excitable orbit, while for other frequen-
cies it will not. In this regime, multipulse responses predicted
in [32] can also be observed in response to perturbations, with
increasing perturbations leading to a larger number of spikes
in the response. However, these different responses are dif-
ficult to clearly associate to well-separated homoclinic teeth.
We attribute this to the effect of noise in conditions in which
the homoclinic teeth may be very close to each other [33].
From a laser point of view, the existence of different excitabil-
ity regimes and the actual difficulty to isolate experimentally
the simplest “integrate and fire” behavior of the Adler equa-
tion can be expected from the finite value of the amplitude-
phase coupling α in quantum-well media, which plays the
same role [43] as the atomic detuning analyzed in [44].

From a neuroscience analogy point of view, the above
observations imply that the quantum-well semiconductor laser
with optical injection in this range of parameters behaves
more like a class 2 neuron [45] than a class 1. They are a

class of neurons where the sequence of action potentials are
generated in a certain frequency band that is relatively insensi-
tive to changes in the strength of the applied current and there
appears to be a minimum frequency of the generated spikes
which is associated with a discontinuity in the frequency-
current curve. This point also matches the experimental ob-
servation reported in [18] that in this experimental device the
unlocking transition is in general observed at a nonstrictly
zero frequency. Common types of resonator neurons include
most cortical inhibitory interneurons, including the Fast Spik-
ing type, and brainstem mesencephalic V neurons and stellate
neurons of the entorhinal cortex [45]. The models that are
usually used in order to reproduce the behavior of a class 2
neuron are those which exhibit a Hopf bifurcation, as in the
case of the Fitzhugh-Nagumo model. In these types of models
the existence of a discontinuity in the frequency-current curve
comes from the fact that, at the bifurcation point, there is a
change in dynamics from a stable point to a spiking limit
cycle, which is borne with a defined frequency. Following the
emission of an excitable spike, such systems relax back to
their stable point via oscillations which allow for a resonance
effect. In biology, this type of oscillations can be observed
experimentally as membrane potential oscillations [46,47].

Here we observe that both integrator and resonator dy-
namics can be obtained depending on parameters. The same
type of switch from an integrator to a resonator has also been
seen in neurons. In [48] for example, it has been observed
how pyramidal neurons can switch from being integrators in
vitro to resonators under in vivo–like conditions, and in [49]
it has been shown how a particular parameter (the density
of voltage-gated potassium channels) was able to shift the
dynamics of the model of the same neurons from a class 1
to a class 2.

Besides this biological analogy, the integrator versus res-
onator properties of semiconductor lasers operated in an ex-
citable regime may be relevant to their application in spike
processing. For instance, the integrator property may be used
to provide temporal summation [28] for phase encoded data
and the resonator effect may be used to provide an advanced
coincidence detection feature. The capability to generate mul-
tiple pulses upon reception of larger perturbations may be
used for analog-to-spike signal conversion, playing a com-
plementary role of the recently demonstrated digital-to-spike
conversion [50]. Finally, these features may be relevant for the
computational properties of networks built on these excitable
building blocks, especially because they may strongly impact
the locking dynamics of collections of excitable nodes [39]. In
particular, when an excitable system is coupled to itself after
a long delay [51], pure refractory time is expected to give rise
to repulsive interactions between spikes [52] while resonator
features may be at the origin of clusters [53].
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APPENDIX: ABOUT LASER RELAXATION FREQUENCY
AND DAMPING

In most settings, the term “relaxation oscillations” refers
to the dynamics typically observed in the slow-fast Van der
Pol oscillator (see, e.g., [54] for an interesting perspective
and [15] for a laser example). In laser physics the relaxation
process of an unperturbed semiconductor laser toward its
stable lasing solution is in general oscillatory due to the very
different timescales of the electric field and carriers (see,
e.g., [55,56]). Thus the term relaxation oscillations is widely
used even very close to the stable fixed point, where oscil-
lations typically do not display prominently the distinctive
features of slow-fast systems.

Specifically, in the case of a semiconductor laser, the
small signal frequency of these oscillations can be calculated
analytically [55] as

�RO = √
2κγ‖(a − 1) (A1)

with a damping rate

�RO = γ‖, (A2)

where κ = 1/τp is the cavity damping constant (the inverse of
the photon lifetime inside the cavity), γ‖ = 1/τc is the inverse

of the carriers lifetime, and a is the value of D for the trivial
stationary solution of the laser model, so that Ds = a when
|Es |2 = 0, which is the same as μ in our case.

In our simulations we assumed that τc = 1 ns, σ = 50, and
μ = 15, so that we obtain a value of the relaxation oscillations
frequency:

�RO =
√

2
σ

τ 2
c

(μ − 1) = 37.42 ns−1, (A3)

where we have made use of the fact that κγ‖ = 1/(τcτp ) =
σ/τ 2

c . The period of the relaxation oscillations in our case is
then given by T = 2π

�RO
= 0.17 ns, which is not too far from

the value of 0.12 ns that was found experimentally.
In the presence of a weak injected field, the small signal of

these oscillations is not altered [57] and only the damping rate
changes, eventually leading to the Hopf bifurcation. However,
the frequency determined here is only valid for small linear
oscillations around the stable fixed point and may not be
valid for large excursions in the laser intensity or population
inversion, whose period may differ markedly from that of the
small amplitude oscillations [55].

[1] C.-S. Poon and K. Zhou, Front. Neurosci. 5, 108 (2011).
[2] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M.

Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, Opt.
Express 20, 3241 (2012).

[3] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, Nat.
Commun. 4, 1364 (2013).

[4] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G.
Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P.
Bienstman, Nat. Commun. 5, 3541 (2014).

[5] F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S.
Massar, Sci. Rep. 6, 22381 (2016).

[6] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, and M. Jacquot, Phys. Rev. X 7, 011015 (2017).

[7] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M.
Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al.,
Nat. Photonics 11, 441 (2017).

[8] A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Drémeau, S.
Gigan, and F. Krzakala, in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (IEEE,
New York, 2016), pp. 6215–6219.

[9] P. R. Prucnal, B. J. Shastri, T. F. de Lima, M. A. Nahmias, and
A. N. Tait, Adv. Opt. Photonics 8, 228 (2016).

[10] A. L. Hodgkin, A. F. Huxley, and B. Katz, J. Physiol. 116, 424
(1952).

[11] A. Hodgkin and A. Huxley, J. Physiol. 117, 500 (1952).
[12] P. Coullet, D. Daboussy, and J. R. Tredicce, Phys. Rev. E 58,

5347 (1998).
[13] M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J. R.

Tredicce, Phys. Rev. E 55, 6414 (1997).
[14] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M.

Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G.
Huyet, Phys. Rev. Lett. 98, 153903 (2007).

[15] S. Barland, O. Piro, M. Giudici, J. R. Tredicce, and S. Balle,
Phys. Rev. E 68, 036209 (2003).

[16] J. L. A. Dubbeldam, B. Krauskopf, and D. Lenstra, Phys. Rev.
E 60, 6580 (1999).

[17] M. A. Larotonda, A. Hnilo, J. M. Mendez, and A. M. Yacomotti,
Phys. Rev. A 65, 033812 (2002).

[18] M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S.
Barland, Phys. Rev. E 88, 022923 (2013).

[19] B. Garbin, M. Turconi, M. Giudici, G. Tissoni, M. Feyereisen,
and S. Barland, in 2013 Sixth “Rio De La Plata” Workshop on
Laser Dynamics and Nonlinear Photonics (IEEE, 2013).

[20] T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. Torrent,
and C. Masoller, Opt. Express 23, 5571 (2015).

[21] A. Hurtado, I. D. Henning, and M. J. Adams, Opt. Express 18,
25170 (2010).

[22] A. Hurtado, K. Schires, I. Henning, and M. Adams, Appl. Phys.
Lett. 100, 103703 (2012).

[23] A. Hurtado and J. Javaloyes, Appl. Phys. Lett. 107, 241103
(2015).

[24] T. Deng, J. Robertson, and A. Hurtado, IEEE J. Sel. Top.
Quantum Electron. 23, 1 (2017).

[25] T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R.
Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bien-
stman, Opt. Express 20, 20292 (2012).

[26] S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, Opt. Lett. 36,
4476 (2011).

[27] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz,
and S. Barbay, Phys. Rev. Lett. 112, 183902 (2014).

[28] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz,
and S. Barbay, Opt. Lett. 40, 5690 (2015).

[29] B. Romeira, J. Javaloyes, C. N. Ironside, J. M. Figueiredo, S.
Balle, and O. Piro, Opt. Express 21, 20931 (2013).

062211-10

https://doi.org/10.3389/fnins.2011.00108
https://doi.org/10.3389/fnins.2011.00108
https://doi.org/10.3389/fnins.2011.00108
https://doi.org/10.3389/fnins.2011.00108
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1038/srep22381
https://doi.org/10.1038/srep22381
https://doi.org/10.1038/srep22381
https://doi.org/10.1038/srep22381
https://doi.org/10.1103/PhysRevX.7.011015
https://doi.org/10.1103/PhysRevX.7.011015
https://doi.org/10.1103/PhysRevX.7.011015
https://doi.org/10.1103/PhysRevX.7.011015
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1364/AOP.8.000228
https://doi.org/10.1364/AOP.8.000228
https://doi.org/10.1364/AOP.8.000228
https://doi.org/10.1364/AOP.8.000228
https://doi.org/10.1113/jphysiol.1952.sp004716
https://doi.org/10.1113/jphysiol.1952.sp004716
https://doi.org/10.1113/jphysiol.1952.sp004716
https://doi.org/10.1113/jphysiol.1952.sp004716
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1103/PhysRevE.58.5347
https://doi.org/10.1103/PhysRevE.58.5347
https://doi.org/10.1103/PhysRevE.58.5347
https://doi.org/10.1103/PhysRevE.58.5347
https://doi.org/10.1103/PhysRevE.55.6414
https://doi.org/10.1103/PhysRevE.55.6414
https://doi.org/10.1103/PhysRevE.55.6414
https://doi.org/10.1103/PhysRevE.55.6414
https://doi.org/10.1103/PhysRevLett.98.153903
https://doi.org/10.1103/PhysRevLett.98.153903
https://doi.org/10.1103/PhysRevLett.98.153903
https://doi.org/10.1103/PhysRevLett.98.153903
https://doi.org/10.1103/PhysRevE.68.036209
https://doi.org/10.1103/PhysRevE.68.036209
https://doi.org/10.1103/PhysRevE.68.036209
https://doi.org/10.1103/PhysRevE.68.036209
https://doi.org/10.1103/PhysRevE.60.6580
https://doi.org/10.1103/PhysRevE.60.6580
https://doi.org/10.1103/PhysRevE.60.6580
https://doi.org/10.1103/PhysRevE.60.6580
https://doi.org/10.1103/PhysRevA.65.033812
https://doi.org/10.1103/PhysRevA.65.033812
https://doi.org/10.1103/PhysRevA.65.033812
https://doi.org/10.1103/PhysRevA.65.033812
https://doi.org/10.1103/PhysRevE.88.022923
https://doi.org/10.1103/PhysRevE.88.022923
https://doi.org/10.1103/PhysRevE.88.022923
https://doi.org/10.1103/PhysRevE.88.022923
https://doi.org/10.1364/OE.23.005571
https://doi.org/10.1364/OE.23.005571
https://doi.org/10.1364/OE.23.005571
https://doi.org/10.1364/OE.23.005571
https://doi.org/10.1364/OE.18.025170
https://doi.org/10.1364/OE.18.025170
https://doi.org/10.1364/OE.18.025170
https://doi.org/10.1364/OE.18.025170
https://doi.org/10.1063/1.3692726
https://doi.org/10.1063/1.3692726
https://doi.org/10.1063/1.3692726
https://doi.org/10.1063/1.3692726
https://doi.org/10.1063/1.4937730
https://doi.org/10.1063/1.4937730
https://doi.org/10.1063/1.4937730
https://doi.org/10.1063/1.4937730
https://doi.org/10.1364/OE.20.020292
https://doi.org/10.1364/OE.20.020292
https://doi.org/10.1364/OE.20.020292
https://doi.org/10.1364/OE.20.020292
https://doi.org/10.1364/OL.36.004476
https://doi.org/10.1364/OL.36.004476
https://doi.org/10.1364/OL.36.004476
https://doi.org/10.1364/OL.36.004476
https://doi.org/10.1103/PhysRevLett.112.183902
https://doi.org/10.1103/PhysRevLett.112.183902
https://doi.org/10.1103/PhysRevLett.112.183902
https://doi.org/10.1103/PhysRevLett.112.183902
https://doi.org/10.1364/OL.40.005690
https://doi.org/10.1364/OL.40.005690
https://doi.org/10.1364/OL.40.005690
https://doi.org/10.1364/OL.40.005690
https://doi.org/10.1364/OE.21.020931
https://doi.org/10.1364/OE.21.020931
https://doi.org/10.1364/OE.21.020931
https://doi.org/10.1364/OE.21.020931


RESONATOR NEURON AND TRIGGERING MULTIPULSE … PHYSICAL REVIEW E 98, 062211 (2018)

[30] B. Romeira, R. Avó, J. M. Figueiredo, S. Barland, and J.
Javaloyes, Sci. Rep. 6, 19510 (2016).

[31] E. M. Izhikevich, IEEE Trans. Neural Networks 10, 499 (1999).
[32] S. Wieczorek, B. Krauskopf, and D. Lenstra, Phys. Rev. Lett.

88, 063901 (2002).
[33] B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, Phys. Rev.

E 83, 026207 (2011).
[34] R. Adler, Proc. IRE 34, 351 (1946).
[35] B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni,

and S. Barland, Phys. Rev. E 95, 012214 (2017).
[36] P. Coullet, J.-M. Gilli, M. Monticelli, and N. Vandenberghe,

Am. J. Phys. 73, 1122 (2005).
[37] G. B. Ermentrout and N. Kopell, SIAM J. Appl. Math. 46, 233

(1986).
[38] M. C. Eguia and G. B. Mindlin, Phys. Rev. E 61, 6490 (2000).
[39] S. Olmi, A. Navas, S. Boccaletti, and A. Torcini, Phys. Rev. E

90, 042905 (2014).
[40] N. Fenichel, J. Differ. Equuations 31, 53 (1979).
[41] N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-

Fast Dynamical Systems (Springer Science & Business Media,
Berlin, 2006).

[42] W. E. Lorensen and H. E. Cline, SIGGRAPH Comput. Graph.
21, 163 (1987).

[43] M. G. Zimmermann, M. A. Natiello, and H. G. Solari, Chaos
11, 500 (2001).

[44] H. G. Solari and G.-L. Oppo, Opt. Commun. 111, 173 (1994).
[45] E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT,

Cambridge, MA, 2007).
[46] L. W. Leung and C. Y. Yim, Brain Res. 553, 261 (1991).
[47] B. H. Bland, L. V. Colom, J. Konopacki, and S. H. Roth, Brain

Res. 447, 364 (1988).
[48] S. A. Prescott, S. Ratté, Y. De Koninck, and T. J. Sejnowski, J.

Neurophysiol. 100, 3030 (2008).
[49] H. Zeberg, H. P. C. Robinson, and P. Århem, J. Neurophysiol.

113, 537 (2015).
[50] P. Y. Ma, B. J. Shastri, T. F. de Lima, A. N. Tait, M. A. Nahmias,

and P. R. Prucnal, Opt. Express 25, 33504 (2017).
[51] B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, Nat. Com-

mun. 6, 5915 (2015).
[52] S. Terrien, B. Krauskopf, N. G. Broderick, R. Braive, G.

Beaudoin, I. Sagnes, and S. Barbay, Opt. Lett. 43, 3013 (2018).
[53] B. Garbin, J. Javaloyes, S. Barland, and G. Tissoni, Chaos 27,

114308 (2017).
[54] J.-M. Ginoux and C. Letellier, Chaos 22, 023120 (2012).
[55] L. Lugiato, F. Prati, and M. Brambilla, Nonlinear Optical

Systems (Cambridge University Press, Cambridge, UK, 2015).
[56] G. L. Lippi, S. Barland, and F. Monsieur, Phys. Rev. Lett. 85,

62 (2000).
[57] B. Kelleher, S. P. Hegarty, and G. Huyet, J. Opt. Soc. Am. B 29,

2249 (2012).

062211-11

https://doi.org/10.1038/srep19510
https://doi.org/10.1038/srep19510
https://doi.org/10.1038/srep19510
https://doi.org/10.1038/srep19510
https://doi.org/10.1109/72.761707
https://doi.org/10.1109/72.761707
https://doi.org/10.1109/72.761707
https://doi.org/10.1109/72.761707
https://doi.org/10.1103/PhysRevLett.88.063901
https://doi.org/10.1103/PhysRevLett.88.063901
https://doi.org/10.1103/PhysRevLett.88.063901
https://doi.org/10.1103/PhysRevLett.88.063901
https://doi.org/10.1103/PhysRevE.83.026207
https://doi.org/10.1103/PhysRevE.83.026207
https://doi.org/10.1103/PhysRevE.83.026207
https://doi.org/10.1103/PhysRevE.83.026207
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1103/PhysRevE.95.012214
https://doi.org/10.1103/PhysRevE.95.012214
https://doi.org/10.1103/PhysRevE.95.012214
https://doi.org/10.1103/PhysRevE.95.012214
https://doi.org/10.1119/1.2074027
https://doi.org/10.1119/1.2074027
https://doi.org/10.1119/1.2074027
https://doi.org/10.1119/1.2074027
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1103/PhysRevE.61.6490
https://doi.org/10.1103/PhysRevE.61.6490
https://doi.org/10.1103/PhysRevE.61.6490
https://doi.org/10.1103/PhysRevE.61.6490
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1103/PhysRevE.90.042905
https://doi.org/10.1016/0022-0396(79)90152-9
https://doi.org/10.1016/0022-0396(79)90152-9
https://doi.org/10.1016/0022-0396(79)90152-9
https://doi.org/10.1016/0022-0396(79)90152-9
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1063/1.1397757
https://doi.org/10.1063/1.1397757
https://doi.org/10.1063/1.1397757
https://doi.org/10.1063/1.1397757
https://doi.org/10.1016/0030-4018(94)90157-0
https://doi.org/10.1016/0030-4018(94)90157-0
https://doi.org/10.1016/0030-4018(94)90157-0
https://doi.org/10.1016/0030-4018(94)90157-0
https://doi.org/10.1016/0006-8993(91)90834-I
https://doi.org/10.1016/0006-8993(91)90834-I
https://doi.org/10.1016/0006-8993(91)90834-I
https://doi.org/10.1016/0006-8993(91)90834-I
https://doi.org/10.1016/0006-8993(88)91141-9
https://doi.org/10.1016/0006-8993(88)91141-9
https://doi.org/10.1016/0006-8993(88)91141-9
https://doi.org/10.1016/0006-8993(88)91141-9
https://doi.org/10.1152/jn.90634.2008
https://doi.org/10.1152/jn.90634.2008
https://doi.org/10.1152/jn.90634.2008
https://doi.org/10.1152/jn.90634.2008
https://doi.org/10.1152/jn.00907.2013
https://doi.org/10.1152/jn.00907.2013
https://doi.org/10.1152/jn.00907.2013
https://doi.org/10.1152/jn.00907.2013
https://doi.org/10.1364/OE.25.033504
https://doi.org/10.1364/OE.25.033504
https://doi.org/10.1364/OE.25.033504
https://doi.org/10.1364/OE.25.033504
https://doi.org/10.1038/ncomms6915
https://doi.org/10.1038/ncomms6915
https://doi.org/10.1038/ncomms6915
https://doi.org/10.1038/ncomms6915
https://doi.org/10.1364/OL.43.003013
https://doi.org/10.1364/OL.43.003013
https://doi.org/10.1364/OL.43.003013
https://doi.org/10.1364/OL.43.003013
https://doi.org/10.1063/1.5006751
https://doi.org/10.1063/1.5006751
https://doi.org/10.1063/1.5006751
https://doi.org/10.1063/1.5006751
https://doi.org/10.1063/1.3670008
https://doi.org/10.1063/1.3670008
https://doi.org/10.1063/1.3670008
https://doi.org/10.1063/1.3670008
https://doi.org/10.1103/PhysRevLett.85.62
https://doi.org/10.1103/PhysRevLett.85.62
https://doi.org/10.1103/PhysRevLett.85.62
https://doi.org/10.1103/PhysRevLett.85.62
https://doi.org/10.1364/JOSAB.29.002249
https://doi.org/10.1364/JOSAB.29.002249
https://doi.org/10.1364/JOSAB.29.002249
https://doi.org/10.1364/JOSAB.29.002249



