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We revisit the scaling properties of the energy spectra in fully developed incompressible homogeneous
turbulence in forced magnetofluids (MHD) in three dimensions (3D), which are believed to be characterized by
universal scaling exponents in the inertial range. Enumerating these universal scaling exponents that characterize
the energy spectra remains a theoretical challenge. To study this, we set up a scaling analysis of the 3D MHD
equations, driven by large-scale external forces and with or without a mean magnetic field. We use scaling
arguments to bring out various scaling regimes for the energy spectra. We obtain a variety of scaling in the inertial
range, ranging from the well-known Kolmogorov spectra in the isotropic 3D ordinary MHD to more complex
scaling in the anisotropic cases that depend on the magnitude of the mean magnetic field. We further dwell on
the possibility that the energy spectra scales as k−2 in the inertial range, where k is a wave vector belonging to
the inertial range, and also speculate on unequal scaling of the kinetic and magnetic energy spectra in the inertial
range of isotropic 3D ordinary MHD. We predict the possibilities of scale-dependent anisotropy and intriguing
weak dynamic scaling in the Hall MHD and electron MHD regimes of anisotropic MHD turbulence. Our results
can be tested in large-scale simulations and relevant laboratory-based and solar wind experiments.
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I. INTRODUCTION

Kinetic energy spectrum in three-dimensional (3D) homo-
geneous and isotropic turbulence, described by the forced
Navier-Stokes (NS) equation, displays universal scaling in the
inertial range (that lies intermediate between the large forcing
scales and small viscous dissipation scales) for sufficiently
large Reynolds numbers [1]. For instance, the celebrated
Kolmogorov dimensional analysis (hereafter K41) [2] predicts
that the kinetic energy spectrum Ev (k) ∼ 〈|v(k, t )|2〉k2 ∼
k−5/3 (known as the K41 result in the literature [2,3]) in the
inertial range of the nonequilibrium turbulent steady states
(NESS). Here, k is a Fourier wave vector belonging to the
inertial range and v(k, t ) is the velocity field in the Fourier
space; 〈...〉 refers to spatiotemporal averages in the NESS [4].

Magnetohydrodynamics (MHD) is the study of the prop-
erties of electrically conducting quasineutral fluids in the
hydrodynamic limit, valid over huge ranges of spatial scales
ranging from centimeters (e.g., laboratory plasmas) to very
large scales in astrophysical settings (e.g., solar wind) [5].
A plasma necessarily consists of two electrically charged
components—ions and electrons. The dynamical equations
for MHD depend crucially on the spatiotemporal scales of
interests. For instance, at large spatial (scales larger than the
ion Larmor radius) and temporal scales (times larger than
ω−1

pi ), both the ion and electron motions are important, the
local relative velocity between the electrons and the ions are
negligible compared to the local center-of-mass velocity, for
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which the ordinary MHD description, which is a one fluid
description, suffices [5–7]. In a direct analogy with fluid dy-
namics, ordinary MHD can be viewed as a coupled dynamics
of a velocity v and a magnetic field b, and the electric field
drops out of the dynamics due to the condition of local charge
neutrality.

Hall magnetohydrodynamics (HMHD) is again a single-
fluid approximation that includes a Hall term in the Ohm’s
law (see below). This description extends the validity domain
of the ordinary MHD system to spatial scales down to a
fraction of the ion skin depth or frequencies comparable
to the ion gyrofrequency [8]. More specifically, HMHD is
a good description when we intend to describe the plasma
dynamics up to length scales shorter than the ion inertial
length di (di = c/ωpi , where c is the speed of light and ωpi

is the ion plasma frequency) and frequencies smaller than the
ion cyclotron frequency ωci [9]. For example, solar wind at
small scales show signatures of HMHD [10]. Eventually at
sufficiently small scales l < c/ωpi and at frequencies much
higher than ωpi , the ions are effectively frozen due to their
larger inertia, and the electrons move in a frozen background
of the ions, a regime aptly called electron MHD (EMHD)
[11–13]. EMHD phenomenology is believed to be operative
in exotic astrophysical contexts like the crust of neutron stars
[14], solar corona and magnetotail [15], as well as laboratory
experiments [16].

In equilibrium systems, fluctuations near a critical point (or
a second-order phase transition) and in the ordered phases of
systems with broken continuous symmetries show universal
dynamic scaling in the long wavelength and long timescale
limits [17]. Subsequently, the idea of universal scaling has
been extended to nonequilibrium systems as well [18–20]. In
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fully developed fluid turbulence, this notion of universality
implies that the scaling of the kinetic energy spectrum and
the damping timescale of the velocity fluctuations with wave
vectors in the inertial range is independent of the molecular
viscosities [20]. The question of scaling of energy spectra,
both kinetic and magnetic, in 3D hydromagnetic turbulence,
although believed to be universal in the inertial range of
fully developed MHD turbulence (i.e., in the large Reynolds
number limit), is still not well-settled, either theoretically
or experimentally. A major difference between 3D homoge-
neous fluid turbulence and 3D homogeneous MHD turbulence
originates from the possible presence of a mean magnetic
field in magnetofluids: A mean fluid velocity, although it
makes the system nominally anisotropic, can be removed
by a suitable Galilean transformation, thereby restoring full
isotropy. In contrast, the magnetic field is invariant under
Galilean transformations, and consequently, a mean magnetic
field of magnitude B0 cannot be removed by any Galilean
boost and necessarily makes the system genuinely anisotropic.
A nonzero B0 introduces propagating modes in the form of
Alfvén waves in ordinary 3D MHD that have no analogues
in homogeneous fluid turbulence. Similarly, in HMHD with
B0 �= 0, there are circularly polarized whistler and cyclotron
modes [8] that are analogues of the Alfvén waves in ordinary
3D MHD, but have no counterparts in homogeneous and
isotropic 3D fluid turbulence. The whistler modes exist in
anisotropic 3D EMHD as well [21].

Simple dimensional analysis similar to that for fluid tur-
bulence suggests K41 scaling in the inertial range for both
the kinetic and magnetic energy spectra of 3D nonhelical
isotropic (i.e., no mean magnetic fields) MHD turbulence.
However, some recent studies indicate the possibility of an
unexpected k−2 scaling of the energy spectra in the inertial
range of 3D isotropic MHD [22,23]. In addition, the presence
of mean magnetic fields, which gives rise to propagating
Alfvén waves, can significantly affect scaling. In general,
the effects of propagating waves on the scaling properties
of driven systems are still debated. MHD turbulence with a
nonzero B0 or Alfvén waves stands as a very good candidate
to study this issue. In Refs. [24,25], it has been argued
within a low-order perturbative analysis that the effective or
renormalized mean magnetic field B0R (formally defined as
the imaginary part of the field propagators at zero frequency)
picks up singular corrections in the long wavelength limit.
This in turn yields kinetic and magnetic spectra that are
anisotropic in magnitude but display spatial scaling same
as the K41 prediction. This prediction is different from the
results from a 1D model for MHD turbulence [26], where the
absence of any singular renormalization of the mean magnetic
fields render them irrelevant (in a scaling sense) in comparison
with the viscous damping. This too, unexpectedly, yields the
K41 scaling for the energy spectra. Numerical studies of
Ref. [27] revealed energy spectra closer to those predicted
by the Iroshnikov-Kraichnan (IK) scaling of k−3/2 [28]. For
large B0, weak turbulence theories for incompressible MHD
suggest a k−2

⊥ scaling, where k⊥ is the component of the 3D
wave vector k, that is normal to the mean magnetic field [29].
These multitude of predictions for scaling in 3DMHD calls for
a generic scaling analysis for both isotropic and anisotropic
3D MHD. For HMHD and EMHD, there are predictions for

scale breaking demarcating the long wavelength inertial range
and an intermediate wavelength dispersion range [13,30].
Recent experimental studies on tabletop laser-plasma [31]
reveal various scaling regimes at different ranges of wave
vectors. In addition, very little is known about the dynamic
scaling in MHD turbulence. Critical examination of dynamic
scaling regimes in MHD turbulence [32] would be very useful
as well.

In this article, we revisit the universal scaling of the
kinetic and magnetic energy spectra in the inertial range in
3D turbulent fully developed forced homogeneous hydromag-
netic fluids by employing scaling arguments. We cover (a)
ordinary 3D MHD, (b) 3D HMHD, and (c) 3D EMHD. We
consider the role of a mean magnetic field in each of the
above cases. The scaling theory developed here reveals a
variety of scaling regimes. For instance, we find that (i) when
forced at the largest scales and assuming nonhelical MHD,
the scaling of both the magnetic and kinetic spectra for 3D
isotropic ordinary MHD should follow the K41 prediction in
the hydrodynamic long wavelength limit. We further discuss
the possibility of k−2 for the magnetic spectrum; see Ref. [22].
This is obviously a “weak scaling” (where the magnetic
and kinetic energy spectra scale differently), as suggested in
Ref. [22], since the corresponding kinetic energy spectrum
appears to scale very differently. The total energy, as men-
tioned in Ref. [22], has a backward flux. Hence, unlike the
strong scaling K41 spectra (where the magnetic and kinetic
energy spectra scale identically), the forward cascade (i.e.,
from small to large wave numbers) should be that of the other
conserved quantity—the cross helicity. Furthermore, we spec-
ulate that k−2 strong scaling can also be found in systems with
large-scale separations between the forcing scale and inertial
range; see, e.g., this is possibly connected with Ref. [23]. In
contrast, with a finite B0, i.e., with Alfvén waves present, the
scaling generally takes an anisotropic form. Again, with a
large-scale forcing and neglecting helicity, assuming the linear
propagating Alfvén terms and the nonlinear terms scale in the
same way for a finite B0 the scaling of the energy spectra with
k⊥ follows the K41 result, whereas they scale differently with
k‖. This scaling behavior in the limit of a very large B0 that
strongly suppresses the nonlinear terms, gives way to a k−2

⊥
scaling [33]. Here, k‖ is the component of the 3D wave vector
k along B0. Further, both the velocity and magnetic field
fluctuations are characterized by the same dynamic exponent,
corresponding to the more commonly found strong dynamic
scaling [34]. (ii) For 3D HMHD, scale breaking at higher
wave vectors are predicted together with anisotropic scaling
of the energy spectra for a nonzero B0. (iii) Last, the scaling
of the magnetic energy spectrum in 3D EMHD is argued to
be same as 3D HMHD but different from ordinary 3D MHD.
Scaling of the energy spectra in 3D anisotropic HMHD and
EMHD are found to depend strongly on the magnitude of B0.
For instance, as B0 rises, the scaling of the magnetic energy
spectrum changes from k

−7/3
⊥ to k

−5/2
⊥ k

−1/2
‖ . We highlight

generic scale-dependent anisotropy in all regimes of 3D MHD
for a nonzero B0. We further predict the possibilities of
unequal dynamic exponents for v and b fluctuations in a
HMHD scaling regime when the Hall term in HMHD is dom-
inant [35]. Occurrence of weak dynamic scaling is very rare
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in natural systems. A prominent example is the equilibrium
critical dynamics of symmetric binary mixture near its demix-
ing transition (a second-order transition) point. Here, the
concentration fluctuations are distinctly slower than the ve-
locity fluctuations, reflecting the existence of two distinct
dynamic exponents for the concentration and the velocity
[17,36–38]. It was also proposed that a model for the ordered
phase of the XY model also show similar weak dynamic
scaling [39]; this was, however, ruled out later, showing that
at 3D there are no weak dynamic scaling in this model [40].
More recently, a nonequilibrium version of Model C is shown
to display weak dynamic scaling for certain choices of the
model parameters [41]. To our knowledge, 3D HMHD is
the first candidate for weak dynamic scaling in the realm
of turbulence, which forms a principal prediction from the
present study. The rest of this article in organized as follows.
In Secs. II B 1 and II B 2 we study scaling in ordinary isotropic
and anisotropic 3D MHD, respectively. Next we consider
scaling 3D isotropic and anisotropic Hall MHD in Secs. II C 1
and II C 2, respectively. Finally, in Secs. II D 1 and II D 2
we analyze scaling in 3D isotropic and anisotropic EMHD,
respectively. In Sec. III we summarize our results.

II. SCALING ANALYSIS

Scaling analysis is a powerful tool that is useful in ex-
tracting the dominant scaling behavior in the steady states
of a dynamical system. In scaling analysis of a model, first
space, time, and the dynamical fields are scaled and next,
the scale-invariance of the dynamical equations (invariance
of the form of the dynamical equations under rescaling) for
appropriate scaling factors for space, time, and the dynamical
fields is demanded. For systems with uniform steady states,
the dominant scaling behavior in the steady state is ascertained
by balancing the most relevant terms (in a scaling sense) in the
long wavelength limit and by imposing other conditions that
characterize the steady states.

To set up the background, we first revisit scaling analysis
of homogeneous and isotropic incompressible fluid turbulence
that directly yields the K41 spectrum for the velocity field.
Our discussions of scaling in this paper will be based on
the premise that the governing equations, i.e., the evolution
equations for v and b have to be invariant under a scale
transformation that scales distances by l and time by lz̃. The
dynamic exponent z̃ is an unknown which will be determined
by some additional constraints. The additional constraint—a
crucial ingredient in the scaling analysis—comes from the
constancy (scale-independence) of the fluxes of the relevant
conserved quantities in the ideal limit (i.e., in the absence
of any external forcing or dissipation) at the intermediate
scales or inertial range. When the dynamics is that of only
one variable, e.g., velocity v for incompressible fluid turbu-
lence, there can be no ambiguity. If there are more than one
dynamical variable (e.g., two for incompressible 3D MHD) or
more than one conserved quantity in the ideal limit (again as
in 3D MHD, see below), there is yet another additional issue
about whether the fields will scale similarly or differently
under the spatiotemporal rescaling. The former case turns
out to be completely unambiguous. However, for the kind
of scaling analysis that we carry out here, the latter cases

are of “if...then” variety in some of the physical examples. It
should also be noted that spatial anisotropy in the form of an
externally imposed magnetic field will lead to the introduction
of an additional scale, and the scaling arguments will hold
under restrictive conditions which we will be able to specify.

A. 3D fluid turbulence

We revisit the universal scaling of the kinetic energy spec-
trum in 3D homogeneous and isotropic incompressible fluid
turbulence. By using scaling arguments, we reproduce the
well-known K41 result. The Navier Stokes equation for an
incompressible velocity field v for an isotropic pure neutral
fluid is given by [1,3]

∂v
∂t

+ λ1(v · ∇)v = −∇p + ν∇2v + fv, (1)

together with the incompressibility condition given by ∇ ·
v = 0. Here, p and ν are the pressure and kinematic viscosity,
respectively; fv is a large-scale force needed to sustain fully
developed turbulence. Parameter λ1 takes the value unity,
but is formally introduced in conventional renormalization
group-based analysis for turbulence as a perturbative expan-
sion parameter [20]. In the inviscid, unforced limit (ν =
0, fv = 0), Eq. (1) in 3D conserved the kinetic energy and
fluid helicity. The kinetic energy spectrum in 3D is given by
Ev (k) ∼ k2〈|v(k, t|2〉 in the inertial range. For a nonhelical
fluid turbulence, the kinetic energy flux in the steady state
cascades from large length scales to small length scales and
remains scale-independent in the intermediate inertial range.
The physical argument behind this is the fact that energy is
injected from outside at the largest (forcing) scales (by the
large-scale external forces) and get dissipated at very small
scales by the molecular viscosities (viscous scales). In the
intervening inertial regime in the steady state, the energy
just flows from the large scales to small scales, without any
energy injection or dissipation. This ensures that the energy
flux is constant in the inertial range [42]. The well-known Kol-
mogorov dimensional analysis predicts Ev (k) ∼ k−5/3 [2,3].
We will see below how this result may be recovered from a
simple scaling analysis.

To begin with we scale space x time t and 3D velocity v as
follows:

x → lx, t → lz̃t, v → lav, (2)

where z̃ is the dynamic exponent. Demanding scale invari-
ance, we obtain (in a scaling sense)

∂v
∂t

∼ v · ∇v ⇒ la−z̃ = l2a−1 ⇒ a = 1 − z̃, (3)

that is consistent with the physical dimension of a velocity.
We note that the 3D NS Eq. (1) in the inviscid limit (ν = 0),
or the Euler equation is scale-invariant, i.e., its form remains
unchanged, with a = 1 − z̃ for arbitrary z̃. For ν > 0, this
symmetry gets restricted as we show below. Here, we have
used that the nonlinear coupling λ1 does not pick up any
scale-dependencies under rescaling Eq. (2) that is consistent
with its nonrenormalization due to the Galilean invariance of
Eq. (1). Viscosity ν is assumed to pick a scale-dependence that
is consistent with the value of z̃ (obtained below).
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In a mean-field-like approach, the kinetic energy flux or
the kinetic energy dissipation rate per unit mass εv , neglecting
intermittency, is assumed to be a constant in the inertial range
of the steady states of fully developed fluid turbulence [3], and
should not change under rescaling Eq. (2). Thence, demanding
scale-independence of εv we find

εv ∼ ∂v2

∂t
∼ l0 ⇒ 2a = z̃. (4)

Combining Eqs. (3) and (4) we find

a = 1
3 , z̃ = 2

3 , (5)

which are in agreement with the results obtained in Ref. [20].
The next step is to calculate the scaling of the kinetic

energy spectrum from the values of a and z̃, already known
as above. We start by noting that

〈v(k, t ) · v(k′, t )〉 = Fv (k)δ(k + k′), (6)

where Fv (k) is related to Ev (k) (see below). Noting that

v(k, t ) ∼
∫

d3x exp(−ik · x)v(x, t ), (7)

under rescaling Eq. (2) we have

v(k, t ) ∼ la+3 ∼ k−a−3, (8)

where k ∼ l−1, in a scaling sense. Next, equating the scale
factors on both sides of Eq. (6), we obtain

Fv (k) ∼ k−3−2a. (9)

Now, the kinetic energy spectrum Ev (k) in 3D is given by

Ev (k) ∼ k2Fv (k) ∼ k−1−2a ∼ k−5/3, (10)

in agreement with Ref. [20]. Notice that z̃ = 2/3 together
with a scale-independent kinetic energy flux implies the ef-
fective kinematic viscosity scales as νl2−z ∼ νl4/3 [20] that
control the relaxation of the v fluctuations restores the scale-
invariance of Eq. (1). That the effective viscosity should
be scale-dependent to keep the kinetic energy flux scale-
independent has been known ever since the seminal works
by Heisenberg [43] and Chandrasekhar [44]. This opens up
the distinct possibility that in systems with more than one
dynamical variables and independent fluxes, more than one
dynamic exponents may be needed to keep the fluxes scale-
independent.

B. Ordinary 3D MHD turbulence

Here we first consider homogeneous and isotropic incom-
pressible 3D MHD turbulence, followed by its anisotropic
analog.

1. Isotropic 3D MHD turbulence

The ordinary 3DMHD equations for an incompressible
homogeneous and isotropic magnetofluid are composed of the
generalized Navier-Stokes equation for the velocity field v and
Induction equation for the magnetic field b [6,7]. These are,
respectively,

∂v
∂t

+ λ1(v · ∇)v = −∇p + λ2(b · ∇)b + ν∇2v + fv (11)

and
∂b
∂t

+ λ1(v · ∇)b = λ1(b · ∇)v + μ∇2b + fb. (12)

The effective pressure p now includes the magnetic con-
tribution b2/2. Furthermore, λ1, λ2 are nonlinear coupling
constants. Parameters ν and μ are kinematic and magnetic
viscosities. We impose incompressibility ∇ · v = 0 and ∇ ·
b = 0. Functions fv and fb are external stochastic forces.
As for Eq. (1) λ1 = 1 and λ2 just sets the scale of b with
respect to v [24,25]. Similar to Eq. (1), Eqs. (11) and (12)
are invariant under Galilean transformation [24,25]), which
ensures nonrenormalization of λ1 in a RG framework. Further,
as pointed out in Refs. [24,25], working in terms of effective
magnetic fields that leaves Eq. (12) unchanged, leads to
nonrenormalization of λ2 as well. Hence, without any loss
of generality, we set λ1 = λ2 = 1 in what follows below. The
absence of any mean magnetic field implies that 〈b(x, t )〉 = 0.
Functions fv and fb are external large-scale forces need to
maintain fully developed MHD turbulence. Equations (11)
and (12) in the inviscid, unforced limit in 3D conserve the
total energy E = ∫

x
(v2 + b2), cross helicity Hc = ∫

x
v · b and

the magnetic helicity Hm = ∫
x

A · b, where A is the vector
potential for b: b = ∇ × A.

The scaling of the kinetic and magnetic spectra in the
inertial range can be easily obtained by generalizing the
analysis developed in Sec. II A. Scaling ansatz Eq. (2) is now
to be augmented by the scaling of b:

b → lyb. (13)

As before, we demand scale invariance of Eqs. (11) and
(12). We consider large-scale forcings and assume nonhelical
MHD turbulence, i.e., Hc ≈ 0, HM ≈ 0. Now balancing the
nonlinear terms in Eq. (11) we obtain (in a scaling sense)

a = y. (14)

Notice that with z̃ = 1 − a, the nonlinear terms in Eq. (12)
scale in the same way as ∂b/∂t :

∂b
∂t

∼ (v · ∇)b ∼ (b · ∇)v. (15)

Due to the equality a = y, scale-independence of the
kinetic (magnetic) energy flux automatically ensures scale-
independence of the magnetic (kinetic) energy flux. This then
corresponds to scale-independence of the total energy flux.
Proceeding as in Sec. II A, we then find

2a = 2y = z̃, (16)

giving a = y = 1/3 and z̃ = 2/3. We can now proceed to
obtain the scaling of the both kinetic and magnetic energy
spectra in the inertial ranges by following the logic outlined
in Sec. II A above. Similar to v(k, t ) we define b(k, t ) via

b(k, t ) ∼
∫

d3x exp(−ik · x)b(x, t ), (17)

yielding

b(k, t ) ∼ ly+3 ∼ k−y−3. (18)

Analogous to Eq. (6) we further define

〈b(k, t ) · b(k′, t )〉 = Fb(k)δ(k + k′), (19)
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yielding as for Fv (k)

Fb(k) ∼ k−3−2y. (20)

Thus, the magnetic energy spectrum Eb(k) in 3D scales as

Eb(k) ∼ k2Fb(k) ∼ k−1−2y ∼ k−5/3. (21)

The scaling of Ev (k) remains unchanged from what we ob-
tained in Sec. II A. Last, z̃ = 2/3 indicates that both ν and μ

scale as l2−z̃ in the inertial range. Thus, both v and b fluc-
tuations are characterized by the same z̃, or strong dynamic
scaling prevails. That both v and b must have the same z̃, can
also be argued the scale-dependencies of effective ν and μ

needed to make the magnetic and kinetic energy spectra must
be the same. That we find a = y in nonhelical isotropic 3D
MHD is consistent with the discussions in Ref. [23].

So far we have considered scale-independence of only the
energy flux (kinetic and magnetic), which straightforwardly
leads to K41 scaling for both the energy spectra. This is
justified when the total cross helicity and magnetic helicity are
zero. Can Ev (k) and Eb(k) ever display non-K41 type inertial
range scaling in any situation? Recent studies in Refs. [22,23]
suggest that even in 3D isotropic MHD turbulence, the energy
spectra can be non-K41 type; Ref. [22] found k−2 scaling
where as Ref. [23] found both k−2 and IK spectra, in addition
to K41 spectra. We now discuss possible ways to generalize
the scaling theory to allow for non-K41 type inertial range
scaling by Ev (k) and Eb(k). This can be then used to study
the results in Refs. [22,23]. In Ref. [23] bounds on the scaling
exponents of E+(k) ∼ kq+ and E−(k) ∼ kq− in the inertial
range are discussed, where E± are the energy spectra of the
Elsässer variables, which are just linear combinations of v
and b. It has been argued that in the absence of any cross-
helicity, q+ = q− �= 3/2. This would necessarily mean a = y

in our notation and Ev (k) ∼ Eb(k). The solution a = y = 1/3
corresponding to the K41 spectra satisfies this. However, it is
also known that if there is large-scale separation between the
forcing scale and the inertial range then effective anisotropy
in the inertial range can emerge and the magnetic fields in the
forcing scale can play the role of background magnetic fields
for the fluctuating magnetic fields in the inertial range [23].
This should naturally generate Alfvén wavelike excitations
with linear dispersion (see also below). K41 scaling follows
when this is subdominant to the nonlinear cascade. In contrast,
when this dominates over the nonlinear interactions in the
inertial range, z̃ = 1. If we further impose scale-independence
of the kinetic and magnetic energy fluxes, then we find
a = y = z̃/2 = 1/2. Following the logic outlined above, this
yields

Ev (k) ∼ Eb(k) ∼ k−2, (22)

see, e.g., Refs. [22,23]. Furthermore, Ref. [23] has argued than
in the presence of cross-helicity q+ �= q−, equivalently, a �= y

is possible. The emergence of unequal scaling of v and b

effectively implies the existence of an additional dimensional
parameter as in the incomplete self-similarity discussed in
Ref. [45]. We construct such a possibility below. At the outset,
we assume a �= y and set y = a + α, where α �= 0 implies
scale-breaking. Assuming there is no anomalous scaling of
v, a = 1 − z̃, consistent with the dimension of v. Further,
assume the cross-helicity flux εc to be the only relevant

(forward) flux in the problem. Demanding scale-independence
of εc, we obtain

2a + α = z̃. (23)

Magnetic energy spectrum Eb(k) ∼ k−1−2y ∼ k−1−2a−2α .
Thus, a + α = 1/2 would give Eb(k) ∼ k−2. Together with
the conditions on a, α and z̃, this implies α = 1/4. Of course,
for other values of α, the scaling of Eb(k) will change.
The scaling analysis cannot, however, precisely evaluate the
scaling exponents a, α, and z̃. We note that the magnetic
energy per unit volume V

1

V

∫
b2(x) d3x ∝

∫
dkk2〈|b(k)|2〉 ≡

∫
B(k)dk. (24)

Therefore, on dimensional ground

B(k) ∼ l3+2α−2z̃. (25)

Assuming B(k) is to be constructed from the cross-helicity
flux εc ∼ ∂ (v · b)/∂t , we write

B(k) ∼
[
vb

t

]β

lγ (26)

for arbitrary z̃ on dimensional ground. Now comparing
Eqs. (25) and (26), we find β = 2/3 and

γ = 5

3
+ 4α

3
. (27)

The weak turbulence scaling exponent γ = 2 (i.e., Eb(k) ∼
k−2) is obtained for α = 1/4, as we have found above. In ad-
dition, we find Eb(k) scales as ε

2/3
c , a result that can be tested

in directed numerical simulations of 3D MHD equations. The
scaling of Ev (k) will be different from Eb(k). We do not
comment on that here. Thus, the generalized scaling theory
indeed predicts k−2 scaling by Eb(k) as one possible solution
for scaling but does not rule out other scaling solutions and,
more interestingly, generally allows for different scaling by
Eb(k) and Ev (k).

2. Alfvén waves: Effects of anisotropy on scaling

Most natural realizations of a plasma usually contain a
mean magnetic field, e.g., tokamak plasma and solar wind
[46]. Thus, it is pertinent to consider now how a mean
magnetic field can alter the scaling behavior elucidated above.
We choose the mean magnetic field B0 to be along the z axis,
which leads to additional linear terms in Eqs. (11) and (12):

∂v
∂t

+ (v · ∇)v = −∇p + (b · ∇)b + B0
∂b
∂z

+ ν∇2v + fv

(28)

and
∂b
∂t

+ (v · ∇)b = (b · ∇)v + B0
∂v
∂z

+ μ∇2b + fb. (29)

The linear terms in Eqs. (28) and (29) allow for underdamped
propagating waves, known as the Alfvén waves [5] in the
literature, with a dispersion

ω ∝ B0k‖ + O(k2), (30)

in the long wavelength limit, where ω is a Fourier frequency
and k‖ is the z component of k; k = (k⊥, k‖), k⊥ = (kx, ky ).
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We continue to assume large-scale forcings and the system to
have negligible helicity.

Noting that a nonzero B0 necessarily makes the system
anisotropic, we need to generalize the scaling ansatz to ac-
count for anisotropy. In particular, we now expect spatially
anisotropic scaling with the length scales in the xy plane to
scale different from those along the z axis. Without any loss
of generality, we set

x → l⊥x, z → l‖z, t → lz̃⊥, v → la⊥v, b → l
y

⊥b, (31)

where l⊥ is a length scale in the xy plane [47]. We further set
length scale along the z axis l‖ ∼ l

ξ

⊥ that controls the relative
scaling between the xy plane and the z axis; for ξ �= 1, the sys-
tem is anisotropic. Here x = (x, y) is the in-plane coordinate.
We also define ∇⊥ = (∂x, ∂y ), v⊥ = (vx, vy ), b⊥ = (bx, by ).
Furthermore, we ignore vz and bz, in comparison with v⊥
and b⊥, respectively (see below). In addition to introducing
anisotropy, for a nonzero B0, there should be competition be-
tween the propagating Alfvén waves and the nonlinear terms
in Eqs. (28) and (29). The interplay between this competition
and the anisotropy controls the ensuing scaling behavior, as
we show below. It is evident from Eqs. (28) and (29) that as B0

increases, the nonlinear cascades are progressively weakened
relative to the strength of the propagating modes. It is thus
convenient to introduce a phenomenological dimensionless
parameter

M = B2
0

s2
, (32)

where s is the typical magnitude of v, b in the inertial range
[48]. Depending upon the magnitude of B0, there are three
possible physically distinct regimes: M � 1, M ∼ O(1) and
M � 1.

For small M � 1, the nonlinear terms dominate in the in-
ertial range and the system becomes effectively isotropic. Un-
surprisingly, the kinetic and magnetic energy spectra should
then scale as k−5/3 in the inertial range, in accordance with
the K41 prediction.

For a stronger B0, when M ∼ O(1) the linear propagating
terms and the nonlinear terms in Eqs. (28) and (29) are
comparable in the inertial range, known as strong turbulence.
We then balance

(v⊥ · ∇⊥)v⊥ ∼ B0∂zb⊥ ⇒ 2a − 1 = −ξ + y. (33)

Next, we balance the in-plane nonlinear terms in Eq. (28):

(v⊥ · ∇⊥)v⊥ ∼ (b⊥ · ∇⊥)b⊥ ⇒ a = y. (34)

Notice that this automatically gives

∂b⊥
∂t

∼ B0
∂

∂z
v⊥. (35)

Using the dispersion relation Eq. (30) we find

z̃ = ξ ⇒ a = y (36)

eventually. Based on the physical arguments enunciated
above, we continue to impose scale-independence of the mag-
netic or kinetic energy flux in the inertial range independent
of B0, which yields

2y = z̃ = 2a. (37)

Therefore, we get

z̃ = 2
3 = ξ, a = 1

3 = y, (38)

see, e.g., Ref. [49]. Notice that the dynamic exponent z̃ is
unchanged from its value from the isotropic case (B0 = 0).
Also, z̃ = ξ keeps Eq. (30) unchanged under rescaling.

Enumeration of the scaling of the energy spectra requires
extending the logic outlined above to anisotropic situation.
Since a = y, we already expect identical scaling by the kinetic
and magnetic energy spectra in the inertial range. We define
Fourier transforms

s⊥(k⊥, k‖, t ) ∼
∫

s⊥(x⊥, z, t )d2x⊥dz

∼ l
a+2+ξ

⊥ ∼ k
−a−2−ξ

⊥ , (39)

where s = v or b. Now define

〈s⊥(k, t ) · s⊥(k′, t )〉 = Fa (k)δ(k⊥ + k′⊥)δ(k‖ + k′
‖), (40)

where Fa (k) is related to Ea (k) (see below). Under scaling
Eq. (31), we obtain

Fs (k⊥, k‖) ∼ k
−2a−2−ξ

⊥ . (41)

We can now use k‖ ∼ k
ξ

⊥ and obtain the one-dimensional
energy spectra as follows:

Ev (k⊥) ∼ Eb(k⊥) ∼ k
−5/3
⊥ , (42)

Ev (k‖) ∼ Eb(k‖) ∼ k−2
‖ , (43)

in the inertial range; see, e.g., Ref. [49]. Results Eq. (43)
can be obtained as follows: we note that the scaling v⊥ ∼
la⊥ ∼ l

a/ξ

‖ , b⊥ ∼ l
y

⊥ ∼ l
y/ξ

‖ . Scaling of one-dimensional spec-
tra Ea (k‖) follows from the equality

Etot,s =
∫

Es (k‖) dk‖ =
∫

Es (k⊥) dk⊥, (44)

where s = v, b and subscript tot implies total energy (kinetic
or magnetic). Then dimensionally,

Es (k‖) ∼
[
Es (k⊥)dk⊥

dk‖

]
. (45)

This gives Ev (k‖) ∼ k
−2a/ξ−1
‖ , Eb(k‖) ∼ k

−2y/ξ−1
‖ , giving

Eq. (43) with a = y = 1/3, ξ = 2/3. Thus, both Ev (k⊥) and
Eb(k⊥) scale with k⊥ according to the K41 result, but Ev (k‖)
and Eb(k‖) scale differently with k‖.

We note that the result ξ = 2/3 can be interpreted as
singular renormalization of B0 in the long wavelength limit:
We write the Alfvén wave term

B0k‖ ∼ B0k
2/3
⊥ ∼ B0(k⊥)k⊥, (46)

with B0(k⊥) ∼ k
−1/3
⊥ . This is reminiscent of the result in

Ref. [25].
We now provide a posteriori justification for neglecting

vz, bz the z components of v and b in the above analysis.
Notice that under scaling Eq. (31)

s⊥ ∼ l
1/3
⊥ , sz ∼ l0

⊥. (47)

The latter scaling essentially follows by demanding that dif-
ferent nonlinear terms involving sz and s⊥ in Eq. (28) or
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Eq. (29) scale in the same way. Thus, in the long wavelength
limit l⊥ → ∞, s⊥ ≡ (sx, sy ) � sz. Hence, Ev and Eb are
dominated by v⊥ and b⊥ in the long wavelength limit. This
justifies our neglecting vz, bz in the above analysis.

We further expect the scaling behavior to change substan-
tially for much stronger B0, i.e., with M � 1 for which the
balances (in a scaling sense) used in Eqs. (33) and (35) should
breakdown, with the linear Alfvén wave terms dominating
over the nonlinear terms in Eqs. (28) and (29) even in the
inertial range. For simplicity we do not distinguish between
sz and s⊥. We note that in the limit of a very large B0, the
nonlinear terms should be suppressed. This in turn should lead
to suppression of the energy fluxes, both kinetic and magnetic.
In the limit of very large M , we express the energy fluxes εs

phenomenologically (in a dimensional/scaling sense) as

εs ∼ ∂s2

∂t

1

M
(48)

to the leading order in 1/M; s = v, b. Imposing scale-
independence of the fluxes then yields

z̃ = 4a = 4y. (49)

If we ignore anisotropy and consider ξ = 1, then the disper-
sion relation Eq. (30) yields

z̃ = 1. (50)

This together with Eq. (49) gives

a = y = 1
4 . (51)

Proceeding as above, this implies

Ev,b(k) ∼ k−3/2, (52)

which is the well-known IK spectra [28].
The main criticism of the IK prediction is that despite

having M � 1, anisotropy is ignored, which is not physically
acceptable. We will now discuss how the scaling analysis
for M � 1 may be affected by anisotropy. We first note
that while for M � 1 nonlinear terms are expected to be
suppressed, dispersion relation Eq. (30) in fact suggests that
this suppression is ineffective for k2

‖ � k2
⊥. To account for this

anisotropic suppression of the fluxes, we phenomenologically
modify Eq. (48) for the flux to (again in a dimensional/scaling
sense)

εs ∼ ∂s2

∂t

l2
‖

Ml2
⊥

, (53)

valid for k2
⊥ � k2

‖ . Now demanding scale-independence of the
fluxes and using relevant timescale ∼l‖, we find (in a scaling
sense)

s ∼ l
1/2
⊥ l

−1/4
‖ , (54)

s = v, b. It is believed that for M � 1, the nonlinear inter-
actions leading to energy cascades predominantly take place
only in the xy plane (i.e., in the plane normal to B0ẑ) for
very strong B0 [33], since the propagating Alfvén wave terms
dominate along ẑ directions. This gives

Ev,b(k⊥, k‖) ∼ k−2
⊥ k

−1/2
‖ , (55)

corresponding to weak turbulence limit; see
Refs. [29,33,50,51].

C. 3D Hall MHD

We now study scaling in Hall MHD (HMHD), first the
isotropic case, then the corresponding anisotropic one.

1. Isotropic 3D HMHD

In 3D Hall MHD (HMHD), one generalizes the ordinary
3D MHD equations by including the Hall contribution in the
form of the Ohm’s law:

E + v × b − J × b
ρe

= μJ, (56)

where ρe is the electron charge density [8,9]. This generalizes
Eq. (12) to

∂b
∂t

= ∇ × (v × b)

− dI∇ × [(∇ × b) × b] + μ∇2b + fb, (57)

where dI is the ion inertial length [8,9]. We consider a vanish-
ing mean magnetic field, i.e., 〈b〉 = 0. Velocity v continues to
obey Eq. (11). Total energy E remains a conserved quantity in
HMHD in its ideal or inviscid limit [9,52]. We ignore helicity
for simplicity.

Evidently, for length scales l � dI the dI -term is irrelevant
compared to the first term on the right-hand side of Eq. (57)
for a sufficiently large, and the scaling behavior for ordinary
isotropic 3D MHD ensues. In the opposite limit, the dI -term is
important. This range of scales is called the dispersion range
[13]; this does not exist for ordinary 3D MHD. We focus on
the latter case, for which it suffices to ignore the λ1-term [53].
While there is no symmetry principle that prohibits renormal-
ization of dI in a perturbative RG framework, considering
dI ∼ O(1) and hence l � O(1), any perturbative corrections
to dI stemming from the dispersion range should be “small”
and hence ignored in what follows below.

We use scaling ansatz as defined by Eqs. (2) and (13). Due
to the rather different forms of the nonlinear terms in Eqs. (11)
and (57), same scaling of v and b is no longer expected. In the
dispersion range, dI∇ × [(∇ × b) × b] is the dominant non-
linear term in the right-hand side of Eq. (57). The dynamics
of b is essentially controlled by the dI -nonlinear term in the
dispersion range. We then balance

∂b
∂t

∼ ∇ × [(∇ × b) × b] ⇒ y = 2 − z̃. (58)

We continue to use a = 1 − z̃. Between the kinetic and
magnetic fluxes, which flux is to be assumed to be scale-
independent is crucial. We notice that demanding scale-
independent magnetic flux yields

2y = z̃ ⇒ y = 2
3 , z̃ = 4

3 . (59)

This, however, gives a = −1/3 < 0, which is clearly unphysi-
cal. We therefore discard this. In contrast, scale-independence
of the kinetic energy flux yields

2a = z̃ ⇒ a = 1
3 , z̃ = 2

3 , y = 4
3 . (60)
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The scaling exponents Eq. (60) keeps the whole of Eq. (57)
scale-invariant, but breaks the scale-invariance of Eq. (11).
More importantly, what are the physical dynamic exponents
for v and b here that control the renormalization of ν and μ?
Imposition of the scale-invariance of the kinetic energy flux
ensures that the kinematic viscosity ν indeed picks up a scale-
dependence ∼l2−z̃. Since this choice of z̃ does not keep the
magnetic flux scale-independent, we cannot say the same for
the magnetic viscosity μ, leaving the question of the physical
dynamic exponent for b unresolved. This can, however, be
settled by allowing for two different dynamic exponents z̃v

and z̃b, respectively, for v and b, such that scale-independence
can be imposed on each of the kinetic and magnetic energy
fluxes separately. This automatically yields

2a = z̃v ⇒ a = 1
3 , z̃v = 2

3 ,

2y = z̃b ⇒ y = 2
3 , z̃b = 4

3 . (61)

Thus, we obtain weak dynamic scaling [35]. That scale-
independence of the kinetic and magnetic energy fluxes
should imply two dynamic exponents z̃v and z̃b is in agree-
ment with Ref. [44]. To our knowledge, there has been no
systematic measurements of the timescales of v and b fluctua-
tions. This may, however, be measured in numerically, e.g., by
calculating time-dependent correlation functions of v and b in
pseudospectral methods [54]. With z̃b > z̃v , magnetic fluctu-
ations are longer lived. Hence, at sufficiently long timescales
larger than 1/kz̃v but smaller than 1/kz̃b , the v fluctuations die
out, effectively making the b fluctuations autonomous. How-
ever, at shorter timescales, the magnetic field fluctuations will
appear frozen in time, and v effectively fluctuates in a given
background of spatially nonuniform but frozen in time b.

Following the logic outlined in Sec. II B 1 we can now
obtain the scaling of the kinetic and magnetic energy spectra
valid over length scales smaller than dI . We find

Ev (k) ∼ k−1−2a ∼ k−5/3, Eb(k) ∼ k−1−2y ∼ k−7/3. (62)

Thus, in this length-scale the magnetic energy spectrum is
distinctly steeper than that kinetic energy spectra. Last, in
the inertial range with length scale l � dI , unsurprisingly the
scaling of Ev (k) and Eb(k) are identical to those in 3D MHD.

2. Anisotropy effects

We now study the effects of spatial anisotropy brought
in by a mean magnetic field B0, assumed to be along the z

direction. Equation (57) now generalizes to

∂b
∂t

+ λ1(v · ∇)b = dI (b · ∇)v − dI∇ × [(∇ × b) × b]

− dIB0∂z∇ × b + μ∇2b + fb. (63)

Velocity v follows Eq. (28). Similar to the Alfvén waves,
Eqs. (28) and (63) have circularly polarized whistler and
cyclotron modes having dispersion of the form

ω ∝ kk‖ (64)

for a large enough dI [9].
We notice that with increasing B0, the nonlinear terms

in Eq. (63) are progressively suppressed. Thus, as in 3D

anisotropic ordinary MHD, we expect different scaling behav-
ior for small or large B0. We begin considering the situation
when the linear and the nonlinear terms balance. This is the
direct analog of the strong limit of 3D anisotropic ordinary
MHD turbulence. Given our results obtained in Secs. II B 2
and II C 1, we anticipate both anisotropy and weak dynamic
scaling for length scales smaller than dI with B0 �= 0. We
proceed by using the scaling ansatz defined in Eq. (31).
Similar to Sec. II B 2, we ignore vz and bz in what follows
below. First, we balance

∂b⊥
∂t

∼ dI∇ × [(∇ × b⊥) × b⊥]

∼ ∂z∇ × b⊥
⇒ y = 2 − z̃, z̃ = 1 + ξ. (65)

Here we have implicitly assumed that ξ < 1, and hence k⊥
dominates over k‖ in the dispersion regime. For strong B0

following the logic developed above and from Eq. (11)

(v⊥ · ∇⊥)v⊥ ∼ (v⊥ · ∇⊥)v⊥ ⇒ a = 1 − z̃, (66)

∂tv⊥ ∼ B0∂zb⊥ ⇒ a − z̃ = y − ξ. (67)

This is the analog of the strong limit of 3D anisotropic MHD.
Assuming scale-independent kinetic energy flux, we obtain by
using Eq. (66)

a = 1
3 , z̃ = 2

3 , y = 4
3 . (68)

This unexpectedly gives ξ = z̃ − 1 < 0, which is clearly un-
physical. However, if we use Eq. (67) we get

ξ = z̃ − a + y = 5
3 > 1 ⇒ z̃ > 2, (69)

which is rather unexpected. Inspired by our scaling analysis
for isotropic HMHD, we try to resolve this by assuming
two dynamic exponents z̃v and z̃b, respectively, for v and b.
As in the isotropic case, we obtain z̃v by imposing scale-
independence of the kinetic energy spectrum. We find

z̃v = 2
3 , a = 1

3 . (70)

However, using Eq. (65) together with the condition of scale-
independent magnetic energy spectrum, we get

y = 2
3 , z̃b = 4

3 , ξ = 1
3 . (71)

Thus, weak dynamic scaling is obtained. Further ξ > 0 justi-
fies our neglecting vz and bz in the above analysis; see discus-
sions in Sec. II B 2. The existence of two dynamics exponents
z̃v and z̃b is actually consistent with the original idea of Chan-
drasekhar [44], which ensures scale-independence of both the
kinetic and magnetic energy flux. As in isotropic 3D HMHD,
z̃b > z̃v , implying magnetic fields to fluctuate independent of
the velocity fields for sufficiently large timescales. Similar
to its isotropic analog, it would be interesting to verify this
numerically. It is now straightforward to obtain the scaling of
the energy spectra. We obtain

Ev (k⊥) ∼ k
−5/3
⊥ , (72)

Eb(k⊥) ∼ k
−7/3
⊥ ; (73)
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see also Ref. [51]. Analogously, we find Ev ∼ k−3
‖ , Eb ∼

k−5
‖ . Thus, in the dispersion range both Ev (k) and Eb(k) scale

with k⊥ in ways same their respective scaling with k in the
isotropic case, where as their scaling with k‖ are markedly
different.

For very large B0, for which the dI -nonlinear term in
Eq. (63) is strongly suppressed, the scaling of Eb(k⊥) is
expected to change from Eq. (73). Several other possibilities
for the scaling of Eb(k⊥) can then exist. For instance, for
strong B0 if we assume that the propagating mode sets the
dynamic exponent z̃b and k‖ and k⊥ scale the same way, then
z̃b = 2. The condition of scale-independence of the magnetic
flux yields 2y = z̃b, giving y = 1. This then yields Eb(k⊥) ∼
k−3
⊥ , assuming the energy cascade is confined to the plane

normal to B0; see, e.g., Ref. [55].
If we now account for spatial anisotropy (should be im-

portant for strong B0) and phenomenologically express the
scale-independence of the magnetic energy flux as

εb ∼ ∂b2

∂t

l2
‖

Mbl
2
⊥

∼ l0, (74)

then 4y = z̃b, where Mb = B2
0/b2 with b being the typical

magnitude of the magnetic fields in the dispersion regime.
Noting that the timescale τ ∼ l⊥l‖, being controlled by the
propagating mode, we have the anisotropic scaling of b:

b ∼ l
3/4
⊥ l

−1/4
‖ . (75)

This in turn gives

Eb(k) ∼ k
−5/2
⊥ k

−1/2
‖ , (76)

see Refs. [51,55].

D. 3D electron MHD

We now analyze the scaling behavior of 3D EMHD—first
the isotropic case, then the anisotropic version.

1. Isotropic 3D EMHD

We first study the scaling in 3D isotropic electron MHD
(EMHD). The EMHD equation for the magnetic field in the
absence of any mean magnetic field is [11,12]

∂

∂t
(b − λ2

e∇2b) = −g∇ × [
(∇ × b) × (

b − λ2
e∇2b

)]

+μ∇2b − νec
2

ω2
pe

∇4b + fb. (77)

Here, νec
2/ω2

pe is a hyperviscosity. Although there are no
symmetry arguments that prevent renormalization of the
coupling g, we ignore such issues here considering the fact
that Eq. (77) is expected to be valid for sufficiently small
scales for which fluctuation corrections should be small. We
ignore fluctuations in the density for simplicity.

We introduce the following scaling:

x → lx, t → lz̃t, b → la. (78)

For λ2
e/ l2 � 1, the g-nonlinear term in Eq. (77) reduces

to the standard Hall term in Eq. (57). We therefore focus

on the opposite limit λ2
e/ l2 � 1 and ignore the fourth-order

hyperviscosity term in Eq. (77). Equation (77) then reduces to

∂

∂t
λ2

e∇2b = g∇ × [∇2b × (∇ × b)] + μ∇2b + fb. (79)

Noting that EMHD description applies in small scales, de-
manding scale-invariance we balance

∂

∂t
∇2b ∼ ∇ × [∇2b × (∇ × b)] (80)

in the steady state, giving y = 2 − z̃. Constancy of the mag-
netic energy flux then implies

2y = z̃ ⇒ y = 2
3 , z̃ = 4

3 , (81)

unchanged from isotropic HMHD. It is now straightforward
to obtain

Eb(k) ∼ k−7/3, (82)

valid for length scales appropriate for EMHD, and identical to
the scaling of Eb(k) in the dispersion range of 3D HMHD.

2. Anisotropic effects

In the presence of a mean magnetic field B0 along the z

direction, Eq. (79) takes the form

∂b
∂t

= −g∇ × [(∇ × b) × b]

+ gB0∂z∇ × b + μ∇2b + fb. (83)

This leads to a dispersion (ignoring the viscous term)

ω ∼ kk‖. (84)

Now, introduce scaling

x → l⊥x, z → l‖z, t → lz̃⊥, b → l
y

⊥b, (85)

where l⊥ is a length scale in the xy plane. As before, we
further set length scale along the z axis l‖ ∼ l

ξ

⊥ that controls
the relative scaling between the xy plane and the z axis; for
ξ �= 1, the system is anisotropic. It is now easy to extract the
scaling exponents by directly following the logic outlined for
3D anisotropic HMHD. We study the strong B0 case when the
linear and the nonlinear terms balance in the dispersion range.
We find

Eb(k⊥) ∼ k
−7/3
⊥ , Eb(k‖) ∼ k−5

‖ , ξ = 1
3 , z̃b = 2

3 . (86)

It is not a surprise that the above scaling in Eq. (86) is
identical to the scaling obtained for Eb(k), given the similarity
between Eqs. (79) and (63) with v = 0. Our results are actu-
ally quite close to those found in other studies. For instance,
Refs. [13,56] indeed found the magnetic energy spectra to
scale as k

−7/3
⊥ ; the anisotropy exponent ξ = 1/3 and z̃b = 4/3.

This gives credence to our scaling analysis.
Similar to anisotropic 3D HMHD, the magnetic energy

spectrum Eb(k) in anisotropic 3D EMHD can display scaling
k−3 and k

−5/2
⊥ k

−1/2
‖ under similar conditions.

III. SUMMARY AND OUTLOOK

We have here revisited the scaling of the magnetic and ki-
netic energy spectra in the various regimes of incompressible
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3D MHD by developing a scaling theory. We obtain k−5/3

scaling for both the kinetic and magnetic energy spectra in
ordinary isotropic 3D MHD. We further discuss the possibility
of k−2 spectra in isotropic 3D MHD. The scaling theory
predicts that the nature of scaling of the energy spectra in
the anisotropic 3D MHD can be diverse, depending upon the
strength of the mean magnetic field B0, a feature that persists
in anisotropic 3D Hall MHD and anisotropic 3D EMHD as
well. For instance, when the magnitude of B0 is such that the
linear Alfvén wave terms balance the nonlinear terms in the
inertial range, the scaling of both the kinetic and magnetic
energy spectra with respect to k⊥ is still given by the K41
result but takes a different power law when expressed in
terms of k‖. This is associated with an anisotropy exponent
ξ = 2/3 that relates the scaling of k‖ with k⊥. The scaling
analysis also yields the IK scaling for strong B0 if the spatial
anisotropy is ignored. Interestingly, however, if one uses the
scale-dependent version of B0 in the IK scaling, one immedi-
ately gets back the K41 result. For very large B0, for which
the linear Alfvén wave terms dominate over the nonlinear
terms in the inertial range, we find Ev (k⊥, k‖) ∼ Eb(k⊥, k‖) ∼
k−2
⊥ k

−1/2
‖ . These are in agreement with the existing results. In-

dependent of any spatial isotropy, we always get the same dy-
namic exponent for v and b in ordinary MHD, corresponding
to strong dynamic scaling. High resolution numerical studies
should complement the scaling results, settle the controversies
surrounding scaling in 3D MHD.

For HMHD, we predict that the scaling of Eb(k) in the
dispersion range should be steeper than that for Ev (k). This
holds with or without a mean magnetic field. More interest-
ingly, we predict two different dynamic exponents for v and
b. Since we find z̃b > z̃v , v fluctuations decay much faster
than the b fluctuations. As a result, b fluctuations effectively
appear as frozen fields in the dynamics of v over length scales
belonging to the dispersion range, where as for sufficiently
large timescales, the dynamics of b fluctuations should be
independent of the v fluctuations in the same regime, and
hence reduces to 3D EMHD. This conclusion remains true
whether or not there is a mean magnetic field. For 3D EMHD,
the predictions from our analysis for b agrees with the same
in 3D HMHD, which are again observed in relevant numerical
studies [13,56]. Our scaling analysis predicts −7/3 scaling for
Eb(k) in isotropic 3D EMHD and in the dispersion regime of
isotropic 3D HMHD. In the corresponding anisotropic cases,
Eb(k⊥) still scales as k

−7/3
⊥ , but Eb(k‖) scales as k−5

‖ with
respect to k‖. We also identify an anisotropy exponent −1/3,
different from its value in 3D anisotropic MHD. Notice that

the the anisotropy exponent in 3D HMHD is half of that in
3D ordinary MHD. This means that the anisotropic effects
and effective two-dimensionalization is stronger in HMHD
than ordinary MHD. In the limit of very strong magnetic B0,
we obtain Eb(k⊥, k‖) ∼ k

−5/2
⊥ k

−1/2
‖ , which is the analog of

weak MHD turbulence in 3D HMHD. Scaling of the magnetic
energy spectrum in 3D EMHD is found to be same as in
3D HMHD. In this context, we note that a recent study on
tabletop laser plasma revealed a k−7/3 for high wave vectors
at late times, indicative of an EMHD or HMHD like behavior
[31]. It may be noted that Refs. [57,58] predicted somewhat
different scaling for the energy spectra. It will be interesting
to see how our scaling approach may be extended or modified
appropriately to account for the results in Refs. [57,58].

It is now well-accepted that the universal properties of fully
developed turbulence—fluid or MHD—cannot be character-
ized by the two-point correlation functions (equivalently by
the energy spectra) alone. Instead, one needs to calculate a
hierarchy of multiscaling exponents for different order struc-
ture functions (including the two point ones) [3,13,59,60].
Our scaling analysis is of course not adequate to capture
multiscaling. Nonetheless, different multiscaling universality
classes of 3D MHD should be associated to different scaling
regimes (e.g., ordinary MHD or HMHD) of MHD turbulence
elucidated here. Thus, our scaling analysis should be helpful
in delineating or classifying the possible universal multiscal-
ing properties of MHD turbulence.

The arguments behind our scaling analysis are sufficiently
general, and should be applicable to a wider range of systems.
Indeed, it will be interesting to apply these to related systems,
e.g., compressible turbulence, rotating turbulence, turbulence
in a binary fluid above and below the miscibility transition
point, two-dimensional fluid, and MHD turbulence. We hope
our work will trigger new studies for these systems along the
lines developed here.

Note added in proof. We recently came to know of the
works by Dallas and Alexakis on freely evolving MHD tur-
bulence, where they reported a variety of scaling behavior by
the energy spectra, e.g., k−2 and k−5/3. See, e.g., Ref. [61].
These generally complement our studies for forced MHD
turbulence.
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