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We discuss a general useful theoretical framework to study dynamical localization in ultracold atomic systems
confined in periodically shaken optical lattices. Our theory allows to understand some limitations of the usual
approach concerning prototypical δ-kicked systems, as well as to explain the experimental results for which
finite-time effects cannot be neglected. Specifically, we predict that the strength of dynamical localization reaches
a maximum as a function of the width of the pulsatile modulation, whenever its amplitude and period satisfy a
given relationship. Additionally, we describe a quite simple scenario for the quantum suppression of classical
diffusion, which is confirmed by extensive numerical simulations: The activation of Heisenberg’s uncertainty
principle giving rise to a drastic reduction of the quantum momentum dispersion if, and only if, the classical
dynamics is sufficiently chaotic.
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I. INTRODUCTION

The quantum suppression of classical diffusion, usually
known as dynamical localization (DL) for short [1,2], is a
fascinating phenomenon that has attracted wide attention in
the physics community since its first experimental observation
by Graham et al. [3], partly due to its relevance in many
fields. Thus, DL provides an excellent benchmark to test the
classical-quantum correspondence in classically chaotic sys-
tems [4], a situation where the solid support provided by semi-
classical theories [5], such as the Wentzel-Kramers-Brilloin
or the Einstein-Brillouin-Keller quantization schemes, dra-
matically fails due to the widespread destruction of invariant
tori. Also, DL is strongly related to Anderson localization (in
space), which describes the metal-insulator transition for dis-
ordered systems [6,7]. Recently, Garreau [8] has demonstrated
the feasibility of considering DL as a quantum simulator to
study this interesting phenomenon in ultracold atoms (UCAs).

The standard theoretical approach to DL heavily relies on
the ideal δ-kicked rotor model [9–14], where the modulation
pulses are chosen to be infinitely narrow. The reason of
this choice is clear: This paradigmatic model has a well
understood classical limit (the Chirikov-Taylor or standard
map [15]) and the corresponding quantum dynamics can
also be straightforwardly studied due to the simple analytical
character of the associated quantum evolution operator. The
ability of this mathematical model to accurately describe
actual experiments [3,4,16–18], in which finite-time effects
cannot be neglected, is limited. Despite this limitation, little
effort has been made to the development of more elaborated
nonideal theoretical models [19–21] that take into account
the effects of finite-width time pulses. Note that, contrary

to what happens for the kicked rotor, these models do not
have an analytical solution, and then they have to be studied
numerically.

In an attempt to overcome this difficulty and to establish
a better understanding of actual experimental findings, we
develop in this paper a new theoretical approach to accu-
rately describe the dynamics of a cloud of UCAs trapped in
a periodically shaken optical lattice. This system has been
experimentally studied [3,4] by confining a gas of UCAs in
an standing-wave lattice created by two opposite mirrors with
a modulating device, such as a moving piezoelectrical cristal.
Traditionally, DL has been systematically controlled in this
kind of system by tuning only the amplitude [22].

We also demonstrate that a better, yet optimum, control
of DL can be achieved in a more general fashion by also
changing the modulation’s waveform and period. For this
purpose, we replace the δ-function with a more general pulse
function [see definition in Eq. (2) below]. The specific wave-
form of this function can be changed by solely tuning a single
parameter, and its functional form permits to obtain analytical
expressions for some of the main quantities involved in our
analysis.

The organization of the paper is as follows. In Sec. II we
briefly present the system of UCAs driven by finite pulses,
paying special attention to the definition of our modulation
function. In Sec. III we discuss the numerical methods used
to study the DL at the classical and quantum level, and the
analytical method used to evaluate the width of the classical
stochastic layer by using Melnikov’s method. In Sec. IV we
present and discuss the results obtained in this work. Finally,
we conclude with Sec. V by summarizing our conclusions and
discussing future work.
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FIG. 1. Waveform of the pulsatile modulation, which is varied
by solely changing a single parameter, m, from a cosine squared
form when m = 0 (dashed black line) to a periodic sharply kicking
modulation very close to the periodic δ-function, but with finite
amplitude and width, when m � 1. The waveforms corresponding to
m = 0.2 (cyan line), m = 0.6 (red line), m = 0.99999 (green line),
and m = 1–10−14 (blue line) are shown.

II. MODEL SYSTEM WITH FINITE PULSES

The system that we study is formed by a ensemble of non-
interacting UCAs confined in a periodically driven optical
lattice. As the particles have no correlations, their motion
can be suitably described by the mass-scaled spatial-periodic
one-particle Hamiltonian

H(p, x, t ) = p2

2
− Ff (t ; T ,m) cos x, (1)

where we choose the periodic modulation function f (t ; T ,m)
that accounts for the interaction with the external field, as

f (t ; T ,m) ≡ dn[2K (m)t/T ; m] − √
1 − m

1 − √
1 − m

, (2)

where T is the period, m ∈ [0, 1] is the shape parameter
controlling the modulation waveform, K (m) is the complete
elliptic integral of first kind, and dn(·; m) is a Jacobian elliptic
function [24] of parameter m. Some waveforms of f (t ; T ,m)
are shown in Fig. 1 for several values of m. As can be seen,
in the m = 0 limit, the pulses have a cosine squared form,
f (t ; T ,m = 0) = cos2(πt/T ), being maximum the width of
the pulse [25]. In this limiting case, the Hamiltonian (1)
mimics a parametrically and sinusoidally perturbed nonlinear
pendulum. As the value of m increases, the effective width
of the pulses slowly decreases over the range 0 � m � 0.9.
Also, the effective width changes dramatically for larger
values of m. Thus, the pulse width reduces ∼50% when
the shape parameter changes from m = 0.99999 (green line
in Fig. 1) to m = 1–10−14 (blue line in Fig. 1). The pulse
vanishes in the limit m → 1, a situation where the system is
no longer driven. However, in this limit, our model tends to
the paradigmatic kicked rotor [9–14] when the amplitude F

is simultaneously increased in such a way that the transmitted
impulse remains constant. Moreover, the specific form of the
finite width pulse (2) permits to obtain analytical expressions
for some of the main quantities involved in this work. Thus,
Hamiltonian (1) provides a single model which is able to
describe both real-world experimental finite-duration pulses
as well as the limiting case of a free rotor through a soft
transition by solely tuning the shape parameter m.

FIG. 2. The pulsatile modulation can make the motion of the
trapped atoms regular or chaotic depending upon the values chosen
for their parameters F , T , m, as shown by the stroboscopic Poincaré
surfaces of section computed for (a) m = 0.99999, F = 1, T = 1,
and (b) m = 0.99999, F = 5, T = 10. See the Supplemental Mate-
rial [23] for additional examples.

To understand the classical dynamical characteristics of
our system for different pulsatile modulations, we show two
examples of typical pictures of its phase space in Fig. 2. For
this purpose, we used stroboscopic Poincaré maps, consisting
of the (x, p) when time t is a multiple of the period T ,
i.e., t = kT with k ∈ Z+, obtained from classical trajectories
sampling all accessible phase space.

As can be seen, in Fig. 2(a), corresponding to m =
0.99999, F = 1, T = 1, the motion of the particles is con-
fined into well-defined ellipses or circles, indicating the ex-
istence of non-destroyed invariant tori, while in Fig. 2(b), cor-
responding to m = 0.99999, F = 5, T = 10, the coordinates
are delocalized over all the available phase space, due to a
widespread breakdown of the classical structures, as dictated
by the Kolmogorov-Arnold-Moser (KAM) theorem [15], thus
opening a route to chaos. Additional examples of stroboscopic
maps are shown in Figs. S.1, S.2, and S.3 of the Supplemental
Material [23].

These results clearly indicate that the onset of chaos gives
rise to the possibility of DL, which is a purely quantum phe-
nomenon that happens when the system exhibits a classically
chaotic motion. The degree of chaoticity is well characterized
in terms of the extent, i.e., the width of the stochastic layer,
which can be analytically calculated in the case of our modu-
lation function. Notably, our extensive numerical simulations,
discussed in Sec. IV, indicate that the strength of DL is max-
imum when the width of the chaotic layer is also maximum.
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This fascinating connection can shed new light on the emer-
gence of DL. In other words, Heisenberg’s uncertainty prin-
ciple seems to constitute a limit for the dispersion of the
quantum momentum distribution, while having no effect on
its classical counterpart. This issue will be discussed in detail
in Sec. V.

III. METHOD

A. Numerical calculations

The classical momentum dispersion is computed by nu-
merically solving the Liouville equation

[∂t + p∂x − Ff (t ; T ,m) sin x] P (x, p; t ) = 0, (3)

using a standard fourth-order Runge-Kutta method [26] with
periodic boundary conditions P (x + L,p; t ) = P (x, p; t ),
L = 2nπ with L the size of the quantization box, and n ∈ Z+.
The classical momentum distribution is then calculated as
PC (p, t ) = ∫

P (x, p; t ) dx, where P (x, p; t ) is the evolution
of a uniform distribution of 2×104 trajectories launched over
one wavelength following initially a Gaussian momentum dis-
tribution with a width of �p0 = 0.386 (cf. Refs. [4,16,21,27])
up to 320 units of time.

The corresponding quantum momentum distributions,
PQ(p, t ), have been calculated by averaging the time-
evolution of a localized wave packet

ψ (x, t = 0) = (π�x0)−1/4 exp

[
− (x − x0)2

2�x0
+ ixp0

h̄eff

]
, (4)

centered at x0 ∈ [0, L] with p0 = 0 and �x0 = h̄eff/�p0, be-
ing h̄eff ≡ 2h̄k2T/(πM ) the effective Planck constant, where
M is the atomic mass, and k the wave number. The parameter
h̄eff plays the role of Planck’s reduced constant for the scaled
Hamiltonian (1), and then characterizes the “quanticity” of the
system, as the scaled operators x̂ and p̂ fulfill Heisenberg’s
uncertainty relation defined as [x̂, p̂] = ih̄eff . Notice the de-
pendence of h̄eff on the time period, T , which is a consequence
of the dependence of the scaled momentum, p, on the scaled
time (see Refs. [4,21] for further details).

The time-evolution of wave-packet (4) is performed by
numerically solving the usual time-dependent Schrödinger
equation

i h̄eff ∂tψ = −
[

h̄2
eff

2
∂2
xx + Ff (t ; T ,m) cos x

]
ψ, (5)

which is numerically solved using a fast Fourier [26] trans-
form method up to 320 units of time, as in the classical
calculations. Let us remark that this time is sufficiently long
to observe DL, even for the largest period considered here,
T = 10, for which only 32 modulation cycles took place. It is
worth noting that Lignier et al. observed DL by using a time
propagation of solely 20 cycles (see Fig. 3 in Ref. [12]).

B. Melnikov analysis of the stochastic layer width

Firstly, this subsection briefly describes Melnikov’s
method [15,28,29] for the simple case of a perturbed in-
tegrable Hamiltonian system with one degree of freedom.

Consider the system
.
x = h0(x) + εh1(x, t ),

x = (x1, x2), (6)

where the unperturbed system (ε = 0) is an integrable Hamil-
tonian system which possesses a hyperbolic fixed point X0

and a separatrix orbit x0(t ) such that limt→±∞ x0(t ) = X0,
while the stable and unstable manifolds xs (t ), xu(t ) smoothly
join. In general, the perturbation term h1 which is T -periodic
in time, can introduce dissipation and non-autonomous ex-
citation. For ε 	= 0, the (now) perturbed stable and unstable
manifolds no longer join smoothly such that, if the ratio of
dissipation and excitation is sufficiently small, the stable and
unstable manifolds will intersect transversally, creating a ho-
moclinic point. This process is called a homoclinic bifurcation
and indicates the onset of chaotic instabilities. To check when
a transverse crossing occurs, Melnikov introduced a function
M (t ′) (now known as the Melnikov function) which measures
the distance between the perturbed stable and unstable mani-
folds in the Poincaré surface section as

M (t ′) ≡
∫ ∞

−∞
h0(x0(t − t ′)) ∧ h1(x0(t − t ′), t ) dt, (7)

where ∧ is the wedge operator (x ∧ y = x1y2 − x2y1). If the
Melnikov function presents a simple zero, the manifolds inter-
sect transversally and chaotic instabilities result. When h1 is
a Hamiltonian perturbation, this leads to the appearance of an
unstable layer—meaning the possibility of persistent chaotic
motion—along the separatrix of the unperturbed system. The
width � of this chaotic separatrix layer can be estimated from
the Melnikov function [15,28,29] as

� =
∣∣∣∣maxt ′ M (t ′)
|h0[x0(0)]|

∣∣∣∣ + O(ε2). (8)

Secondly, we calculated the width of the chaotic layer,
d(T , F,m), associated with Eq. (1) by assuming that the
integrable pendulum

..
x + F sin x = 0 corresponds to h0(x),

while F [1 − f (t ; T ,m))] sin x plays the role of the perturba-
tive term h1(x, t ) as

d(T , F,m) ≡ 1

2
max

t0
M (t0)

= 4π3

T 2

∞∑
n=1

n2 cn(m) bn(T , F ), (9)

where

bn(m, T , F ) = csch

(
nπ2

T
√

F

)
,

cn(m) = π sech[nπK(1 − m)/K(m)]

(1 − √
1 − m ) K (m)

. (10)

From the expression (9) for the width, one readily obtains

lim
F→0

d(T , F,m) = lim
T →0

d(T , F,m) = lim
m→1

d(T , F,m) = 0,

lim
m→0

d(T , F,m) = 2π3

T 2
csch

(
π2

T
√

F

)
. (11)
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IV. RESULTS

In this section we discuss the results obtained for DL in
our system, which is derived from the Hamiltonian model
(1). DL is evaluated by comparing the classical and quantum
momentum distributions obtained by solving the correspond-
ing equations of motion (see Sec. III A). Specifically, we
calculated the difference between the classical and quantum
dispersions

�pC−Q = �pC − �pQ,

�xC−Q = �xC − �xQ, (12)

being �pC = (〈p2
C〉 − 〈pC〉2)1/2, �pQ = (〈p2

Q〉 − 〈pQ〉2)1/2,
�xC = (〈x2

C〉 − 〈xC〉2)1/2, and �xQ = (〈x2
Q〉 − 〈xQ〉2)1/2, re-

spectively.

A. Dependence of DL on the modulation
amplitude and waveform

In Figs. 3(a)–3(c) we show the classical and quantum
momentum distributions dispersions, �pC,Q, and their differ-
ence �pC−Q = �pC − �pQ, as a function of the modulation
strength, F , and shape parameter, m, for a constant value of
the period T = 1. Notice that the color scales used have been
made homogeneous (just to guide the eye) since the dispersion
ranges are quite different. Specifically, the dispersion varies
between 4 and 70 for the classical results, and between 1.5 and
15 for the quantum ones (see Supplemental Material [23]).
As can be seen, the overall behavior is such that these three
quantities increase as both F and m are increased. Also,
notice that the behavior of �pC−Q qualitatively follows that
of the analytically evaluated width of the stochastic layer,
d(T , F,m) [cf. Eq. (9)], which is shown for comparison
in Fig. 3(d). A similar agreement is found for other values
of the period, as in the cases shown in Figs. 3(e) and 3(f)
corresponding to T = 10. (See also Figs. S.4, S.5, and S.6
of the Supplemental Material [23].)

Remarkably, this agreement holds even in the limit of nar-
row pulses (m � 1), where d(T , F,m) is expected to exhibit
a maximum as a function of m when the amplitude is larger
than a critical value, Fc, which in turn decreases with the
period (cf. Sec. III B). For example, we have that Fc(T =
1) � 7, being the corresponding maximum in the momentum
difference, �pC−Q|max, localized at mmax � 0.84, while for
Fc(T = 5) � 0.4 it is found that mmax � 0.95.

Figure 3(g) shows the dependence of �pC−Q on the
shape parameter m for F = 30 and F = 40, corresponding,
respectively, to the green and red lines in panel (c). In-
deed, Fig. 3(g) shows that the maximum of �pC−Q, and
hence the maximum strength of DL, increases as the am-
plitude is increased from F = 30 (�pC−Q|max � 58.6) to
F = 40 (�pC−Q|max � 70.2). Moreover, the corresponding
maximum, mmax, increases as the amplitude is increased: from
mmax � 0.9992 at F = 30 to mmax � 1–10−7 at F = 40,
thus mimicking the (same) behavior of the width d(T , F,m),
which is also shown in dashed lines in the respective insets.

Also, Fig. 3(h) shows the dependence of �pC−Q|max on
the amplitude, for six values of the period. Notice the lack
of data points for small values of F and T , which is due to
the absence of any maximum in such ranges. Although DL is

FIG. 3. Comparison between the strengths of chaos and dy-
namical localization in the parameter plane m − F . (a) Classical
momentum dispersion, �pC , (b) quantum momentum dispersion,
�pQ, and (c) difference, �pC−Q ≡ �pC − �pQ, as a function
of the amplitude F and shape parameter m for T = 1. The inset
show the parametric region where maxima occur. (d) Width of the
stochastic layer d (T = 1, F,m) [cf. Eq. (9)]. The yellow arrows
indicate the values of the critical amplitude, Fc, which have to be
overcome for the appearance of the maxima. (e) and (f): Same as
(c) and (d), respectively, for T = 10. (g) Difference �pC−Q for
T = 1 as a function of the shape parameter m for two values of the
amplitude [also shown as horizontal lines in (c) and (d)]: F = 30
(bottom green lines) and F = 40 (top red lines). The insets show
the respective analytical estimates [cf. Eq. (9)] of the stochastic
layer widths as functions of the shape parameter. (h) Maximum
values of the difference �pC−Q and respective maxima mmax (inset)
as a function of the amplitude F for six values of the period:
T = 0.5 (black circle), 0.6 (cyan square), 0.7 (pink x cross), 0.8 (blue
diamond), 0.9 (purple asterisk), and 1.0 (orange plus symbol).

an interference effect, all these results suggest that the origin
of DL is found in the chaotic behavior of the classical limit.
The inset in the figure shows the value of the shape parameter,
mmax, where �pC−Q|max is found for the same parameters of
the main panel. As already mentioned, the value of mmax tends
to 1 as F and/or T increase.

B. Dependence of DL on the modulation period and waveform

Figures 4(a) and 4(c) show �pC−Q as a function of the
period T and the shape parameter m for two values of the am-
plitude: F = 1 and F = 10, respectively (see also Figs. S.7,
S.8, and S.9 of the Supplemental Material [23]). The cor-
responding values for the stochastic layer width d(T , F,m)
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FIG. 4. Comparison between the strengths of chaos and dynami-
cal localization in the parameter plane m − T . (a), (c) Difference be-
tween the classical and quantum momentum dispersions, �pC−Q ≡
�pC − �pQ, and (b), (d) stochastic layer width, d (T , F,m), as a
function of the period T and the shape parameter m for two values
of the amplitude: (a), (b) F = 1 and (c), (d) F = 10. The insets
show the parameter regions where the respective maxima occur. The
yellow arrows indicate the values of the critical period, Tc, which
have to be overcome for the appearance of such maxima. (e) �pC−Q

(solid lines) and d (T , F = 1, m) (dashed lines) as functions of the
shape parameter m, for F = 1 and three values of the period [also
shown as horizontal lines in (a) and (b)]: T = 2 (bottom blue lines),
T = 4 (medium green lines), and T = 6 (top red lines). (f) �pC−Q

(solid lines) and d (T , F,m) (dashed lines) as a function of the period
T for m = 0.2 and three values of the amplitude: F = 1 (bottom
black lines [also shown as vertical lines in (a) and (b)]), F = 5
(medium magenta lines [also shown as vertical lines in (c) and (d)]),
and F = 10 (top cyan lines).

[cf. Eq. (9)] are shown in Figs. 4(b) and 4(d), respectively. As
can be seen, both quantities, and hence the strength of DL,
increase as the amplitude is increased. Moreover, they exhibit
maxima as a function of T for a given value of the shape
parameter m, being these maxima very close to each other.
Also, and as predicted from the analysis of the stochastic layer
width d(T , F,m) (cf. Sec. III B), these maxima only appear
when the period exceeds a critical value, Tc, values which
are indicated with a yellow arrow in each panel. The value
of Tc(F ) decreases with the modulation amplitude. For exam-
ple, we have that Tc(F = 1) � 2.7, being the corresponding
maximum in the momentum difference, �pC−Q|max, localized
at mmax � 0.50, while for Tc(F = 5) � 1.2 it is found that
mmax � 0.85.

The exact values of these maxima are more clearly seen
when the quantities are plotted as a function of only one of
the parameters, either m or T , as it is shown in Figs. 4(e)
and 4(f), respectively. For the sake of comparison, the results
for F = 5 have been added in Fig. 4(f). To get a clearer
comparison with �pC−Q, the values of the width d(T , F,m)

FIG. 5. (a), (b) Difference between the classical and quantum
momentum dispersions, �pC−Q ≡ �pC − �pQ, and (c), (d) cor-
responding stochastic layer width, d (T , F,m), as a function of the
period T and the amplitude F for two values of the shape parameter:
(a), (c) m = 0, and (b), (d) m = 1–10−14.

has been suitably scaled in Fig. 4(e). Notice the absence
of a maximum for F = 1 and T = 2 (dark blue curve),
due to the fact that this value of the period is below the
corresponding threshold Tc(F = 1) � 2.8, while the appear-
ance of a maximum is observed at the same value of the period
when the amplitude is sufficiently increased, i.e., T > Tc(F )
[cf. inset of Fig. 4(c)]. Moreover, the values of these maxima
tend to accumulate very near m = 1 as T is increased, as
shown for the values T = 4 and T = 6 (red and green lines,
respectively) in Fig. 4(e). Additionally, the quantities �pC−Q

and d(T , F,m) also exhibit maxima as a function of T , at
certain values T = Tmax while keeping constant the amplitude
and shape parameter. Some illustrative examples are shown
in Fig. 4(f), where it is seen that these quantities increase as
the amplitude F is increased. The values Tmax decrease as the
amplitude is increased. It is worth noticing that due to the very
different nature of the quantities �pC−Q and d(T , F,m), the
expected agreement between the corresponding Tmax is only
qualitative.

C. Revisiting the traditional way of controlling DL

As already mentioned in Sec. I, DL has been traditionally
controlled by changing the values of the amplitude F and the
period T of the driving field. However, our present findings
clearly demonstrate the great controlling potential of the
modulation waveform. Accordingly, we propose in the present
paper that an alternative and very efficient way of controlling
DL is by tuning the modulation waveform in our generalized
model. Remarkably, this is achieved by solely changing a
single parameter, namely, the shape parameter m, while the
waveform of our modulating field allows to reliably describe
experimental situations.

To systematically establish the influence of the modulation
waveform in the DL control, we show the values of �pC−Q

as a function of the amplitude F and the period T in Fig. 5,
for two limiting values of the shape parameter: m = 0
[cf. Fig. 5(a)], which corresponds to a cosine squared form,
and m = 1–10−14 [cf. Fig. 5(c)], for which the controlling
pulse is very narrow, but still finite. Similarly to the
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FIG. 6. Difference between the classical and quantum position
dispersions, �xC−Q = �xC − �xQ, as a function of the shape pa-
rameter m for three values of the effective Planck constant h̄eff =
0.72 (thick continuous red lines), 0.36 (dashed blue lines), and 0.18
(thin dotted-dashed green lines), respectively, and (a) T = 1, F =
10, (b) T = 1, F = 40, (c) T = 10, F = 0.5, and (d) T =10, F = 4.

aforementioned discussed examples, the results for
d(T , F,m) agree remarkably well with those corresponding
to �pC−Q for the same parameter values [cf. Figs. 5(b) and
5(d), respectively]. Note that no substantial DL occurs if
either T or F are sufficiently small. Also, it is found again
that, for a fixed value of the amplitude F , there exists a value
of the period T for which the DL strength is maximum,
similarly to which it was already discussed in relation to the
results in Fig. 4(f). Figures S.10 to S.15 of the Supplemental
Material [23] report other examples obtained for different
values of the modulation waveform.

V. SUMMARY AND OUTLOOK

In the present work, we have introduced a new theoretical
model to study DL, which takes into account the finite nature
of real-world pulses, a feature which is not included in the
traditional δ-kicked rotor model.

Our results indicate that there exists a deep correlation be-
tween the strengths of chaos and DL (quantified respectively
by means of the stochastic layer width, d, and the difference
between the classical and quantum momentum dispersions,
�pC−Q) over the entire parameter space (amplitude F , period
T , and shape parameter m) of the pulse function.

Specifically, we have demonstrated that the strengths of
chaos and DL exhibit a maximum value as a function of the
shape parameter, a relevant property that can be used to tune
DL to its maximal value by controlling the chaos strength.
For a fixed period (amplitude), this maximum is theoretically
predicted and numerically observed only when the amplitude
(period) exceeds a certain critical value of Fc(T ) [Tc(F )].
These critical values decrease with T and F , respectively.

Furthermore, we have demonstrated that the strengths of
chaos and DL also exhibit a maximum value as a function of
the period when keeping constant the remaining parameters.

Finally, we would like to address another important point.
In sharp contrast to the behavior of �pC−Q, the difference
�xC−Q seems to be relatively insensitive to changes in both
the modulation parameters, F , T , m, and the “quanticity”
of the system, h̄eff, as shown in Fig. 6. Also, it is found
that the obtained range of values of �xC−Q suggest that
�xQ ∼ �xC , irrespective of the values of the above men-
tioned parameters. Notice that, for all parameters consid-
ered in Fig. 6, |�xC−Q| � 1.5, while the �pC−Q is de-
fined in a much wider range, as inferred from inspection of
Figs. S.4(c)–S.15(c) of the Supplemental Material [23], where
it is shown that �pC is up to five times larger than �pQ

[compare panels (a) and (b) of Figs. S.4–S.15 of the Supple-
mental Material [23]]. In light of this result, the Heisenberg’s
uncertainty relation �xQ�pQ � h̄eff/2 should be rewritten as

�pQ � h̄eff

2�xC

. (13)

The key point here is that the strength of the classical dis-
persion ultimately depends on the chaos strength, while we
have shown that the latter can be effectively quantified by
estimating the width of the stochastic layer. Equation (13) pro-
vides a simple explanation of the origin of DL: it appears due
to the unavoidable activation of the Heisenberg’s uncertainty
principle as h̄eff increases from 0 (classical limit) to the deep
quantum regime (h̄eff high), through the semiclassical regime
(h̄eff � 0), by proportionally limiting the quantum momentum
dispersion when the system is classically chaotic. While the
strict equality in Eq. (13) applies only in the case of a coherent
wave packet moving in a harmonic potential, our results
indicate that this seems to be also true in the present case.
To the best of our knowledge, there is no formal justification
of this fascinating behavior, which certainly deserves further
investigation due to its fundamental relevance. We expect
that this result can stimulate experimental work to clarify the
subtleties of DL in real-world systems subject to periodic
pulses of finite width.
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