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Existence and dynamics of solitary waves in a two-dimensional Noguchi nonlinear electrical network
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In this work, we investigate solitary waves in a nonlinear two-dimensional discrete electrical lattice. It is made
of several of the well-known Noguchi electrical transmission lines, that are transversely or longitudinally coupled
to one another by an inductor L2 or L1 and a capacitor C2 or C1 mounted in parallel. The linear dispersion law
of the network is given and the effects of the transverse coupling elements L2 and C2 on the allowed bandwidth
frequencies are examined. Using the continuum limit approximation, we show that the dynamics of the small
amplitude signals in the network can be governed by a (2+1)-dimensional generalized modified Zakharov-
Kuznetsov equation. The fixed points of our model equation are examined and the bifurcations of its phase
portrait are presented, as functions of the wave velocity of the signals that are to propagate in lattice. Likewise,
we derive exact explicit solutions that are possible under different wave velocities and for physically realistic
values of the network’s parameters. These include pulse, kink, and anti-kink wave solutions and correspond to
some special level curves of the first integral of the model equation. We find out that the transverse coupling
parameters considerably affect the characteristics of the waves that are propagated throughout the system. Direct
numerical simulations are also performed on the exact equations of the network and the results are in agreement
with the analytical predictions.
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I. INTRODUCTION

The investigation of wave propagation in dispersive dis-
crete nonlinear media is nowadays well established as an
important research field. The great deal of attention devoted
to such media was arguably triggered by both the so-called
recurrence phenomenon observed originally in the dynam-
ics of one such medium by Fermi-Pasta-Ulam [1], and the
concept of soliton that Zabusky-Kruskal used to explain this
phenomenon [2]. Since then, research efforts have revealed
that dispersive discrete nonlinear media bear many interesting
features whose applications extend to different aspects of life,
nonlinear optics, plasma physics, biophysics [3–9].

The nonlinear electrical transmission lines (NLTLs) are
typical examples of these dispersive nonlinear media. They
are convenient tools to study wave propagation in nonlinear
dispersive media. In particular, they provide a useful way
to check how the nonlinear excitations behave inside the
nonlinear medium and to model the exotic properties of new
systems [10]. For instance, the propagation of the first-order
Korteweg–de Vries (KdV) solitons have been investigated
experimentally through the Noguchi model of NLTL [11].
This network was also exploited to carry out theoretical and
experimentally investigations of the motion of the second-
order KdV solitons using the Toda potential [12,13]. Pelap
et al. studied the dynamics of peak soliton and bubble soliton
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waves in a one-dimensional (1D) dispersive nonlinear elec-
trical lattice [14]. This author and other coworkers investi-
gated the dynamics and properties of waves in a modified
Noguchi electrical transmission line [15]. Recently, Kengne
et al. showed that the dynamics of matter-wave solitons in
a nonlinear LC transmission network can be modeled by a
1D Gross-Pitaevskii equation with both a chemical and a
time-dependent linear potentials [16]. More recently, these
authors have also investigated the effects of both the second-
neighbor coupling and the strength of the linear potential on
the dynamics of modulated waves along a modified Noguchi
nonlinear electrical network [17]. Other examples of this
nature abound in the study of nonlinear discrete electrical
transmission lines where various arrangements of the basic
electrical components (resistors, inductors, capacitors) are
realized [18–23].

The above cited studies have achieved very interesting and
encouraging results. However, they largely consider single
NLTL, which limits the applicability of those results to only
one-dimensional phenomena. Yet, there are many physical
phenomena which cannot be properly understood within the
one-dimensional framework. For example, the single NLTL
gives a good description of the classic Fermi-Pasta-Ulam
(FPU) system [1] while it fails for description of two-
dimensional (2D) FPU lattice [24]. Similarly, the single NLTL
cannot describe wave propagation in isothermal multicompo-
nent magnetized plasma [25]. In addition, various works have
investigated the dynamics of nonlinear excitations in two- and
three-dimensional atomic lattices [26,27], but investigations
that deal with their electrical counterparts are comparatively
scarce [22,28]. The few works reported on 2D electrical
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FIG. 1. Part of the system of the two-dimensional nonlinear
transmission network. Each cell contains the nonlinear capacitor
C(V ) in the shunt branch which induces the standard nonlinearity,
while in the series propagation and transverse branches, we have the
linear inductors L1 and L2, and the linear capacitors C1 and C1.

lattices include an experimental study of discrete solitons [29],
the investigation of the modulational instability phenomenon
and the stability of transverse solitary waves [30–32], the re-
cent prediction and analysis of rogue wave using the nonlinear
Schrodinger equation [33], and the analytical determination of
the expressions of the waves that can propagate in such media
[34–42].

In this paper, we aim to broaden the understanding of 2D
electrical lattices as propagating media. Specifically, we un-
dertake herein the investigation of the dynamics of transverse
solitary waves in a two-dimensional nonlinear electrical trans-
mission line which is presented along with its exact dynamical
equation in the next section. In Sec. III, we first show that
small amplitude signals in the network can be governed by a
generalized modified Zakharov-Kuznetsov equation. Next the
dynamics of this equation is studied. In Sec. IV, we investigate
the exact soliton solutions of the governing equation and their
profiles are portrayed. Numerical investigations are performed
in Sec. V in order to verify the validity of the theoretical
prediction. We conclude our paper in Sec. VI.

II. MODEL DESCRIPTION AND DYNAMIC EQUATION

The model under consideration is a spatially periodic
electrical network whose elementary section, represented in
Fig. 1, is a two-dimensional rectangular loop. The nodes of
this loop are labeled with two discrete coordinates n and m in
the mutually perpendicular directions of the plane. In either
direction, there exists a linear inductor and a linear capacitor
that are connected in parallel in-between two consecutive
nodes. These linear electrical components are taken to be
identical along each direction but are assumed to be different
from one to the other direction. That is, the coupling inductor
and capacitor are {L1, C1} in the n direction but are {L2, C2}
in the m direction. Through this specific configuration the
whole network can always be viewed as transversely coupled
Noguchi electrical transmission lines independently of which
of these directions is chosen as longitudinal. For definiteness,
we shall refer to the n direction as the longitudinal and so, the
m direction shall be the transverse direction. The nonlinearity
is introduced in the network by a varicap diode which admits

that the capacitance varies with the applied voltage. The
voltage Vn,m and the nonlinear electrical charge Qn,m at the
(n,m)th node are related by the polynomial form [15–17,43–
45]

Qn,m = C0
(
Vn,m − αV 2

n,m + βV 3
n,m

)
, (1)

where C0 is the characteristic capacitance, β and α are non-
linear positive constants.

By applying Kirchhoff laws to the circuit loop of

Fig. 1, we obtain the following equations: L1
dI 1

n,m

dt
=

Vn,m − Vn+1,m, L2
dI 2

n,m

dt
= Vn,m − Vn,m+1, I 1

n,m − I 1,1
n,m =

C1
d
dt

(Vn−1,m − Vn,m), I 2
n,m − I 2,1

n,m = C2
d
dt

(Vn,m−1 − Vn,m),

and dQn,m

dt
= I 1

n−1,m − I 1
n,m + I 2

n,m−1 − I 2
n,m. The differential

equations governing dynamics of voltage signals in the
network can then be obtained from the latter using some
straightforward algebraic manipulations. They read

d2Vn,m

dt2
− α

d2V 2
n,m

dt2
+ β

d2V 3
n,m

dt2

= u2
01(Vn+1,m + Vn−1,m − 2Vn,m)

+ u2
02(Vn,m+1 + Vn,m−1 − 2Vn,m)

+ Cr1
d2

dt2
(Vn−1,m + Vn+1,m − 2Vn,m)

+ Cr2
d2

dt2
(Vn,m−1 + Vn,m+1 − 2Vn,m) (2)

with n = 1, 2, . . . , N , m = 1, 2, . . . , M , u2
01 =

1/L1C0, u2
02 = 1/L2C0, Cr1 = C1/C0, and Cr2 = C2/C0.

N and M correspond to the number of cells considered in the
n and m directions, respectively.

The corresponding linear dispersion law describing small
amplitude waves of the form A0 exp(i(k1n + k2m − ωt )) is
given by

ω2 = 4u2
01 sin2

(
k1
2

) + 4u2
02 sin2

(
k2
2

)
1 + 4Cr1 sin2

(
k1
2

) + 4Cr2 sin2
(

k2
2

) . (3)

For values of ki chosen in the Brillouin zone (0 < ki < π )
with i = 1, 2, Fig. 2 represents the evolution of the angular
frequency for the n directions and for two specific values
of transversal wave numbers k2. Figure 2(a) obtained for
k2 = 0 shows that the system behaves evidently like a pass-
lower filter with the cutoff frequency fc1 = ω(π, 0)/2π =√

(4u2
01)/(1 + 4Cr1)/2π . This cutoff frequency fc1 de-

creases with the growth of Cr1, which means that the
linear dispersive component C1 contributes to reduce the
network effects on the wave during its motion. When
k2 = π , the system behaves like a pass-band filter with
lower cutoff frequency and upper cutoff frequency given

by fc2 = ω(0, π )/2π =
√

(4u2
02)/(1 + 4Cr2)/2π and fc3 =

ω(π, π )/2π =
√

(4u2
01 + 4u2

02)/(1 + 4Cr1 + 4Cr2)/2π , re-
spectively, as can be seen on Fig. 2(b).

The terms proportional to u02 and Cr2 in the right-hand
side of Eq. (3) are the transverse direction’s contribution to the
angular frequency. For a given value of one, we can determine
the effect of the other. For example, when Cr2 vanishes, that
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FIG. 2. The linear dispersion curve of the network according of the wave vector k1(rad/cell) for u01 = 2.5786 × 106 rad/s and Cr1 = 0.3:
(a) k2 = 0, u02 = u01, Cr2 = Cr1. (b) k2 = π , u02 = u01, Cr2 = Cr1.

is C2 = 0, the linear dispersion relation (3) becomes

ω2 = 4u2
01 sin2

(
k1
2

)
1 + 4Cr1 sin2

(
k1
2

) + 4u2
02 sin2

(
k2
2

)
1 + 4Cr1 sin2

(
k1
2

) . (4)

It is clearly seen that the second term in the right-hand side
of the above relation is the inductive coupling contribution to
the angular frequency. We remark that the inductive coupling
can increase the bandwidth of allowed frequencies as shown
in Fig. 3(a) in which there is a large difference between the
different considered values of inductive coupling. We can also
note that the upper gap zone increases with L2. Therefore,
the model is also appropriate for the investigation of upper
gap soliton dynamics. Likewise, for given value of the in-
ductive coupling, the effect of the capacitive coupling can be
observed. Figure 3(b) shows the dispersion graph for various
values of capacitive coupling C2. It is also seen that the
bandwidth of allowed frequencies increases with parameter
C2. On the other hand, The cutoff frequencies fc2 and fc3

decrease with the growth of C2, which means that the linear
dispersive component C2 contributes to reduce the network
effects on the wave during its motion.

From the above results, we can use the capacitive and
inductive coupling to increase the number of frequencies
that the network can support, and this allows transmission
of several pieces of information in the network. Also, an
increase in the coupling parameters C2 and L2 results in a
removal of some frequency domain. Therefore, an appropriate
choice of these parameters can enable the passage of a low
frequency mode or a high frequency mode as presented on
Fig. 3. This makes our model of NLTL very interesting. In
fact, one can observe that it is very general and encompasses
numerous bi-dimensional NLTL considered in the literature.
For instance, in the limit case where L2 → ∞, one recovers
the model studied by Kengne et al. [31,32]. Similarly, it
reduces to the NLTL model investigated in [33,35–37,39–42]
if one sets C1 = 0 and L2 → ∞. It can also reduce to the
discrete network model for which Tala-Tebue et al. derived
envelope periodic waves using the Jacobi elliptic functions
[30,38]. Next, this model has the same configuration in both
the longitudinal and transverse directions, that is, L1C1 and
L2C2, respectively. Hence, each direction can be considered
as the dominant direction of motion. In other words, the
presence of the linear inductor L2 in transverse direction
induces a possible transversal wave speed which could not

FIG. 3. Effect of the coupling element on the linear dispersion curve of the network showing evolution of the frequency f = ω/2π as
a function of the wave number k1(rad/cell) for C0 = 320pF , C1 = 96pF , L1 = 470μH and k2 = π : (a) C2 = C1, L2 = 0.8L1, 1.2L1, and
6.25L1. (b) L2 = L1, C2 = 0.5C1, C1, and 2C1.
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exist in the previous studies. Finally, as we will see below,
this model gives us the possibility to control the shape and the
speed of solitary wave using the coupling elements.

III. GENERALIZED MODIFIED ZAKHAROV-KUZNETSOV
EQUATION AND DYNAMICAL STUDIES

A. Generalized modified Zakharov-Kuznetsov equation

Now, we turn our attention to the characteristic ordinary
differential (ODE) equation of the network which is modeled
by Eq. (2). The developments presented below in this view
are effected within the continuum medium approximation.
That is, we assume that the excited wavelengths, say λ, are
much longer than the cell sizes. Denoting the latter by s1

in the longitudinal direction and s2 in the transverse direc-
tion, we introduce the dimensionless continuous variables
n′ = ns1/λ and m′ = ms2/λ and let Vn,m(t ) −→ V (n′,m′, t ).
Then, quantities of the form Vn±ñ,m±m̃(t ) for ñ, m̃ ∈ {−1, 1}
become V (n′ ± s1/λ,m′ ± s2/λ) and may be expanded in
power series of 1/λ since s1, s2 � λ. Neglecting terms higher
than (1/λ)3 and defining

u01 = u01
s1

λ
, Cr1 = Cr1

(
s1

λ

)2

,

u02 = u02
s2

λ
, Cr2 = Cr2

(
s2

λ

)2

, (5)

we obtain from Eq. (2) the following two-dimensional partial
differential equation (PDE) for the perturbed voltage V :

∂2

∂t2
(V − αV 2 + βV 3) − u2

01
∂2V

∂n
′2 − u2

02
∂2V

∂m
′2

− Cr1
∂2

∂t2

(
∂2V

∂n
′2

)
− Cr2

∂2

∂t2

(
∂2V

∂m
′2

)
= 0. (6)

It is interesting to notice here from Eq. (5) that if s1 = s2 = s

as we assume onward, then the effects of the cell sizes relative
to the wavelength s/λ is, to the current order of truncation,
exactly the same as replacing the characteristic capacitance
C0 in Eq. (1) by C ′

0 = C0λ/s.
To find the solitary wave solutions of this equation we

introduce the Gardner-Morikawa transformation of the inde-
pendent variables. This specific transformation is widely used
for the analytical investigation of nonlinear discrete lattices
[23,34,39,46] owing to its feature of properly balancing the
nonlinearity and dispersion after expansion. For our two-
dimensional network, it reads as [34]

V = εψ (x, y, τ ), x = ε
1
2 (n′ − υ1t ),

y = ε
1
2 (m′ − υ2t ), τ = ε

3
2 t, (7)

where ε � 1 is a formal parameter. The first of these equa-
tions expresses the smallness of the perturbation voltage as
compared with the equilibrium value, which may also be
necessary for the continuity assumption to be valid. The use of
these variables also implies that the time and space derivative
operators are transformed according to

∂

∂t
= ε

3
2

∂

∂τ
− ε

1
2 υ1

∂

∂x
− ε

1
2 υ2

∂

∂y
, (8)

∂2

∂2
= ε

(
υ1

∂

∂x
+ υ2

∂

∂y

)2

+ ε3 ∂2

∂τ 2

− ε2

[
2

(
υ1

∂

∂x
+ υ2

∂

∂y

)
∂

∂τ

]
, (9)

∂2

∂n
′2 = ε

∂2

∂x2
,

∂2

∂m
′2 = ε

∂2

∂y2
. (10)

Following the steps used by Duan for a similar model [39],
we first insert Eqs. (7), (9), and (10) into Eq. (6) and expand
the resulting expression up to the fourth order in powers of ε.
Next, we set the coefficient proportional to lowest order (ε2)
equal to zero and obtain

(
υ2

1 − u2
01

)∂2ψ

∂x2
+ (

υ2
2 − u2

02

)∂2ψ

∂y2
+ 2υ1υ2

∂2ψ

∂x∂y
= 0.

(11)

By introducing the operators

Â = υ1
∂

∂x
+ υ2

∂

∂y
, B̂ = Cr1

∂2

∂x2
+ Cr2

∂2

∂y2
, (12)

the remaining expression, which consists of the terms of
orders ε3 and ε4, may at last be written as

Â

[
2
∂ψ

∂τ
+ Â(αψ2 − εβψ3 + B̂ψ )

− 2ε
∂

∂τ
(αψ2 + B̂ψ )

]
= 0. (13)

From the definition of the operator Â given in Eq. (12), we
deduce that the expression in the square brackets in the last
equation above is an arbitrary function of τ . Choosing this
function as zero for simplicity, we get

2
∂ψ

∂τ
+ Â(αψ2 − εβψ3 + B̂ψ ) = 2ε

∂

∂τ
(αψ2 + B̂ψ ).

(14)

The above relation is a (2+1)-dimensional generalized modi-
fied Zakharov-Kuznetsov (GmZK) equation which comprises
classical terms in its left-hand side while non-standard terms
are gathered in its right-hand side. Specific cases of this
equation have been found nearly in all branches of physics,
especially in fluid dynamics, nonlinear lattice, plasma physics,
nonlinear optics, etc. For example, when the term in the
right hand side is dropped, Eq. (14) reduces to the modified
Zakharov-Kuznetsov (mZK), and describes the case where the
propagation occurs mainly in the longitudinal direction (υ2 =
0) [39–42,47,48]. Similarly, it reduces to the ZK equation
[49–51] if one sets β = 0. The left-hand side of Eq. (14) can
be also reduced to the modified Korteweg–de Vries (mKdV)
equation investigated in Refs. [52,53] if one sets Cr2 = 0.
If the cubic nonlinearity parameter β = 0 and, additionally,
Cr2 = 0, Eq. (14) reduces to be the well-known KdV equation
[54].

By solving Eqs. (11) and (14), we obtain the solution of
Eq. (2). To this end, we define the single variable

z = x cos(θ ) + y sin(θ ) − υcτ, (15)
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where υc is the front wave velocity and θ the propagation
direction of the wave. By considering this definition, Eq. (11)
becomes the following ordinary differential equation:[(

υ2
1 − u2

01

)
cos2(θ ) + (

υ2
2 − u2

02

)
sin2(θ )

+ 2υ1υ2 cos(θ ) sin(θ )
]d2ψ

dz2
= 0, (16)

from which we can express υ1 and υ2 as

υ1 = υ0 cos(θ ), υ2 = υ0 sin(θ ) (17)

with

υ0 =
√

u2
01 cos2(θ ) + u2

02 sin2(θ ). (18)

From Eq. (17), we remark that the dominant propagation
direction depends on the choice of the parameter θ . For
instance, when θ −→ 0, we have sin(θ ) −→ 0, υ2 −→ 0,
cos(θ ) −→ 1, and υ1 −→ υ0. In this case, the propagation
occurs dominantly in the n direction. However, if θ −→ π/2,
we have sin(θ ) −→ 1, υ2 −→ υ0, cos(θ ) −→ 0, and υ1 −→
0. Then the dominant motion will rather be in the m direction.

By inserting Eqs. (15) and (17) into Eq. (14), we obtain
after integration and setting the constant of integration to zero

− 2υcψ + υ0αψ2 + υ0Cr

d2ψ

dz2

+ ε

(
2υcαψ2 − υ0βψ3 + 2υcCr

d2ψ

dz2

)
= 0 (19)

with Cr = Cr1 cos2(θ ) + Cr2 sin2(θ ).

B. Dynamical studies

Various solutions of Eq. (19) can be obtained depending
on both the value of the parameter υc and the initial or
boundary conditions. To present an instructive overview of
these solutions, we adopt the dynamical systems technique
that was pioneered in the 1990s by Flach while investigating
discrete Hamiltonian lattices [55,56]. Thus, assuming that
Cr (υ0 + 2ευc ) �= 0, we reduce Eq. (19) to a two-dimensional
dynamical system

dψ

dz
= φ,

dφ

dz
= ψ

Cr (υ0 + 2ευc )
(2υc − α(υ0 + 2ευc )ψ + ευ0βψ2).

(20)

Obviously, system (20) has the Hamiltonian

H (ψ, φ) = φ2 − 2υc

Cr (υ0 + 2ευc )
ψ2

+ 2α

3Cr

ψ3 − ευ0β

2Cr (υ0 + 2ευc )
ψ4. (21)

It is well-known that each of the level curves of the first
integral of an ODE corresponds to a solution of the latter
for some set of initial conditions. For given values of the
parameters of the ODE considered, such a level curve is
the solution of the equation H (ψ, φ) = h; in which changing

the constant h amounts to considering a different set of initial
conditions.

We observe that system (20) has many fixed points or
stationary states according to the sign of the quantities
�1 = α2(υ0 + 2ευc )2 − 8υcευ0β, υc, and ε. In fact, O(0, 0)
is always an equilibrium point of Eq. (20) independently of
the values and the sign of these parameters. When �1 > 0,
system (20) has two additional equilibrium points represented
by A±(ψ0±, 0), with

ψ0± = α(υ0 + 2ευc ) ± √
�1

2ευ0β
. (22)

Let M (ψj , φj ) be the coefficient matrix of the linearized
system of Eq. (20) at an equilibrium point (ψj , φj ) and
J (ψj , φj ) be its Jacobian determinant. Thus, we have

J0 = J (0, 0) = − 2υc

Cr (υ0 + 2ευc )
, (23a)

J+ = J (ψ+, 0) = (2α(υ0 + 2ευc )ψ+ − 3ευ0βψ2
+ − 2υc )

Cr (υ0 + 2ευc )
,

(23b)

J− = J (ψ−, 0) = (2α(υ0 + 2ευc )ψ− − 3ευ0βψ2
− − 2υc )

Cr (υ0 + 2ευc )
.

(23c)

The theory of planar dynamical systems gives the follow-
ing results for an equilibrium point of a planar integrable
system [57,58]:

(i) If J < 0, then the equilibrium point is a saddle point.
(ii) If J > 0 and Trace(M (ψj , φj )) = 0, then it is a center

point.
(iii) If J > 0 and (Trace(M (ψj , φj )))2 − 4J (ψj , φj ) �

0, then it is a node point.
(iv) If J = 0 and the Poincaré index of the equilibrium

point is 0, then this equilibrium point is a cusp.
By analyzing the formula (23), we easily determine the

type of equilibrium point. We distinguish the following three
situations. First, for υc > 0, A+(ψ0+, 0) and O(0, 0) are sad-
dle points and A−(ψ0−, 0) is a center. Next, for − υ0

2ε
< υc < 0

the equilibrium point O(0, 0) is a center while the two others,
A±(ψ0±, 0), are saddle points. Finally, when − υ0

2ε
> υc, there

is a change in the properties of the above equilibrium points,
O(0, 0) becomes a saddle point while A±(ψ0±, 0) are the
centers.

H being the function defined in Eq. (21) and ψ0± given by
Eq. (22), we let

h0 = H (0, 0), h+ = H (ψ0+, 0), h− = H (ψ0−, 0).
(24)

Then we notice that for given values of the system’s param-
eters h+ = h0 = 0 if the front velocity υc takes one of the
critical values

υcr± = υ0

2ε

⎛
⎝(

9β

4α2
− 1

)
±

√(
1 − 9β

4α2

)2

− 1

⎞
⎠. (25)

By using the above information, we can easily do a
qualitative analysis of system (20) and deduce the bifurca-
tions of its phase portraits which is represented in Fig. 4.
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FIG. 4. Bifurcations of phase portraits of system (20) in the (ψ, φ)-phase plane for u01 = u02 = 2.5786 × 106 rad/s, Cr1 = Cr2 = 0.3,
θ = π/32, α = 0.21V −1, β = 0.197V −2, (a) υc = 0, (b) 0 < υc < υcr− or υc > υcr+, (c) υc = υcr±, (d) υcr− < υc < υcr+, (e) −υ0/2ε <

υc < 0, (f) υc < −υ0/2ε.

These figures are obtained for the following numerical values
of parameters: α = 0.21V −1, β = 0.197V −2, Cr1 = Cr2 =
0.3, u01 = u02 = 2.58 × 106 rad/s, θ = π/3, and υc = 7 ×
105 rad/s.

As we see in Fig. 4, the velocity υc plays an important role
in the type of solitary wave propagating in our network. We
distinguish various types of curves as follows: (a) A homo-
clinic orbit (red curve) corresponds to bright solitary waves
(BSW), dark solitary waves (DSW) or grey solitary waves
(GSW) solution of equation (23). (b) A periodic orbit (closed
black curve) corresponds to a periodic traveling wave solution
of Eq. (23). (c) The heteroclinic orbit (blue curve) correspond
to kink and anti-kink solitary wave solutions of equation (23).
(d) The black arch curve corresponds to a breaking wave
solution of Eq. (23). From these figures, we summarize crucial
conclusions as follows. (i) If υc �= 0, system (20) always has
either an homoclinic orbit which is asymptotic to the saddle
and enclosing the center, or a pair of heteroclinic orbits which
connect the saddle points. There also exists in this case a
family of periodic orbits which enclose the centers. (ii) When
υc = 0, the equilibrium point O(0, 0) is a cusp.

IV. BRIGHT, DARK, KINK, AND ANTI-KINK
SOLITARY WAVES

This section is devoted to the computation of the exact
representations of the solitary wave solutions of Eq. (19)
which correspond to bounded traveling wave solutions of
Eq. (2). We restrict ourselves, for simplicity, to the case where

H (ψ, φ) = h0 = 0. Thus, Eq. (21) can be written in the form

φ2 = δψ2

(
ψ2 − 4α(υ0 + 2ευc )

3ευ0β
ψ + 4υc

ευ0β

)
(26)

with

δ = ευ0β

2Cr (υ0 + 2ευc )
. (27)

Let

f (ψ ) = ψ2 − 4α(υ0 + 2ευc )

3ευ0β
ψ + 4υc

ευ0β
, (28)

� =
(

4α(υ0 + 2ευc )

3ευ0β

)2

−
(

16υc

ευ0β

)
. (29)

If � > 0, f (ψ ) admits two real roots ψ1 =
1
2 ( 4α(υ0+2ευc )

3ευ0β
+ √

�) and ψ2 = 1
2 ( 4α(υ0+2ευc )

3ευ0β
− √

�). By
using the first equation of the system (20) one obtains

z − z0 =
∫

1

ψ
√

δ(ψ − ψ1)(ψ − ψ2)
dφ. (30)

The exact solutions of Eq. (19) are obtained from the results of
the integral in Eq. (30). The kind of these results depends both
on the relative magnitudes of the system’s parameters and on
the value of the velocity υc as discussed below.

A. Bright solitary wave [Figs. 4(b) and 4(f)]

In this subsection, we focus our attention on the derivation
of bright solitary wave solutions of GmZK equation obtained
above. This type of solution exists when υc > 0 and υc �= υcr .
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FIG. 5. Variation of bright pulse width Lb for u01 = u02 = 2.5786 × 106 rad/s, Cr1 = 0.3, α = 0.21V −1, β = 0.197V −2: (a) as a function
of wave amplitude V0: θ = π/3, Cr2 = 4Cr1, Cr1, and 0.1Cr1. (b) as a function of the propagation direction θ : V0 = 0.2, Cr2 = 4Cr1, Cr1,
and 0.1Cr1.

It corresponds to the curves defined by H (ψ, φ) = 0 and has
the following parametric representation:

ψ (z) = 6υc

α(υ0 + 2ευc )

1

1 + b0 cosh(μz)
, (31)

where

b0 = 1

2α

√
4α2 − 36βευcυ0

(υ0 + 2ευc )2
, μ =

√
4υcδ

βευ0
. (32)

According to Eq. (7), we find the following two-
dimensional pulse-like signal voltage for the network:

Vn,m(t ) = V0

1 + γ0 cosh[μc(ξ − υpt )]
(33)

with

ξ = s

λ
((n − n0) cos(θ ) + (m − m0) sin(θ )),

υp = υ0

(
1 + αV0

6 − 2αV0

)
, μc =

√
αV0

3Cr

,

γ0 =
√

1 − βV0(3 − αV0)

2α
, V0 �= 3

α
; (34)

υ0 and Cr being defined by Eqs. (17) and (19), respectively.
By using Eq. (33), one determines that the soliton width Lb

is given by

Lb = 2λ

μcs
cosh−1

(
1 + 2γ0

γ0

)
. (35)

Equation (35) shows clearly that the analytical expression of
the bright soliton pulse width depends on the pulse amplitude
through γ0. It is the most crucial property of the bright pulse

FIG. 6. Shape of the bright soliton (33) at t = 0 for u01 = u02 = 2.5786 × 106 rad/s, Cr1 = 0.3, α = 0.21V −1, β = 0.197V −2, V0 = 0.3:
(a) θ = π/3 and for different values the reduced coupling capacitance Cr2. (b) Cr2 = 2Cr1 and for different values the propagation direction θ .
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FIG. 7. Variation of envelope velocity υp for u01 = 2.5786 × 106 rad/s, Cr1 = Cr2 = 0.3, α = 0.21V −1, β = 0.197V −2: (a) as a function
of amplitude wave V0; θ = π/3 and u02 = 1.2u01, u01, and 0.8u01. (b) As a function of the propagation direction θ : V0 = 0.2, u02 = 1.2u01,
u01, and 0.8u01.

and contrasts with the expression of the compact pulse width
which is independent of the pulse amplitude [34,59]. Let us
note here that the pulse is described by four main parameters:
the width, the speed, the amplitude and the parameter γ0

which is a function of the quadratic and cubic nonlinearity
parameters α and β.

Figure 5 shows some representations of this width and it
appears obviously that an increase in the reduced coupling
capacitance constant Cr2 results in an increase of this width.
Figure 5(a) shows that the width decreases when the pulse
amplitude increases. Similarly, the effects of the reduced
propagation direction θ are more clearly seen in Fig. 5(b). It is
obvious that when Cr1 = Cr2, the pulse width is independent
on the reduced propagation direction. It also shows that the
intensity width is an increasing or a decreasing function of the
reduced propagation direction depending on whether Cr2 >

Cr1 or Cr2 < Cr1, respectively. These results suggest to study
the evolution of the pulse shape for different values Cr2 and θ .
Our investigations lead to the plots of Fig. 6 which establish

that the shape of the pulse changes with Cr2 and θ . Thus,
the parameters Cr2 and θ can be used to control the shape of
the bright solitary wave solution. We can also observe from
Figs. 5 that the width Lb is always greater than one. In fact,
it is seen that it can even be sufficiently larger, which then
justifies the use of the continuum limit approximation.

From Eq. (34), we can see that the envelope velocity of
pulse is nonlinearly dependent on the amplitude V0 of the
signal. The existence of the soliton solution (33) is subjected
to the constraint: 3 − αV0 > 0. Thus, the envelope velocity in-
creases with the amplitude V0. These results are more clearly
seen in Fig. 7(a) for different values of the coupling character-
istic frequencies u02 of the network. Similarly, Fig. 7(b) shows
the effects of the reduced propagation direction θ on this ve-
locity. It is obvious that for u01 = u02, the velocity of the pulse
is independent on the reduced propagation direction. It also
shows that the magnitude of velocity is an increasing function
of the reduced propagation direction for u01 < u02 while for
u01 > u02, it becomes a decreasing function of the same.

FIG. 8. Shape of the dark soliton (36) at t = 0 for u01 = u02 = 2.5786 × 106 rad/s, Cr1 = 0.3, α = 0.21V −1, β = 0.197V −2, V0 = 0.3:
(a) θ = π/3 and for different values the reduced coupling capacitance Cr2. (b) Cr2 = 4Cr1 and for different values the reduced propagation
direction θ .
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FIG. 9. Shape of the antikink (first row) and kink (second row) soliton (40) at t = 0 for Cr1 = 0.3, α = 0.21V −1, β = 0.197V −2, V0 = 0.5:
(a) and (c) θ = π/3 and for different values the reduced transverse capacitance Cr2. (b) and (d) Cr2 = 4Cr1 and for different values the
propagation direction θ .

B. Dark solitary wave [Fig. 4(f)]

When υc < −υ0/(2ε), the GmZK equation admits dark
and bright solitary wave as solutions; they correspond to the
pair of homoclinic orbits of Fig. 4(f). The right homoclinic
orbit has the same parametric representation as Eq. (33)
while the left homoclinic orbit has the following parametric
representation:

Vn,m(t ) = V0

1 − γ0 cosh[μc(ξ − υpt )]
. (36)

It is equally characterized by its amplitude V0, the speed υp,
the parameter γ0, and the width

Ld = 2λ

μcs
cosh−1

(
2γ0 − 1

γ0

)
. (37)

The solution (36) represents a dark solitary wave of Eq. (2),
where γ0 is characteristic depth parameter that depends on the
relative wave amplitude V0 and network parameters, namely,
the coefficients α and β of the quadratic and cubic terms,
respectively. If 0 < γ0 � 1, this solution is not physically
relevant. Hence, γ0 > 1 is the necessary condition for the
system to exhibit this solution. When β = 0, we have γ0 = 1

and solution (36) does not exist. Thus, the existence of this
dark pulse soliton is subjected to the presence of the cubic
nonlinearity β within Eq. (1).

The parameters of this dark soliton including its speed υp

and width Ld are also dependent on the reduced propagation
direction θ , coupling characteristic frequencies u02, and re-
duced coupling capacitance Cr2. The effect of the variations
of these parameters with Cr2 and θ are similar to the case of
bright soliton (Figs. 5 and 7). These results are confirmed by
Fig. 8, where the shape of the dark soliton (36) are portrayed
for different values of reduced coupling capacitance constant
Cr2 and reduced propagation direction θ .

C. Kink and anti-kink solitary waves [Fig. 4(c)]

As shown above by the dynamical studies, the kind of the
solitary wave which can propagate in the network strongly
depends on the magnitude of the front wave velocity. Here, we
find the exact profile of kink and anti-kink solitary waves so-
lution of differential equations (2) governing the dynamics of
signals in our coupled Noguchi nonlinear electrical transmis-
sion line. This solitary wave exists if υc = υcr± [see Fig. 4(c)].
In this case, we have � = 0 and we see from H (ψ+, 0) =
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FIG. 10. Bright signal voltage (in volts) as a function of the propagating direction n and transverse direction m of the network at given
times of the propagation of wave with characteristic parameter θ = π/64, V0 = 0.02, μc = 0.2160, υp/u0 = 1.0007, and γ0 = 0.9858.
(a) The initial signal voltage is the bright pulse solitary wave located at cell (n0, m0) = (100, 100). (b) and (c) show the wave at given
times (in units of u0) of propagation: t1 = 110 and t2 = 220, respectively. The wave experiences are uniform, and the propagation is stable
along the network.

h+ = 0 that corresponding to the two heteroclinic orbits,

φ2 = δψ2(ψ0 − ψ )2, with ψ0 = 2α(υ0 + 2ευc )

3ευ0β
. (38)

Thus, we obtain

ψ (z) = ψ0

1 + exp
(±ψ0

2

√
δz

) . (39)

According to Eq. (7), we find the following two-dimensional
kink and antikink-like voltage signal for the network:

Vn,m(t ) = V0

1 + exp[±μk (ξ − υkt )]
(40)

with

ξ = s

λ
((n − n0) cos(θ ) + (m − m0) sin(θ )),

υk = υ0

2

⎛
⎝(

9β

4α2
+ 1

)
±

√(
1 − 9β

4α2

)2

− 1

⎞
⎠, (41)

μk = 1

2

√
αV0

3Cr

;

υ0 and Cr being defined by Eqs. (17) and (19), respec-
tively. Equation (40) represents the kink-soliton solution and
antikink-soliton solution of a coupled Noguchi nonlinear elec-
trical transmission line. It should be noted that, here, the

characteristic parameters Lk = 1/μk and υk can be written as
Lk = K1Lb and υk = K2υp, where K1 and K2 are positive
constants and υp and Lb given respectively by Eqs. (34) and
(35). Consequently, they have similar representations to those
of Figs. 5 and 7 for different values of the coupling network
parameters Cr2 and u02. Thus, it is obvious that an increase in
the degree of reduced coupling capacitance Cr2 results in an
increase of the kink and anti-kink solitary width. This effect
is more clearly seen in Fig. 9 where the shape of kink soliton
and anti-kink soliton solutions (40) are plotted. It should be
noted that, as in case of pulse soliton, the width of kink soliton
increase with Cr2.

Before ending the section, it is important to make some
remarks resulting from the above investigations. The coupling
elements play a very significant role in this model of coupled
Noguchi network and can be used to control the various
parameters of solitary wave which is propagated there. For
example, the width of solitary wave can be controlled by the
reduced coupling capacity Cr2. In the same way, the front
wave velocity can be modified while exploiting the coupling
characteristic frequency u02.

V. NUMERICAL INVESTIGATIONS

In the preceding section, we have investigated the trans-
verse solitary wave solution in a nonlinear electrical transmis-
sion line governed by a nonlinear differential equation. The
influence of the speed parameter υc was mainly examined

FIG. 11. Bright signal voltage (in volts) as a function of the propagating direction m and longitudinal direction n of the network at given
times of the propagation of wave with characteristic parameter θ = 100π/202, V0 = 0.02, μc = 0.2160, υp/u0 = 1.0007, and γ0 = 0.9858.
(a) The initial signal voltage is the bright pulse solitary wave located at cell (n0, m0 ) = (100, 100). (b) and (c) show the wave at given times
(in units of u0) of propagation: t1 = 110 and t2 = 220, respectively. The wave experiences are uniform, and the propagation is stable along the
network.
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FIG. 12. Elastic collision of two bright signal voltage (33) as a function of the propagating direction n and transverse direction m of the
network at given times of the propagation of wave. (a) At t = 0, the first located at cell (n0,m0 ) = (100, 100) with θ = π/64, V0 = 0.02, μc =
0.2160, υp/u0 = 1.0007, and γ0 = 0.9858. Second located at cell (n0, m0) = (300, 300) with V0 = 0.01, μc = 0.1528, υp/u0 = −1.0004,
and γ0 = 0.9929. (b) and (c) show the wave at given times (in units of u0) of propagation: t1 = 125 and t2 = 250, respectively. The wave
experiences are uniform, and remained coherent after collision along the network.

and the results are obtained. In this section, we report the
results of the numerical experiments that we have performed
on the exact discrete equation (2) of the network, using the
fourth-order Runge Kutta method with normalized integration
time step h0 = υ0�t = 10−2 in order to check the theoretical
predictions. Let us consider the following characteristic net-
work parameters: L1 = L2 = 0.47mH and C1 = C2 = 96pF

for linear inductance and capacitor, respectively, in the n and
m directions. Also, the nonlinear capacitor in the shunt branch
is the well-known BB112 nonlinear diode with the charac-
teristics: C0 = 32pF , α = 0.21V −1, and β = 0.197V −2. As
initial condition, we introduce one of the above solitary wave
signal; for some chosen value of the amplitude parameter
V0. It is important to note that this choice is not completely
arbitrary as the value should not lead to the violation of
any of the specific conditions under which the solitary wave
considered has been derived. It appears for instance that, for
dark solitary wave, the small amplitude assumption which
amounts to V0/(γ0 − 1) � 1 on account of the other con-
straint 1 < γ0 noted earlier in Sec. IV B, is fulfilled for no
value of V0. This indicates that not all of the solitary waves
predicted by the analytical developments do effectively exist
for concrete electrical networks. Likewise, the coexistence
of different types of them, such as seen in Fig. 4(f), is not
effective for the present set of network parameters’ values.
Then, we concentrate below on the study of bright solitons
whose existence conditions are easily satisfied. The numbers
of cells are taken equal to N = M = 400 in the propagation
and transverse directions. The ratio of the cell size to the
wavelength is taken as s/λ = 0.1. For the effectiveness of
these simulations, we consider the case of positive front wave
velocity υc to examine the behavior of the solitary wave
during its progression in the system.

Thus, we present in Figs. 10 and 11 the evolution of
bright solitary wave (33). The reduced propagation direction
of solitary wave is θ = π/64 for Fig. 10 and θ = 100π/202
for Fig. 11. We observe from these figures that the initial
electrical signal voltage propagates with constant amplitude,
without distortion of shape, and with constant reduced ve-
locity υp/υ0 = 1.0071, which is in full agreement with the
theoretical prediction.

Since the wave velocity υ0 is amplitude dependent, two
adjacent pulse soliton will interact in the network because they

propagate at the different speed. Thus, the interactions of two
bright pulse voltages (33) propagating in opposite directions
and with different amplitudes V0 = 0.1 and V0 = 0.05 are
depicted in Fig. 12 for θ = π/64. It is obvious that, these
bright solitons remain coherent after collision.

VI. CONCLUSION

In this paper, we have investigated both analytically and
numerically the dynamics of solitary waves in a model of
nonlinear electrical transmission line. This model is a two-
dimensional electrical network which consists of a number of
identical cells LC.

We have been particularly interested by the dynamics of
the solitary waves. The differential equations governing the
propagation of the signal voltage in the network has been
obtained. Using the continuum limit approximations, we have
first shown that the dynamics of small amplitude signals
in the network can be described by a generalized modified
Zakharov-Kuznetsov equation. Next, the dynamical studies
of this GmZK have been carried out. We have noticed that
the values of wave speed influence considerably the type of
the solitary waves in the system. From these results, one
can finally obtain the various two-dimensional solitary volt-
age signal that can be transmitted throughout the network.
Direct numerical simulations on the exact equations of the
network have been performed and the results have been seen
to compare qualitatively very well with the theoretical predic-
tions. In fact, we note that the wave experiences a uniform
and stable propagation along the network. In the same way,
these pulses keep their identities upon interacting with one
another.

These interesting obtained results and the connection be-
tween the homoclinic (heteroclinic) orbits of the phase por-
traits and the existence of pulse (kink and anti-kink) waves
could be of great use in applications such as communication
and frequency modulation. Another interesting aspect of this
work is that it shows the influence of the coupling elements
on the angular frequency and the important role of the front
wave velocity on the existence of different solitary solutions.
The capacitive coupling can also be used to control the shape
of these solitary wave solutions.
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