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Double-period breathers in a driven and damped lattice
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Spatially localized and temporally oscillating solutions, known as discrete breathers, have been experimentally
and theoretically discovered in many physical systems. Here, we consider a lattice of coupled damped and
driven Helmholtz-Duffing oscillators in which we found a spatial coexistence of oscillating solutions with
different frequencies. Specifically, we demonstrate that stable period-doubled solutions coexist with solutions
oscillating at the frequency of the driving force. Such solutions represent period-doubled breathers resulting
from a stability overlap between subharmonic and harmonic solutions and exist up to a certain strength of the
lattice coupling. Our findings suggest that this phenomenon can occur in any driven lattice where the nonlinearity
admits bistability (or multi-stability) of subharmonic and harmonic solutions.
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Discrete breathers (DBs) are solutions to nonlinear lattice
systems that periodically oscillate in time and are exponen-
tially localized in space [1]. Discrete breathers have been stud-
ied theoretically and experimentally in a multitude of settings,
involving a wide array of physical mechanisms [2]. DBs have
been demonstrated experimentally and theoretically in studies
of ordered granular chains [3,4], as well as in nonlinear,
locally resonant magnetic metamaterials [5] and systems of
electromechanical resonators [6]. While discrete breathers
share many traits with solitons, they stand out because of their
localization brought about by a specific sensitivity to lattice
discreteness. Although dissipation and driving are typically
key experimental features, there are limited theoretical and
numerical studies of DBs [7] that include such effects.

Here we study a generic type of discrete breather solutions
that exist in the presence of both driving and damping and
take direct advantage of the intrinsic nonlinear phenomena
of period doubling. To the best of our knowledge, these
subharmonic breathers were first recognized in studies of
the nonlinear dynamics of double-stranded DNA [8,9] and
subsequently also explored in experimental and numerical
studies of periodically driven and damped chains of pendula
[10–12]. Here we chose a minimal model to elucidate the
phenomena of subharmonic breathers. We show that, similar
to more traditional DBs, oscillations with half the frequency
(double period) of the driving force can be maintained in a
localized region of a lattice (of oscillators) oscillating at the
frequency of the driving force.

As is well understood, period doubling occurs through a
bifurcation in a dynamical system in which a slight change in
a parameter value in the system’s equations leads to switching
to a new behavior with twice the period of the original system
[13,14]. A periodically driven nonlinear oscillator typically
responds with solutions that oscillate at the same frequency as
the periodic drive. In such systems, a period-doubling bifur-
cation is expressed through these solutions losing stability as

solutions oscillating at half the driving frequency gain stabil-
ity. One of the simplest examples of a system that exhibits this
behavior is the driven and damped Helmholtz-Duffing oscil-
lator. This model was used in various systems including logic
devices [15,16] and neural networks [17,18]. The dynamics of
the Helmholtz-Duffing oscillator is described by

d2y

dt2
+ y + y3 + by2 + γ

dy

dt
= f cos(ω0t ), (1)

where b is a tunable coefficient dictating the asymmetry of
the anharmonic potential, γ is the damping coefficient, and f

and ω0 are the strength and frequency of the periodic drive,
respectively. If nothing else is noted, we use the following
values for these parameters throughout this paper: b = 0.5,
γ = 0.2, and ω0 = 1. We vary the strength of the driving
force, f , as the bifurcation parameter, but the frequency ω0

could have been used in a similar manner. Figure 1 shows
a typical bifurcation diagram for the driven and damped
Helmholtz-Duffing oscillator (the bifurcation diagram was
derived using the AUTO numerical continuation program [19]).
As expected, Fig. 1 shows that for small values of the driving
force, f , the stable solution of Eq. (1) possesses the frequency
and period of the driving force. However, at f � 9, these
solutions lose stability, while solutions with half the frequency
(double period) of the drive emerge and are stable. These
double-period solutions similarly lose stability at f � 11
where quadrupled-period solutions (not shown) exist. For
even larger values of f , this scenario reverses, and stable
solutions with frequency ω0 and ω0/2 can be seen to emerge.
As a result, in the range 13 < f < 14, it can be observed that
both the ω0 and ω0/2 solutions are stable. Figure 2 shows
examples of these two stable solutions for f = 13.3. We
also investigated the bifurcation diagrams for different driving
frequencies; albeit more complicated, the same type of bista-
bility can be found for a wide range of driving frequencies.
Moreover, the amplitudes of the 1T and 2T solutions are
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FIG. 1. The bifurcation diagram of Eq. (1). The solid (dashed)
lines represent (un)stable solutions. The black lines correspond to
solutions with the same period as the driving force (T = 2π/ω0)
while the red (color online) lines correspond to solutions with the
doubled period. It should be noted that this is not the complete
bifurcation diagram for this range of values of f , as there are
additional branches of stable quadrupled period solutions, etc. The
parameters used in this bifurcation diagram are b = 0.5, γ = 0.2,
and ω0 = 1.

not very different for all the driving frequencies we explored.
Similarly, we found that varying the values of the friction and
the asymmetry parameters of the model does not broaden the
bistability range significantly nor does it change much the
difference between the amplitudes of the 1T and 2T solutions.

The existence of the two types of solutions is not new, and
the double-period bifurcation was extensively investigated
(e.g., Ref. [14]). However, much less attention was given to
the bistability of the solutions and to their possible coexis-
tence. The latter is of particular interest in a system of coupled
driven oscillators. In this context, a natural generalization of
the single Helmholtz-Duffing oscillator considered above is
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FIG. 2. (a) yT , the solution (solid red line) with the same fre-
quency as the driving force, and (b) y2T , the period-doubled solution
(solid red line). For clarity, both panels also show (dotted blue lines)
the driving force. The parameters are the same as in Fig. 1 with
f = 13.3 (corresponding to a value within the bistability range of
the two solutions).
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FIG. 3. The solutions of coupled driven oscillators with periodic
boundary conditions. The middle oscillator oscillates with a doubled
period while the other oscillators have the same frequency as the
driving force. The parameters are the same as in Fig. 2 with c = 0.1.

a discrete chain of coupled oscillators whose dynamics is
described by the following equation:

d2yn

dt2
= −yn − y3

n − by2
n − γ

dyn

dt
+ c(yn−1 − 2yn + yn+1)

+ f cos (ω0t ), n = 1, 2, . . . , N − 1, N. (2)

The first three terms on the right hand side describe the force
resulting from the asymmetric potential (the coefficient b

can be thought of as controlling the degree of asymmetry),
the fourth term describes the friction (with a friction coeffi-
cient γ ), the fifth term describes the linear coupling to the
nearest neighbors, and the last term describes the periodic
driving force. The equation is supplemented by the periodic
boundary conditions

yN+1 = y1,

y0 = yN . (3)

In what follows, we use the same parameters we used earlier
for the potential of each oscillator and different values for
the coupling strength, c. In Fig. 3, we show a stable solution
of a system of N = 11 coupled oscillators. The plane axes
correspond to the time (in units of the driving force period,
T ) and to the number of the oscillator, n. The vertical axis
corresponds to the value of the variable, yn(t ), during two
periods of the driving force. This solution demonstrates the
coexistence of a period-doubled solution (for n = 6, red line)
and the driving period solutions (for all other n’s, blue lines).
The coupling strength for the presented solution is c = 0.1.

To better illustrate the fact that two different solutions
coexist, we depict in Fig. 4 the power spectra of the coupled
oscillators. The middle oscillator (n = 6) shows peaks at ω0/2
and odd and even integer multiples of this frequency (cor-
responding to double the period of the driving force), while
all the other oscillators (only n = 1 and n = 5 are shown for
clarity) only show peaks for ω0 and integer multiples of it.

The stable solution shown above could be reached by
starting with a system in which the middle oscillator oscillates
with double the period of the driving force and all other
oscillators oscillate with the period of the driving force. In this
case, the initial condition is such that the middle oscillator is
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FIG. 4. The power spectra of coupled oscillators. The middle
oscillator (n = 6) shows peaks at ω0/2 and some odd multiples of
this frequency while the others (only n = 5 and n = 1 are shown)
only show peaks at integer multiples of ω0. The parameters are the
same as in Fig. 3.

driven with only one frequency, the frequency of the driving
force. The neighbors of the middle oscillator are driven by
two different frequencies, the strong external driving force
and the weaker driving with the doubled period due to the
coupling to the middle oscillator. However, due to the fact
that the force exerted by the neighbors is much weaker than
the external one, the system converges to a stable solution of
coexisting frequencies. An initial state in which the middle
oscillator oscillates with the frequency of the driving force
and all the others with half the frequency is not stable under
the same strength of the coupling (c) coefficient. Starting from
this latter initial state, while keeping all the parameters of
the system the same, resulted in a complicated stable solution
in which some of the oscillators show a non-monochromatic
spectrum. The stable solution for this initial condition is
shown in Fig. 5.
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FIG. 5. The solutions of coupled driven oscillators with periodic
boundary conditions. Initially, the middle oscillator oscillates with
the period of the driving force while all other oscillators have a
doubled period. The parameters are the same as in Fig. 3. In this case,
the initial state is not stable because the middle oscillator is driven by
both the external force with period T = 2π/ω0 and the force exerted
by the neighbors with period 2T .

FIG. 6. The power spectra of coupled oscillators for the solution
shown in Fig. 5. The stronger deviation from monochromatic driving
results in more complicated spectra.

The nature of this complex solution is better seen by
investigating the power spectra of the individual oscillators.
The spectra are shown in Fig. 6. As can be seen, the oscillators
show several peaks and additional contributions at non-integer
multiples of the driving period. For weaker coupling between
the oscillators, a solution, in which one oscillator has the
driving period and all others have the double period, is also
stable.

The result shown above focused on the case of moderate
coupling between the oscillators; i.e., the coupling coefficient
was set to c = 0.1. For stronger coupling, the oscillators tend
to oscillate with the same frequency and phase. In Fig. 7,
we depict the solution for the case of a stronger coupling,
c = 1. In this case, despite the initial condition in which the
middle oscillator has the doubled period and the others the
same period as the driving force, the stable solution is such
that all the oscillators have the frequency of the driving force.

It is important to note that for strong coupling between
the oscillators, any mixed initial condition (i.e., some of the
oscillators have the driving period and some the doubled
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FIG. 7. The solutions of coupled driven oscillators with periodic
boundary conditions. Initially, the middle oscillator oscillates with
a doubled period while all others oscillate with the period of the
driving force. Due to the strong coupling between the oscillators
(c = 1), the middle oscillator converges to the same frequency as
its neighbors, as expected.
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FIG. 8. A stable solution of coupled driven oscillators with peri-
odic boundary conditions. The three middle oscillators oscillate with
a doubled period while the other oscillators have the frequency of the
driving force. The parameters are the same as in Fig. 2 with c = 0.1.

period) converges to a stable state with all oscillators having
the driving period. For any initial mixed state, it is possible
to find a weak enough coupling for which the mixed initial
state remains with the same mixture of frequencies. For
intermediate coupling strength, the system may converge to
a complicated stable state similar to the one shown above
(Figs. 5 and 6). Obviously, homogeneous initial states, in
which each of the oscillators has the same stable state when
uncoupled, remain stable due to the fact that the coupling term
effectively vanishes.

The solutions shown above are not unique, and different
combinations of oscillators with either a doubled period or the
original period are possible (depending on the initial solution
or on the perturbations applied to the system). To illustrate
this, we show in Figs. 8 and 9 solutions in which the three or
five middle oscillators have the doubled period while all the
others have the period of the driving force.

For clarity, we present the power spectra of the coupled
oscillators for these latter cases in Figs. 10 and 11. The spectra
show that indeed the three or five middle oscillators have
peaks for integer multiples of ω0/2 (corresponding to the
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FIG. 9. A stable solution of coupled driven oscillators with peri-
odic boundary conditions. The five middle oscillators oscillate with
a doubled period while the other oscillators have the same frequency
as the driving force. The parameters are the same as in Fig. 8.
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FIG. 10. The power spectra of coupled oscillators. The three
middle oscillators (n = 5–7) show peaks at ω0/2 and some odd
multiples of this frequency while the others (only n = 1−4 are
shown) only show peaks at integer multiples of ω0. The parameters
are the same as in Fig. 8.

doubled period), while the others have peaks only for integer
multiples of the driving force frequency, ω0 (corresponding to
the period of the driving force).

In summary, the results presented here show that in a lattice
of nonlinear oscillators, period-doubled oscillations can be
locally maintained leading to the concept of a double-period
breather. This phenomenon was already noted for a more
complicated and specific model of double-stranded DNA and
for a specific set of parameters [8,9]. However, the complexity
of the physical model investigated there limits the ability to
explore the mechanisms that allow the existence of these dis-
crete breathers. Here, we used the simplest model for coupled
nonlinear oscillators, a chain of linearly coupled Duffing-
Helmholtz oscillators. This simple model has been used to
study memory and logic devices [15,16], neural networks
[17,18], the recurrence of Earth’s ice ages [20], piezoelec-
tric buckled beams [21], and many other systems. Different
aspects of the system were investigated, including the effect
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FIG. 11. The power spectra of coupled oscillators. The five mid-
dle oscillators (n = 4–8) show peaks at ω0/2 and some odd multiples
of this frequency while the others (only n = 1–3 are shown) only
show peaks at integer multiples of ω0. The parameters are the same
as in Fig. 8.
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of noise on the hysteresis of a single oscillator [22], the
noise-induced intermittency of two coupled oscillators [23],
chaos and routes to chaos [24,25], synchronization [26,27],
and others. Here, using numerical continuation, we found
the bifurcation diagram and identified a bistability region of
oscillations with the driving period and with the doubled
period. This information allowed us to find the range of
coupling strengths for which some of the oscillators have the
driving period while their neighbors have the doubled period.
In particular, we found that, in the limit of weak coupling,
the different oscillators may have different frequencies in
the stable state, and in the limit of strong coupling, all the
oscillators converge to the frequency of the driving force.
For intermediate coupling, some of the oscillators effectively

experience non-monochromatic driving (the external force
and neighbors do not oscillate with the same frequency)
and, therefore, the stable state of the system is not a simple
combination of oscillators with either the driving period or
the doubled period, but rather oscillations with a complex
spectra. We believe that our results may have implications
for the dynamics of various physical systems described using
models with discrete breather solutions.

This work was performed at the Los Alamos National Lab-
oratory (LANL), operated by the Los Alamos National Secu-
rity, LLC (LANS), under Contract No. DE-AC52-06NA25396
with the U.S. Department of Energy. G.B. thanks LANL for
its hospitality during the work on this project.
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